[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Gentile, L.F., Cuenca, A.G., Efron, P.A., Ang, D., Bihorac, A., McKinley, B.A., et al. (2012) Persistent Inflammation and Immunosuppression: A Common Syndrome and New Horizon for Surgical Intensive Care. Journal of Trauma and Acute Care Surgery, 72, 1491-1501. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Kosyakovsky, L.B., Angriman, F., Katz, E., Adhikari, N.K., Godoy, L.C., Marshall, J.C., et al. (2021) Association between Sepsis Survivorship and Long-Term Cardiovascular Outcomes in Adults: A Systematic Review and Meta-Analysis. Intensive Care Medicine, 47, 931-942. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Falk, G.E., Rogers, J., Lu, L., Ablah, E., Okut, H. and Vindhyal, M.R. (2022) Sepsis, Septic Shock, and Differences in Cardiovascular Event Occurrence. Journal of Intensive Care Medicine, 37, 1528-1534. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
李琦, 沈丽娟, 陈家豪, 等. NLRP3炎症小体在脓毒症心肌损伤中的作用[J]. 国际心血管病杂志, 2025, 52(1): 21-24.
|
[6]
|
Soriano, F.G., Nogueira, A.C., Caldini, E.G., Lins, M.H., Teixeira, A.C., Cappi, S.B., et al. (2006) Potential Role of Poly(Adenosine 5’-Diphosphate-Ribose) Polymerase Activation in the Pathogenesis of Myocardial Contractile Dysfunction Associated with Human Septic Shock. Critical Care Medicine, 34, 1073-1079. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Rudiger, A. and Singer, M. (2007) Mechanisms of Sepsis-Induced Cardiac Dysfunction. Critical Care Medicine, 35, 1599-1608. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Aird, W.C. (2003) The Role of the Endothelium in Severe Sepsis and Multiple Organ Dysfunction Syndrome. Blood, 101, 3765-3777. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Angriman, F., Rosella, L.C., Lawler, P.R., Ko, D.T., Wunsch, H. and Scales, D.C. (2022) Sepsis Hospitalization and Risk of Subsequent Cardiovascular Events in Adults: A Population-Based Matched Cohort Study. Intensive Care Medicine, 48, 448-457. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Wu, M., Tsou, P., Wang, Y., Lee, M.G., Chao, C.C.T., Lee, W., et al. (2019) Impact of Post-Sepsis Cardiovascular Complications on Mortality in Sepsis Survivors: A Population-Based Study. Critical Care, 23, Article No. 293. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
汤云霞, 黄翯. 女性心血管疾病现状及性别特异性危险因素分析[J]. 心电与循环, 2024, 43(6): 544-549.
|
[12]
|
Gotts, J.E. and Matthay, M.A. (2016) Sepsis: Pathophysiology and Clinical Management. BMJ, 353, i1585. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Jentzer, J.C., Lawler, P.R., Van Houten, H.K., Yao, X., Kashani, K.B. and Dunlay, S.M. (2023) Cardiovascular Events among Survivors of Sepsis Hospitalization: A Retrospective Cohort Analysis. Journal of the American Heart Association, 12, e027813. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Angriman, F., Lawler, P.R., Shah, B.R., Martin, C.M. and Scales, D.C. (2023) Prevalent Diabetes and Long-Term Cardiovascular Outcomes in Adult Sepsis Survivors: A Population-Based Cohort Study. Critical Care, 27, Article No. 302. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Angriman, F., Rosella, L.C., Lawler, P.R., Ko, D.T., Martin, C.M., Wunsch, H., et al. (2023) Risk Factors for Major Cardiovascular Events in Adult Sepsis Survivors: A Population-Based Cohort Study. Critical Care Medicine, 51, 471-483. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Angriman, F., Rosella, L.C., Lawler, P.R., Ko, D.T., Martin, C.M., Wunsch, H., et al. (2023) Renin-Angiotensin System Inhibitors and Major Cardiovascular Events after Sepsis. Annals of the American Thoracic Society, 20, 414-423. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Hsieh, Y., Tsou, P., Wang, Y., Chao, C.C., Lee, W., Lee, M.G., et al. (2019) Risk Factors for Myocardial Infarction and Stroke among Sepsis Survivors: A Competing Risks Analysis. Journal of Intensive Care Medicine, 35, 34-41. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Custodero, C., Wu, Q., Ghita, G.L., Anton, S.D., Brakenridge, S.C., Brumback, B.A., et al. (2019) Prognostic Value of NT-proBNP Levels in the Acute Phase of Sepsis on Lower Long-Term Physical Function and Muscle Strength in Sepsis Survivors. Critical Care, 23, Article No. 230. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Brueckmann, M., Huhle, G., Lang, S., Haase, K.K., Bertsch, T., Weiß, C., et al. (2005) Prognostic Value of Plasma N-Terminal Pro-Brain Natriuretic Peptide in Patients with Severe Sepsis. Circulation, 112, 527-534. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Post, F., Weilemann, L.S., Messow, C., Sinning, C. and Münzel, T. (2008) B-Type Natriuretic Peptide as a Marker for Sepsis-Induced Myocardial Depression in Intensive Care Patients. Critical Care Medicine, 36, 3030-3037. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Lörstad, S., Shekarestan, S., Jernberg, T., Tehrani, S., Åstrand, P., Gille-Johnson, P., et al. (2023) First Sampled High-Sensitive Cardiac Troponin T Is Associated with One-Year Mortality in Sepsis Patients and 30-to 365-Day Mortality in Sepsis Survivors. The American Journal of Medicine, 136, 814-823.e8. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Garcia, M.A., Rucci, J.M., Thai, K.K., Lu, Y., Kipnis, P., Go, A.S., et al. (2021) Association between Troponin I Levels during Sepsis and Postsepsis Cardiovascular Complications. American Journal of Respiratory and Critical Care Medicine, 204, 557-565. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Póvoa, P., Coelho, L., Dal-Pizzol, F., Ferrer, R., Huttner, A., Conway Morris, A., et al. (2023) How to Use Biomarkers of Infection or Sepsis at the Bedside: Guide to Clinicians. Intensive Care Medicine, 49, 142-153. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Lobo, S.M.A., Lobo, F.R.M., Bota, D.P., Lopes-Ferreira, F., Soliman, H.M., Meélot, C., et al. (2003) C-Reactive Protein Levels Correlate with Mortality and Organ Failure in Critically Ill Patientsa. Chest, 123, 2043-2049. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Koozi, H., Lengquist, M. and Frigyesi, A. (2020) C-Reactive Protein as a Prognostic Factor in Intensive Care Admissions for Sepsis: A Swedish Multicenter Study. Journal of Critical Care, 56, 73-79. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Yu, Y., Wu, W., Dong, Y. and Li, J. (2021) C‐Reactive Protein‐to‐Albumin Ratio Predicts Sepsis and Prognosis in Patients with Severe Burn Injury. Mediators of Inflammation, 2021, Article ID: 6621101. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Liu, R., Xu, F., Ma, Q., Zhou, Y. and Liu, T. (2021) C‐Reactive Protein Level Predicts Cardiovascular Risk in Chinese Young Female Population. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6538079. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Yan, F., Chen, X., Quan, X., Wang, L., Wei, X. and Zhu, J. (2024) Association between the Stress Hyperglycemia Ratio and 28-Day All-Cause Mortality in Critically Ill Patients with Sepsis: A Retrospective Cohort Study and Predictive Model Establishment Based on Machine Learning. Cardiovascular Diabetology, 23, Article No. 163. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Yang, J., Zheng, Y., Li, C., Gao, J., Meng, X., Zhang, K., et al. (2022) The Impact of the Stress Hyperglycemia Ratio on Short-Term and Long-Term Poor Prognosis in Patients with Acute Coronary Syndrome: Insight from a Large Cohort Study in Asia. Diabetes Care, 45, 947-956. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Sajadieh, A., Rasmussen, V., Hein, H.O. and Hansen, J.F. (2003) Familial Predisposition to Premature Heart Attack and Reduced Heart Rate Variability. The American Journal of Cardiology, 92, 234-236. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Dekker, J.M., Crow, R.S., Folsom, A.R., Hannan, P.J., Liao, D., Swenne, C.A., et al. (2000) Low Heart Rate Variability in a 2-Minute Rhythm Strip Predicts Risk of Coronary Heart Disease and Mortality from Several Causes: The ARIC Study. Circulation, 102, 1239-1244. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Binici, Z., Mouridsen, M.R., Køber, L. and Sajadieh, A. (2011) Decreased Nighttime Heart Rate Variability Is Associated with Increased Stroke Risk. Stroke, 42, 3196-3201. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Thayer, J.F., Yamamoto, S.S. and Brosschot, J.F. (2010) The Relationship of Autonomic Imbalance, Heart Rate Variability and Cardiovascular Disease Risk Factors. International Journal of Cardiology, 141, 122-131. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Keng, H.-T., Wu, C.-C., Peng, Y.-K., et al. (2025) Derivation and Validation of Heart Rate Variability Based Machine Learning Prognostic Models for Patients with Suspected Sepsis. Biomedical Signal Processing and Control, 99, Article ID: 106854. [Google Scholar] [CrossRef]
|
[35]
|
Liu, H., Zhang, L., Xu, F., Li, S., Wang, Z., Han, D., et al. (2021) Establishment of a Prognostic Model for Patients with Sepsis Based on SOFA: A Retrospective Cohort Study. Journal of International Medical Research, 49, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Guan, C., Gong, A., Zhao, Y., Yin, C., Geng, L., Liu, L., et al. (2024) Interpretable Machine Learning Model for New-Onset Atrial Fibrillation Prediction in Critically Ill Patients: A Multi-Center Study. Critical Care, 28, Article No. 349. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Fan, Z., Jiang, J., Xiao, C., Chen, Y., Xia, Q., Wang, J., et al. (2023) Construction and Validation of Prognostic Models in Critically Ill Patients with Sepsis-Associated Acute Kidney Injury: Interpretable Machine Learning Approach. Journal of Translational Medicine, 21, Article No. 406. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Preda, A., Montecucco, F., Carbone, F., Camici, G.G., Lüscher, T.F., Kraler, S., et al. (2024) SGLT2 Inhibitors: From Glucose-Lowering to Cardiovascular Benefits. Cardiovascular Research, 120, 443-460. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Chen, J., Jiang, C., Guo, M., Zeng, Y., Jiang, Z., Zhang, D., et al. (2024) Effects of SGLT2 Inhibitors on Cardiac Function and Health Status in Chronic Heart Failure: A Systematic Review and Meta-Analysis. Cardiovascular Diabetology, 23, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Shashikumar, S.P., Josef, C.S., Sharma, A. and Nemati, S. (2021) DeepAISE—An Interpretable and Recurrent Neural Survival Model for Early Prediction of Sepsis. Artificial Intelligence in Medicine, 113, Article ID: 102036. [Google Scholar] [CrossRef] [PubMed]
|