HNF-1β基因与青少年发病的成人型糖尿病的相关性研究
A Study on the Correlation between HNF-1β Gene and Maturity-Onset Diabetes of the Young
DOI: 10.12677/md.2025.155066, PDF, HTML, XML,   
作者: 王庆哲:济宁医学院临床医学院(附属医院),山东 济宁;张正军:济宁医学院附属医院内分泌科,山东 济宁
关键词: 青少年发病的成人型糖尿病肝细胞核因子-1β基因Adolescent-Onset Adult-Onset Diabetes Hepatocyte Nuclear Factor-1β Gene
摘要: 青少年发病的成人型糖尿病(MODY)是一种常染色体显性遗传糖尿病,诱因为单基因突变。无自身免疫或胰岛素抵抗的相关证据,有β细胞功能缺陷,发病年龄早是其基本特征。现已发现的MODY致病基因有14种,其中肝细胞核因子-1β (HNF-1β)是mody5的致病基因。在已确诊为糖尿病的人群中估计有5%的患者是MODY5,该病的临床表现有较大异质性,易被误诊。MODY患者可以通过单独饮食治疗多年,也可能需要最小剂量的磺脲类药物。该病的最终确诊有赖于基因检测。正确的分子诊断有利于MODY患者家系成员的风险评估、预后判断、治疗方案选择。
Abstract: Juvenile-onset adult-onset diabetes mellitus is an autosomal dominant diabetes mellitus caused by a single gene mutation. There is no evidence of autoimmunity or insulin resistance, and there is a deficit in β cell function, and the early age of onset is a basic feature. A total of 14 pathogenic genes of MODY have been discovered, among which hepatocyte nuclear factor-1β is the pathogenic gene of mody5. It is estimated that MODY5 is present in 5% of patients with a confirmed diagnosis of diabetes, and the clinical manifestations of this disease are highly heterogeneous and can be easily misdiagnosed. Patients with MODY can be treated with a diet alone for many years and may also require minimal doses of sulfonylureas. The final diagnosis of the disease depends on genetic testing. Correct molecular diagnosis is beneficial to the risk assessment, prognosis judgment, and treatment plan selection of family members of MODY patients.
文章引用:王庆哲, 张正军. HNF-1β基因与青少年发病的成人型糖尿病的相关性研究[J]. 医学诊断, 2025, 15(5): 487-495. https://doi.org/10.12677/md.2025.155066

1. 引言

1928年,Cammidge基于尿糖检测,首次提出显性遗传家族性轻型糖尿病的概念,Fajans经过长达三十年的回顾性研究,证实在青少年和儿童群体中,存在一种无症状的、家族性遗传的、轻型糖尿病。Tattersall和Fajans首次引入了“青少年发病的成人型糖尿”Maturity-Onset Diabetes of the Young这一术语,并将其定义为“空腹高血糖症”。MODY是一种单基因遗传的糖尿病,具有临床和遗传异质性,表现为常染色体显性遗传模式,能够影响连续三代家族成员。它在所有年轻人糖尿病类型中占比约1%~5%,其特点是由于特定遗传变异导致胰腺β细胞功能异常[1] [2]。据研究显示,MODY属于一系列与胰腺β细胞遗传缺陷相关的疾病。这些遗传缺陷影响了胰腺在葡萄糖利用过程中产生所需胰岛素的功能。MODY的患者通常症状轻微或甚至无症状,往往只有通过常规的血液测试才能发现他们的血糖水平异常升高[3]。1991年起,MODY的分子遗传学研究开始取得突破,使得学者们逐渐深入了解这类疾病的分子层面机制。特别是在鉴定出葡萄糖激酶(GCK)基因的突变之后,进一步明确了MODY糖尿病是由单个基因引起的[4]。现已明确14种不同MODY [5],其包括肝细胞核因子-4α (HNF-4α)、葡萄糖激酶(GCK)、HNF-1α、胰岛素启动因子-1 (IPF-1)、肝细胞核因子-1β、神经元分化因子-1 (NEUROD-1)、转录因子Kruppel样因子-11 (KLF11)、羧基酯脂肪酶(CEL)、成对盒基因-4 (PAX-4)、胰岛素(INS)基因、B淋巴细胞激酶(BLA)、ATP结合C家族8因子(ABCC-8)、内向整流性钾离子通道J家族11因子(KCNJ11)等[6]-[14]。部分专家提出,尽管MODY的研究已取得进展,但仍有大约16%到45%的MODY相关基因位点尚未被充分理解,这些未明确的基因位点被归类为“MODY-X候选基因”。1997年,HNF-1β被首次证实为导致糖尿病的一个致病基因,标志着MODY5的发现。在约50%的MODY5患者中,观察到最常见的遗传变异是17q12染色体区域的微小缺失,导致HNF-1β基因的完整缺失,这一区域还涉及其他几个基因。在西方国家,约有1%至2%的糖尿病患者被诊断为MODY,其中MODY5的患者比例相对较小,大约只占5%。MODY是由不同基因变异导致的,这意味着其治疗方法和预后因类型而异。其中,HNF-1β基因在胰岛细胞核及肝、肺、肾和生殖系统中都有广泛的分布。目前MODY诊断标准[15]是:(1) 至少连续3代常染色体显性遗传;(2) 家族中至少1例患者为25岁以前发病;(3) 诊断后一般5年内无需胰岛素治疗;(4) 存在β细胞功能障碍。随着研究和临床实践的深入,发现越来越多被确诊为MODY的病例实际上并不完全符合该诊断准则。MODY患者展现出更加多样化的临床症状。如果严格按照现有的诊断标准,可能会错过许多MODY患者,导致对MODY实际发病率的低估。目前,MODY的发病率和患病率逐年升高,约占糖尿病的1%~3%,儿童发生率为0.0005%~0.0021%,成人发生率[16]为0.01%,常被误诊为I型或II型糖尿病,对儿童青少年的生长发育产生了较严重的影响[17]。英国一项研究亦表明[18],从最初被判断为糖尿病到确认为MODY,这个过程通常需要大约13年的时间。在这个过程中,进行准确的基因检测是确立MODY诊断的重要依据。

2. MODY5的流行病学和患病率

MODY是一种糖尿病,似乎在世界范围内广泛存在,但其确切患病率仍不确定,导致其直接和即时诊断面临挑战。据估计,MODY约占所有糖尿病病例的2%~5% [18] [19],包括一些最初被归类为1型糖尿病的患者[20] [21]。在美国,据信所有糖尿病病例中有1%~5%是单基因糖尿病[22] [23],包括MODY。在英国,80%的MODY病例被错误地诊断为1型或2型糖尿病[24]。根据Amed及其他学者的说法,在加拿大18岁以下的青少年和儿童人群中,MODY的发病率为每10万人中有0.4例人。MODY有14种亚型,其中少数还影响胰腺以外的器官。根据2018ISPAD临床实践指南[18],HNF-1β-MODY是一种单基因糖尿病,与HNF-1α-MODY相比,相对罕见。在家族性常染色体显性遗传性症状性糖尿病病例中,MODY5通常会影响肾脏和胰腺以外的其他器官。HNF-1β基因突变是该亚型的主要诊断考虑因素。因此,MODY5也被称为肾囊肿和糖尿病综合征[25] (RCAD综合征),占所有MODY类型[26]的2%~5%。现对MODY的研究表明,其亚型的患病率存在显着差异。一般来说,MODY2占所有病例的8%~63%,MODY3占所有病例的21%~64% [27] [28]。其他四种类型(包括MODY5) MODY是这种疾病的罕见形式,只在少数家庭中被描述过。另外未知的MODY位点或位点(命名为MODY-x)占MODY病例的16%~45% [28] [29]。这些对比结果的出现不仅是因为研究人群之间的种族差异,而且至少部分是因为不同的招募标准(年龄、血糖水平和家族史)。

考虑到目前国内外的研究状况,很明显,MODY5的真实发病率可能高于我们目前确诊的病例数,其原因是国内对青少年成人发病糖尿病的研究启动较晚,MODY5基因筛查研究的缺乏,以及对其临床特征、患病率和确切致病因素的了解仍然模糊。选择研究参与者的标准不完善和筛选方法的不完善导致了MODY5的低诊断率。

3. MODY5的分子病因

HNF-1β于1997年首次被确定为MODY5的致病基因,在约一半的患者中,其最常见的突变是在17q12染色体微缺失的背景下发生的整个基因缺失,其中还包括其他基因[1]。HNF1-β是一种由TCF2基因编码的同源结构域转录因子超家族的转录因子[30],该基因位于第17号染色体的q12区域,全长为58,629bp,含有9个外显子[31] [32]。作为含同源结构域蛋白家族的一部分,HNF1-β可以与HNF1-α结合,并在DNA的相同序列上激活转录[33] [34]。HNF1-β可以以同源或异源二聚体的形式发挥作用[25] [31] [35]。它包含三个功能区域:二聚化结构域(1至32号氨基酸)、类POU的DNA结合结构域(88至180号氨基酸)和同源结构域(229至319号氨基酸),以及一个反激活结构域[25] [36] [37] (320至557号氨基酸)。在与HNF-1β有关的疾病中,约有一半的病例是由新发生的突变引起的,这表明许多患者可能没有相关的家族病史。此外,约28%的患者会出现全等位基因的缺失情况。根据基因突变数据库,超过200多种不同的HNF-1β基因等位变异与疾病有关,其中包括错义、无义、移码和剪接突变[38]。然而,变异集中在基因的前4个外显子,尤其是外显子2和4,以及内含子2剪接位点为变异的高发区[25]

HNF1-β在胚胎发育以及肝、胰、肾分化中发挥着重要作用[39] [40],轻微变化会导致多器官功能障碍。从胚胎发育早期,HNF1-β胚胎在囊胚早期由于胚外内胚层的异常或缺失而不能发育成熟,而通过四倍体互补拯救的HNF1-β胚胎不能发育腹侧胰腺,仅有一个小的背侧胰腺[41]。在胰腺前体细胞中,HNF1-β激活OC1,导致PDX1的表达,而PDX1的表达对于胰腺细胞命运的决定至关重要,后期OC1通过Ngn3的表达调控胰腺内分泌分化。这就是所谓的OC1-HNF1-β交叉调控网络,因此,HNF1-β的突变扰乱了OC1-HNF1-β网络,阻碍内分泌细胞分化所需的基因激活,导致内分泌细胞的缺失和β细胞发育异常[42]。尽管HNF-1A和HNF1-β具有高度保守的DNA结合结构域和较为发散的C端反式激活结构域,并且可以作为同源二聚体或异源二聚体发挥作用,但HNF1-β的变异引起的MODY5病型在其发病机制、临床表现和治疗方法上呈现出多样性,这与其他由HNF基因变异引起的MODY亚型相比,并不完全相同。特别地,在大约一半的HNF1-β突变携带者中,糖尿病的发生不仅仅是由于β细胞功能障碍,而是β细胞功能障碍和胰岛素抵抗的共同影响,这与其他HNF基因突变导致的MODY亚型在病理上有所区别。

迄今为止,未证明HNF-1β中致病变异的类型或位置与特定临床特征的发生直接相关[43]。表型变异的原因仍不清楚,可能反映了不同基因异常的功能影响,早期发育阶段HNF-1β基因时间表达的随机发生变化,或其他遗传、环境修饰因子[44]。特别是,HNF-1β缺乏的可变性可能是由于属于HNF-1β信号级联的蛋白质的失调或功能障碍。然而,尽管已确定了几个受HNF-1β调控的基因,例如纤毛相关蛋白,但负责HNF-1β生理和病理功能的全套下游基因仍然难以捉摸。

4. MODY5的临床特点

MODY5通常在青少年期或成年初期开始显现,确诊年龄在24岁左右,可能存在较大差异。HNF1β在胚胎发育的初期主要表达于肾脏、生殖系统、胰腺、肝脏和神经系统。因此,携带HNF1β基因突变的个体可能会出现这些器官的发育异常。其MODY5有两种高血糖的机制:一是胰腺发育不全导致胰岛素分泌减少,二是肝脏胰岛素抵抗和葡萄糖感知机制改变[25] [44]。HNF1B基因在调控胰腺多能细胞向内分泌细胞、导管细胞和腺泡细胞分化过程的转录因子网络中起着关键作用。HNF1B缺陷可导致胰腺形态的明显改变,从完全或部分胰腺发育到弥漫性胰腺萎缩。胰腺外分泌不足的患病率为20%~75%。它通常是无症状的,可以通过粪便弹性酶减少来记录[44]。HNF1B基因突变是单基因先天性肾脏和泌尿系统畸形(CAKUT)的主要原因之一,常导致囊肿肾、肾发育不良及其他尿路异常。该基因在肾脏发育的多个关键阶段发挥作用,特别是在集合管、肾盂、输尿管生长和肾间质分化中。同样也是儿童期慢性肾病的重要原因[45] [46]。此外,HNF1-β基因突变还可导致多种肾功能异常,如出现蛋白尿,且少于1 g/天,肾功能从正常到CKD及ESRD。这些症状表现为Gitelman样综合征,包括低镁血症和低钙尿症,归因于HNF1-β对FXYD2基因的转录调控。FXYD2基因编码远曲小管中的钠钾ATP酶,关键于镁的重吸收[40]。此外,患者常有高尿酸血症和早期痛风,由于HNF1-β对UMOD基因的调控影响尿酸转运[40]。原发性甲状旁腺功能亢进症也与HNF1-β抑制PTH转录有关[47] [48]。HNF1B基因突变还与肝功能障碍相关,包括血清转氨酶、碱性磷酸酶升高和轻度高胆红素血症。组织学研究表明,胆管减少、脂肪变性和门静脉周围纤维化可能导致胆汁淤积性肝病[45]。在女性中,HNF1B基因突变可能导致各种生殖道畸形,如子宫发育不全、双角子宫等。在男性中,也有报道附睾或精囊囊肿、不同管道闭锁等[47] [49] [50]。MODY5患者中智力障碍和神经精神疾病的发病率较高,与17q12染色体区域的HNF1B缺失有关。HNF1-β的缺失通常也影响到LIM同型盒(lhx1)和乙酰辅酶A羧化酶α (acaca)这两个基因。这些基因在多种神经系统疾病的发生中起着重要作用,如神经退行性疾病、癫痫、自闭症和智力发育滞后等。在大脑发育的初期阶段,lhx1基因通过参与转录调控,对神经细胞的分化和轴突的引导发挥着关键作用。而acaca基因编码的乙酰辅酶A羧化酶是控制脂肪酸代谢的核心酶。其余具体机制尚不明朗。

5. MODY5的治疗

确定MODY亚型至关重要,这将有助于决定适当的治疗和预后。MODY5的高血糖管理应从营养学家制定的严格饮食开始。虽然一些病例可以仅通过饮食推荐来控制,相关报道称,二甲双胍对MODY5的疗效明显低于磺脲类,磺脲类药物对部分HNF-1β缺陷患者有效的分子基础与其作用靶点下游的代偿机制相关。磺脲类药物通过结合胰岛β细胞K通道的SUR1亚基,不依赖ATP直接关闭通道、促进钙内流及胰岛素分泌,该作用位点位于HNF-1β调控的β细胞发育通路下游。尽管HNF-1β缺陷会导致胰腺发育不良和β细胞功能障碍,但部分患者仍保留残余胰岛素分泌能力,磺脲类药物可通过上述机制刺激残余β细胞分泌胰岛素。需注意的是,HNF-1β-MODY患者对磺脲类药物的反应存在异质性,一些患者可能获益,但部分严重β细胞缺陷者仍需胰岛素治疗。二甲双胍效果不佳的机制可能在于其对肝脏代谢通路的调控异常。主要通过抑制线粒体呼吸链复合体I、激活AMPK通路来减少肝糖输出,而HNF-1β作为关键转录因子,其功能缺陷会干扰肝脏中与线粒体功能及AMPK通路相关的基因表达,削弱药物对肝糖异生的抑制作用;同时,HNF-1β缺陷可能加剧肝脏胰岛素抵抗,进一步降低二甲双胍改善胰岛素敏感性的效果。这一机制在临床研究中得到验证,HNF-1β-MODY患者常因肝脏代谢通路异常导致二甲双胍降糖效率低下。格列尼德或磺脲类药物也已经成为一种治疗方案,可以控制可变血糖,但有一定的反应期[49]-[51]。然而,据报道,由于发育不全和胰腺功能障碍,一些MODY5患者对磺脲类药物[49]没有充分的反应,可能是由于合并症胰腺发育不全和一定程度的肝脏胰岛素抵抗。这些患者可能需要强化胰岛素治疗来控制高血糖,大多数患者在随访期间需要胰岛素治疗。

目前,研究显示大多数MODY5患者(80.39%)接受胰岛素治疗。只有少数患者在糖尿病发病后不使用胰岛素[52]。磺脲类药物适用于胰岛功能有一定储备的患者[45],不适用于严重胰腺发育不良的患者。值得注意的是,最近的报道提供了一些新的治疗可能性。一名HNF1B缺乏症MODY5患者接受利拉鲁肽治疗后,内源性胰岛素分泌恢复,从而不再需要外部注射胰岛素[53]。这可能是由于胰高血糖素样肽1受体激动剂[54]上调PAX6,促进了胰岛素分泌细胞的再生。此外,卡介苗(Bacillus Calmette-Guerin, BCG)疫苗[55]可能有益于MODY5患者。研究表明卡介苗治疗可能使胰腺B细胞再生[56] [57]。这可能有助于修复由于胰腺发育不全所导致的功能缺陷。胰腺外分泌功能障碍的治疗往往被忽视。早期胰腺替代治疗可以改善这些患者的症状并使其体重恢复正常[58]。对于低镁血症患者,无机镁治疗效果较差,且有较多副作用。推荐使用有机镁,如天冬氨酸镁。同时,低镁血症患者应慎用噻嗪类利尿剂,可能加重低镁血症[59]。MODY5型高尿酸血症患者禁用促尿酸排泄药物。别嘌呤醇被推荐用于控制血清尿酸水平和延缓肾损害[60]。目前研究有一些局限性。首先,为了全面了解MODY5患者的临床特征,所有的文章都局限于记录糖尿病相关指标,这可能会导致选择偏倚。其次,由于MODY5的发病率较低,难以分析其罕见的临床表现。最后,目前尚未完全明了不同基因变异如何导致不同的临床特征,因此,深入研究其分子机制对于制定更为全面的治疗计划至关重要。

6. MODY5的诊断意义

对MODY患者进行准确的诊断对于选择合适的治疗方案、判断预后以及评估家族成员的风险极为关键。首先,准确诊断能够确保患者获得更适宜的治疗。例如,如果一个MODY5患者被误诊为1型糖尿病并接受胰岛素治疗,可能会影响其血糖控制和生活质量。其次,及时诊断MODY5并在病情早期进行血糖干预,可以改善血糖控制,减缓糖尿病的长期并发症,从而减轻患者的医疗负担并提高他们晚期的生活质量。第三,重视在临床上诊断MODY5患者时检测HNF-1β基因突变,不仅有助于家庭成员的基因筛查,避免误诊或漏诊,而且为遗传咨询提供了重要的依据最后,MODY5患者的临床表现有较大异质性,强调基因检测确诊MODY:对实施个体化治疗方案、拟定最合适的血糖管理方法具有实际的意义。我国学者在20世纪90年代开始对MODY进行研究,目前国内对MODY的认识仍不够,对MODY的研究也较少,并且由于MODY患者的临床表现多样,完全符合MODY诊断标准的家系也并不多见,加之筛查MODY基因的标准尚不完善,进行基因检测的费用较昂贵,所以诊断MODY5具有挑战性。由于该病的临床特征、致病基因分布、流行情况等尚不甚清楚,因此MODY的总体诊断率较低。

目前关于MODY临床和分子遗传学特征的相关知识绝大部分来自于国外研究。尽管已经鉴别出14个MODY致病基因,仍有15%~65%的MODY患者未能找到其分子机制。我国对MODY的研究起步相对较晚,该病的具体流行情况及致病基因分布尚不甚清楚,MODY的总体诊断率不高。Zhang等[61]新近报道,在MODY临床家系中均未发现上述基因突变,并由此提出MODY-X约占中国MODY家系的80%~90%。作为糖尿病大国,亟需明确该病在中国人群中的特点,中国MODY人群需要更多的基因学研究。积极筛查MODY类型的糖尿病对于探究国内早发性或家族性糖尿病的原因具有重要意义。同时MODY5的患病率也会有更精确地估算,有利于今后开展临床工作及研究。近年来,随着对MODY5型糖尿病病理生理机制的深入研究,针对HNF-1β基因的治疗策略也在不断拓展。例如,基因编辑技术和靶向治疗策略为MODY5型糖尿病的治疗带来新的希望。未来针对HNF-1β信号通路的药物研发,可尝试靶向HNF-1β DNA结合域的小分子化合物,探索其增强HNF-1β与PPARGC1A等线粒体功能基因启动子结合活性的可能性,以期部分修复线粒体呼吸链功能异常;另一方面,也可考虑从下游通路代偿入手,如研究PPARGC1A激动剂助力线粒体生物合成、或SIRT1激活剂辅助提升AMPK磷酸化水平的作用,探索这些方式对改善肝糖异生调控不足的潜在价值;同时,还可关注表观遗传调控领域,尝试应用组蛋白去乙酰化酶抑制剂,探索其缓解HNF-1β缺陷所致下游基因转录抑制、进而辅助改善肝脏胰岛素敏感性的可行性。

综上所述,HNF-1β基因与青少年发病的MODY5型糖尿病相关性的研究已经取得了显著的进展,但仍需进一步深入探讨其遗传特点、临床表现、诊断方法及治疗策略,以期为临床实践提供更有效的指导,并加速相关领域的科学研究和医学进步。

参考文献

[1] Firdous, P., Nissar, K., Ali, S., Ganai, B.A., Shabir, U., Hassan, T., et al. (2018) Genetic Testing of Maturity-Onset Diabetes of the Young Current Status and Future Perspectives. Frontiers in Endocrinology, 9, Article 253. [Google Scholar] [CrossRef] [PubMed]
[2] Sanyoura, M., Philipson, L.H. and Naylor, R. (2018) Monogenic Diabetes in Children and Adolescents: Recognition and Treatment Options. Current Diabetes Reports, 18, Article No. 58. [Google Scholar] [CrossRef] [PubMed]
[3] American Diabetes Association (2013) Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 37, S81-S90. [Google Scholar] [CrossRef] [PubMed]
[4] Froguel, P., Vaxillaire, M., Sun, F., Velho, G., Zouali, H., Butel, M.O., et al. (1992) Close Linkage of Glucokinase Locus on Chromosome 7p to Early-Onset Non-Insulin-Dependent Diabetes Mellitus. Nature, 356, 162-164. [Google Scholar] [CrossRef] [PubMed]
[5] Amaral, S., Palha, A., Bogalho, P. and Silva-Nunes, J. (2023) Maturity-Onset Diabetes of the Young Secondary to HNF1B Variants (HNF1B-MODY): A Series of 10 Patients from a Single Diabetes Center. Diabetology & Metabolic Syndrome, 15, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
[6] Bonnefond, A., Philippe, J., Durand, E., Dechaume, A., Huyvaert, M., Montagne, L., et al. (2012) Whole-Exome Sequencing and High Throughput Genotyping Identified KCNJ11 as the Thirteenth MODY Gene. PLOS ONE, 7, e37423. [Google Scholar] [CrossRef] [PubMed]
[7] Bowman, P., Flanagan, S.E., Edghill, E.L., Damhuis, A., Shepherd, M.H., Paisey, R., et al. (2011) Heterozygous ABCC8 Mutations Are a Cause of Mody. Diabetologia, 55, 123-127. [Google Scholar] [CrossRef] [PubMed]
[8] Borowiec, M., Liew, C.W., Thompson, R., Boonyasrisawat, W., Hu, J., Mlynarski, W.M., et al. (2009) Mutations at the blk Locus Linked to Maturity Onset Diabetes of the Young and β-Cell Dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 106, 14460-14465. [Google Scholar] [CrossRef] [PubMed]
[9] Edghill, E.L., Flanagan, S.E., Patch, A., Boustred, C., Parrish, A., Shields, B., et al. (2008) Insulin Mutation Screening in 1,044 Patients with Diabetes: Mutations in the INS Gene Are a Common Cause of Neonatal Diabetes but a Rare Cause of Diabetes Diagnosed in Childhood or Adulthood. Diabetes, 57, 1034-1042. [Google Scholar] [CrossRef] [PubMed]
[10] Plengvidhya, N., Kooptiwut, S., Songtawee, N., Doi, A., Furuta, H., Nishi, M., et al. (2007) PAX4 Mutations in Thais with Maturity Onset Diabetes of the Young. The Journal of Clinical Endocrinology & Metabolism, 92, 2821-2826. [Google Scholar] [CrossRef] [PubMed]
[11] Ræder, H., Johansson, S., Holm, P.I., Haldorsen, I.S., Mas, E., Sbarra, V., et al. (2005) Mutations in the CEL VNTR Cause a Syndrome of Diabetes and Pancreatic Exocrine Dysfunction. Nature Genetics, 38, 54-62. [Google Scholar] [CrossRef] [PubMed]
[12] Neve, B., Fernandez-Zapico, M.E., Ashkenazi-Katalan, V., Dina, C., Hamid, Y.H., Joly, E., et al. (2005) Role of Transcription Factor KLF11 and Its Diabetes-Associated Gene Variants in Pancreatic Beta Cell Function. Proceedings of the National Academy of Sciences, 102, 4807-4812. [Google Scholar] [CrossRef] [PubMed]
[13] Staffers, D.A., Ferrer, J., Clarke, W.L. and Habener, J.F. (1997) Early-Onset Type-Ll Diabetes Mellitus (MODY4) Linked to IPF1. Nature Genetics, 17, 138-139. [Google Scholar] [CrossRef] [PubMed]
[14] Malecki, M.T., Jhala, U.S., Antonellis, A., Fields, L., Doria, A., Orban, T., et al. (1999) Mutations in NEUROD1 Are Associated with the Development of Type 2 Diabetes Mellitus. Nature Genetics, 23, 323-328. [Google Scholar] [CrossRef] [PubMed]
[15] Urbanová, J., Brunerová, L. and Brož, J. (2018) Diagnosis of MODY—Brief Overview for Clinical Practice. Vnitřní lékařství, 64, 367-374. [Google Scholar] [CrossRef
[16] Bjerregaard, L.G., Jensen, B.W., Ängquist, L., Osler, M., Sørensen, T.I.A. and Baker, J.L. (2018) Change in Overweight from Childhood to Early Adulthood and Risk of Type 2 Diabetes. New England Journal of Medicine, 378, 1302-1312. [Google Scholar] [CrossRef] [PubMed]
[17] Anık, A., Çatlı, G., Abacı, A., Sarı, E., Yeşilkaya, E., Korkmaz, H.A., et al. (2015) Molecular Diagnosis of Maturity-Onset Diabetes of the Young (MODY) in Turkish Children by Using Targeted Next-Generation Sequencing. Journal of Pediatric Endocrinology and Metabolism, 28, 1265-1271. [Google Scholar] [CrossRef] [PubMed]
[18] Hattersley, A.T., Greeley, S.A.W., Polak, M., Rubio-Cabezas, O., Njølstad, P.R., Mlynarski, W., et al. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: The Diagnosis and Management of Monogenic Diabetes in Children and Adolescents. Pediatric Diabetes, 19, 47-63. [Google Scholar] [CrossRef] [PubMed]
[19] Velho, G. and Froguel, P. (1998) Genetic, Metabolic and Clinical Characteristics of Maturity Onset Diabetes of the Young. European Journal of Endocrinology, 138, 233-239. [Google Scholar] [CrossRef] [PubMed]
[20] Møller, A.M., Dalgaard, L.T., Pociot, F., Nerup, J., Hansen, T. and Pedersen, O. (1998) Mutations in the Hepatocyte Nuclear Factor-1α Gene in Caucasian Families Originally Classified as Having Type I Diabetes. Diabetologia, 41, 1528-1531. [Google Scholar] [CrossRef] [PubMed]
[21] Lambert, A.P., Ellard, S., Allen, L.I.S., Gallen, I.W., Gillespie, K.M., Bingley, P.J., et al. (2003) Identifying Hepatic Nuclear Factor 1α Mutations in Children and Young Adults with a Clinical Diagnosis of Type 1 Diabetes. Diabetes Care, 26, 333-337. [Google Scholar] [CrossRef] [PubMed]
[22] Amed, S. and Oram, R. (2016) Maturity-onset Diabetes of the Young (MODY): Making the Right Diagnosis to Optimize Treatment. Canadian Journal of Diabetes, 40, 449-454. [Google Scholar] [CrossRef] [PubMed]
[23] Kim, S. (2015) Maturity-Onset Diabetes of the Young: What Do Clinicians Need to Know? Diabetes & Metabolism Journal, 39, 468-477. [Google Scholar] [CrossRef] [PubMed]
[24] Shields, B.M., Hicks, S., Shepherd, M.H., Colclough, K., Hattersley, A.T. and Ellard, S. (2010) Maturity-Onset Diabetes of the Young (MODY): How Many Cases Are We Missing? Diabetologia, 53, 2504-2508. [Google Scholar] [CrossRef] [PubMed]
[25] Clissold, R.L., Hamilton, A.J., Hattersley, A.T., Ellard, S. and Bingham, C. (2014) HNF1B-Associated Renal and Extra-Renal Disease—An Expanding Clinical Spectrum. Nature Reviews Nephrology, 11, 102-112. [Google Scholar] [CrossRef] [PubMed]
[26] Nagano, C., Morisada, N., Nozu, K., Kamei, K., Tanaka, R., Kanda, S., et al. (2019) Clinical Characteristics of HNF1B-Related Disorders in a Japanese Population. Clinical and Experimental Nephrology, 23, 1119-1129. [Google Scholar] [CrossRef] [PubMed]
[27] Moisés, R.S., Reis, A.F., Morel, V., Chacra, A.R., Dib, S.A., Bellanné-Chantelot, C., et al. (2001) Prevalence of Maturity-Onset Diabetes of the Young Mutations in Brazilian Families with Autosomal-Dominant Early-Onset Type 2 Diabetes. Diabetes Care, 24, 786-788. [Google Scholar] [CrossRef] [PubMed]
[28] Chèvre, J., Hani, E.H., Boutin, P., Vaxillaire, M., Blanché, H., Vionnet, N., et al. (1998) Mutation Screening in 18 Caucasian Families Suggest the Existence of Other MODY Genes. Diabetologia, 41, 1017-1023. [Google Scholar] [CrossRef] [PubMed]
[29] Frayling, T.M., Lindgren, C.M., Chevre, J.C., Menzel, S., Wishart, M., Benmezroua, Y., et al. (2003) A Genome-Wide Scan in Families with Maturity-Onset Diabetes of the Young: Evidence for Further Genetic Heterogeneity. Diabetes, 52, 872-881. [Google Scholar] [CrossRef] [PubMed]
[30] Adalat, S., Woolf, A.S., Johnstone, K.A., Wirsing, A., Harries, L.W., Long, D.A., et al. (2009) HNF1B Mutations Associate with Hypomagnesemia and Renal Magnesium Wasting. Journal of the American Society of Nephrology, 20, 1123-1131. [Google Scholar] [CrossRef] [PubMed]
[31] Bártů, M., Hojný, J., Hájková, N., Michálková, R., Krkavcová, E., Hadravský, L., et al. (2020) Analysis of Expression, Epigenetic, and Genetic Changes of HNF1B in 130 Kidney Tumours. Scientific Reports, 10, Article No. 17151. [Google Scholar] [CrossRef] [PubMed]
[32] Zody, M.C., Garber, M., Adams, D.J., Sharpe, T., Harrow, J., Lupski, J.R., et al. (2006) DNA Sequence of Human Chromosome 17 and Analysis of Rearrangement in the Human Lineage. Nature, 440, 1045-1049. [Google Scholar] [CrossRef] [PubMed]
[33] Nakayama, M., Nozu, K., Goto, Y., Kamei, K., Ito, S., Sato, H., et al. (2010) HNF1B Alterations Associated with Congenital Anomalies of the Kidney and Urinary Tract. Pediatric Nephrology, 25, 1073-1079. [Google Scholar] [CrossRef] [PubMed]
[34] Painter, J.N., O’Mara, T.A., Batra, J., Cheng, T., Lose, F.A., Dennis, J., et al. (2014) Fine-Mapping of the HNF1B Multicancer Locus Identifies Candidate Variants That Mediate Endometrial Cancer Risk. Human Molecular Genetics, 24, 1478-1492. [Google Scholar] [CrossRef] [PubMed]
[35] Heidet, L., Decramer, S., Pawtowski, A., Morinière, V., Bandin, F., Knebelmann, B., et al. (2010) Spectrum of HNF1B Mutations in a Large Cohort of Patients Who Harbor Renal Diseases. Clinical Journal of the American Society of Nephrology, 5, 1079-1090. [Google Scholar] [CrossRef] [PubMed]
[36] Kim, E.K., Lee, J.S., Cheong, H.I., Chung, S.S., Kwak, S.H. and Park, K.S. (2014) Identification and Functional Characterization of P159L Mutation in HNF1B in a Family with Maturity-Onset Diabetes of the Young 5 (MODY5). Genomics & Informatics, 12, 240-246. [Google Scholar] [CrossRef] [PubMed]
[37] Hojny, J., Bartu, M., Krkavcova, E., Nemejcova, K., Sevcik, J., Cibula, D., et al. (2020) Identification of Novel HNF1B mRNA Splicing Variants and Their Qualitative and Semi-Quantitative Profile in Selected Healthy and Tumour Tissues. Scientific Reports, 10, Article No. 6958. [Google Scholar] [CrossRef] [PubMed]
[38] Stenson, P.D., Mort, M., Ball, E.V., Chapman, M., Evans, K., Azevedo, L., et al. (2020) The Human Gene Mutation Database (HGMD®): Optimizing Its Use in a Clinical Diagnostic or Research Setting. Human Genetics, 139, 1197-1207. [Google Scholar] [CrossRef] [PubMed]
[39] Chan, S.C., Zhang, Y., Shao, A., Avdulov, S., Herrera, J., Aboudehen, K., et al. (2018) Mechanism of Fibrosis in Hnf1b-Related Autosomal Dominant Tubulointerstitial Kidney Disease. Journal of the American Society of Nephrology, 29, 2493-2509. [Google Scholar] [CrossRef] [PubMed]
[40] Ferrè, S. and Igarashi, P. (2018) New Insights into the Role of HNF-1β in Kidney (Patho)physiology. Pediatric Nephrology, 34, 1325-1335. [Google Scholar] [CrossRef] [PubMed]
[41] Barbacci, E., Reber, M., Ott, M., Breillat, C., Huetz, F. and Cereghini, S. (1999) Variant Hepatocyte Nuclear Factor 1 Is Required for Visceral Endoderm Specification. Development, 126, 4795-4805. [Google Scholar] [CrossRef] [PubMed]
[42] De Vas, M.G., Kopp, J.L., Heliot, C., Sander, M., Cereghini, S. and Haumaitre, C. (2015) HNF1B Controls Pancreas Morphogenesis and the Generation of Ngn3+ Endocrine Progenitors. Development, 142, 871-882. [Google Scholar] [CrossRef] [PubMed]
[43] Lau, H.H., Ng, N.H.J., Loo, L.S.W., Jasmen, J.B. and Teo, A.K.K. (2018) The Molecular Functions of Hepatocyte Nuclear Factors—In and Beyond the Liver. Journal of Hepatology, 68, 1033-1048. [Google Scholar] [CrossRef] [PubMed]
[44] El‐Khairi, R. and Vallier, L. (2016) The Role of Hepatocyte Nuclear Factor 1β in Disease and Development. Diabetes, Obesity and Metabolism, 18, 23-32. [Google Scholar] [CrossRef] [PubMed]
[45] Mateus, J.C., Rivera, C., O’Meara, M., Valenzuela, A. and Lizcano, F. (2020) Maturity-Onset Diabetes of the Young Type 5 a Multisystemic Disease: A Case Report of a Novel Mutation in the HNF1B Gene and Literature Review. Clinical Diabetes and Endocrinology, 6, Article No. 16. [Google Scholar] [CrossRef] [PubMed]
[46] Decramer, S., Parant, O., Beaufils, S., Clauin, S., Guillou, C., Kessler, S., et al. (2007) Anomalies of the TCF2 Gene Are the Main Cause of Fetal Bilateral Hyperechogenic Kidneys. Journal of the American Society of Nephrology, 18, 923-933. [Google Scholar] [CrossRef] [PubMed]
[47] Verhave, J.C., Bech, A.P., Wetzels, J.F.M. and Nijenhuis, T. (2016) Hepatocyte Nuclear Factor 1β-Associated Kidney Disease: More than Renal Cysts and Diabetes. Journal of the American Society of Nephrology, 27, 345-353. [Google Scholar] [CrossRef] [PubMed]
[48] Ferrè, S., Bongers, E.M.H.F., Sonneveld, R., Cornelissen, E.A.M., van der Vlag, J., van Boekel, G.A.J., et al. (2013) Early Development of Hyperparathyroidism Due to Loss of PTH Transcriptional Repression in Patients with HNF1β Mutations? The Journal of Clinical Endocrinology & Metabolism, 98, 4089-4096. [Google Scholar] [CrossRef] [PubMed]
[49] Urakami, T. (2019) Maturity-Onset Diabetes of the Young (MODY): Current Perspectives on Diagnosis and Treatment. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1047-1056. [Google Scholar] [CrossRef] [PubMed]
[50] Carrillo, E., Lomas, A., Pinés, P.J. and Lamas, C. (2017) Long-Lasting Response to Oral Therapy in a Young Male with Monogenic Diabetes as Part of HNF1B-Related Disease. Endocrinology, Diabetes & Metabolism Case Reports, 2017, Article ID: 17-0052. [Google Scholar] [CrossRef] [PubMed]
[51] Brunerova, L., Rahelić, D., Ceriello, A. and Broz, J. (2017) Use of Oral Antidiabetic Drugs in the Treatment of Maturity‐onset Diabetes of the Young: A Mini Review. Diabetes/Metabolism Research and Reviews, 34, e2940. [Google Scholar] [CrossRef] [PubMed]
[52] Raile, K., Schober, E., Konrad, K., Thon, A., Grulich‐Henn, J., Meissner, T., et al. (2014) Treatment of Young Patients with HNF1A Mutations (HNF1A-MODY). Diabetic Medicine, 32, 526-530. [Google Scholar] [CrossRef] [PubMed]
[53] Terakawa, A., Chujo, D., Yasuda, K., Ueno, K., Nakamura, T., Hamano, S., et al. (2020) Maturity-Onset Diabetes of the Young Type 5 Treated with the Glucagon-Like Peptide-1 Receptor Agonist: A Case Report. Medicine, 99, e21939. [Google Scholar] [CrossRef] [PubMed]
[54] Li, Y., Zheng, J., Shen, Y., Li, W., Liu, M., Wang, J., et al. (2018) Comparative Study of Liraglutide and Insulin Glargine on Glycemic Control and Pancreatic β-Cell Function in db/db Mice. Medical Science Monitor, 24, 3293-3300. [Google Scholar] [CrossRef] [PubMed]
[55] Ayoub, B.M., Ramadan, E., Ashoush, N., Tadros, M.M., Hendy, M.S., Elmazar, M.M., et al., (2020) Avoiding COVID-19 Complications with Diabetic Patients Could Be Achieved by Multi-Dose Bacillus Calmette-Guérin Vaccine: A Case Study of β Cells Regeneration. Pharmazie, 75, 375-380.
[56] Kühtreiber, W.M., Tran, L., Kim, T., Dybala, M., Nguyen, B., Plager, S., et al. (2018) Long-Term Reduction in Hyperglycemia in Advanced Type 1 Diabetes: The Value of Induced Aerobic Glycolysis with BCG Vaccinations. npj Vaccines, 3, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
[57] Kodama, S., Kühtreiber, W., Fujimura, S., Dale, E.A. and Faustman, D.L. (2003) Islet Regeneration during the Reversal of Autoimmune Diabetes in NOD Mice. Science, 302, 1223-1227. [Google Scholar] [CrossRef] [PubMed]
[58] Christiadi, D. and Singer, R.F. (2017) Calciphylaxis in a Dialysis Patient Successfully Treated with High-Dose Vitamin K Supplementation. Clinical Kidney Journal, 11, 528-529. [Google Scholar] [CrossRef] [PubMed]
[59] Li, H.J., Groden, C., Hoenig, M.P., Ray, E.C., Ferreira, C.R., Gahl, W., et al. (2019) Case Report: Extreme Coronary Calcifications and Hypomagnesemia in a Patient with a 17q12 Deletion Involving HNF1B. BMC Nephrology, 20, Article No. 353. [Google Scholar] [CrossRef] [PubMed]
[60] Wang, Q., Tan, W.F. and Wang, Q. (2017) A Case of Renal Cysts and Diabetes Syndrome Presenting with Gout as Initial Symptom. Chinese Journal of Internal Medicine, 56, 302-303.
[61] Zhang, M., Zhou, J.J., Cui, W., Li, Y., Yang, P., Chen, X., et al. (2015) Molecular and Phenotypic Characteristics of Maturity‐Onset Diabetes of the Young Compared with Early Onset Type 2 Diabetes in China. Journal of Diabetes, 7, 858-863. [Google Scholar] [CrossRef] [PubMed]