[1]
|
Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., Papakonstantinou, E.J., Salamou, E. and Guzman, E. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medical Research, 51, 1-49. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Wang, T., Li, M., Zeng, T., Hu, R., Xu, Y., Xu, M., et al. (2022) Association between Insulin Resistance and Cardiovascular Disease Risk Varies According to Glucose Tolerance Status: A Nationwide Prospective Cohort Study. Diabetes Care, 45, 1863-1872. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Adeva-Andany, M.M., Martínez-Rodríguez, J., González-Lucán, M., Fernández-Fernández, C. and Castro-Quintela, E. (2019) Insulin Resistance Is a Cardiovascular Risk Factor in Humans. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1449-1455. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology-Endocrinology and Metabolism, 237, E214. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Duan, M., Zhao, X., Li, S., Miao, G., Bai, L., Zhang, Q., et al. (2024) Metabolic Score for Insulin Resistance (METS-IR) Predicts All-Cause and Cardiovascular Mortality in the General Population: Evidence from NHANES 2001-2018. Cardiovascular Diabetology, 23, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Yaribeygi, H., Farrokhi, F.R., Butler, A.E. and Sahebkar, A. (2018) Insulin Resistance: Review of the Underlying Molecular Mechanisms. Journal of Cellular Physiology, 234, 8152-8161. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., et al. (2020) Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21, Article No. 6275. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Beneit, N., Martín-Ventura, J.L., Rubio-Longás, C., Escribano, Ó., García-Gómez, G., Fernández, S., et al. (2018) Potential Role of Insulin Receptor Isoforms and IGF Receptors in Plaque Instability of Human and Experimental Atherosclerosis. Cardiovascular Diabetology, 17, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Aroor, A.R., Mandavia, C.H. and Sowers, J.R. (2012) Insulin Resistance and Heart Failure. Heart Failure Clinics, 8, 609-617. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Calles-Escandon, J., Mirza, S.A., Sobel, B.E. and Schneider, D.J. (1998) Induction of Hyperinsulinemia Combined with Hyperglycemia and Hypertriglyceridemia Increases Plasminogen Activator Inhibitor 1 in Blood in Normal Human Subjects. Diabetes, 47, 290-293.
|
[14]
|
Ma, X., Dong, L., Shao, Q., Cheng, Y., Lv, S., Sun, Y., et al. (2020) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes after Percutaneous Coronary Intervention in Patients with Type 2 Diabetes Mellitus and Acute Coronary Syndrome. Cardiovascular Diabetology, 19, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Trifunovic, D., Stankovic, S., Sobic-Saranovic, D., Marinkovic, J., Petrovic, M., Orlic, D., et al. (2014) Acute Insulin Resistance in ST-Segment Elevation Myocardial Infarction in Non-Diabetic Patients Is Associated with Incomplete Myocardial Reperfusion and Impaired Coronary Microcirculatory Function. Cardiovascular Diabetology, 13, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Laakso, M. and Kuusisto, J. (2014) Insulin Resistance and Hyperglycaemia in Cardiovascular Disease Development. Nature Reviews Endocrinology, 10, 293-302. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Iguchi, T., Hasegawa, T., Otsuka, K., Matsumoto, K., Yamazaki, T., Nishimura, S., et al. (2013) Insulin Resistance Is Associated with Coronary Plaque Vulnerability: Insight from Optical Coherence Tomography Analysis. European Heart Journal—Cardiovascular Imaging, 15, 284-291. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Bonora, E., Kiechl, S., Willeit, J., Oberhollenzer, F., Egger, G., Meigs, J.B., et al. (2007) Insulin Resistance as Estimated by Homeostasis Model Assessment Predicts Incident Symptomatic Cardiovascular Disease in Caucasian Subjects from the General Population. Diabetes Care, 30, 318-324. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Jeppesen, J., Hansen, T.W., Rasmussen, S., Ibsen, H., Torp-Pedersen, C. and Madsbad, S. (2007) Insulin Resistance, the Metabolic Syndrome, and Risk of Incident Cardiovascular Disease. Journal of the American College of Cardiology, 49, 2112-2119. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Gast, K.B., Tjeerdema, N., Stijnen, T., Smit, J.W.A. and Dekkers, O.M. (2012) Insulin Resistance and Risk of Incident Cardiovascular Events in Adults without Diabetes: Meta-Analysis. PLOS ONE, 7, e52036. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Tenenbaum, A., Adler, Y., Boyko, V., Tenenbaum, H., Fisman, E.Z., Tanne, D., et al. (2007) Insulin Resistance Is Associated with Increased Risk of Major Cardiovascular Events in Patients with Preexisting Coronary Artery Disease. American Heart Journal, 153, 559-565. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Uetani, T., Amano, T., Harada, K., Kitagawa, K., Kunimura, A., Shimbo, Y., et al. (2012) Impact of Insulin Resistance on Post-Procedural Myocardial Injury and Clinical Outcomes in Patients Who Underwent Elective Coronary Interventions with Drug-Eluting Stents. JACC: Cardiovascular Interventions, 5, 1159-1167. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Choi, C.S., Kim, M.Y., Han, K. and Lee, M. (2012) Assessment of β-Cell Function in Human Patients. Islets, 4, 79-83. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Antuna-Puente, B., Disse, E., Rabasa-Lhoret, R., Laville, M., Capeau, J. and Bastard, J. (2011) How Can We Measure Insulin Sensitivity/Resistance? Diabetes & Metabolism, 37, 179-188. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Tam, C.S., Xie, W., Johnson, W.D., Cefalu, W.T., Redman, L.M. and Ravussin, E. (2012) Defining Insulin Resistance from Hyperinsulinemic-Euglycemic Clamps. Diabetes Care, 35, 1605-1610. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Pacini, G. and Mari, A. (2003) Methods for Clinical Assessment of Insulin Sensitivity and β-Cell Function. Best Practice & Research Clinical Endocrinology & Metabolism, 17, 305-322. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Yusuf, S., Hawken, S., Ôunpuu, S., et al. (2005) Obesity and the Risk of Myocardial Infarction in 27000 Participants from 52 Countries: A Case-Control Study. The Lancet, 366, 1640-1649.
|
[28]
|
Park, S.Y., Gautier, J. and Chon, S. (2021) Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes & Metabolism Journal, 45, 641-654. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Matthews, D.R., Hosker, J.R., Rudenski, A.S., et al. (1985) Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
|
[30]
|
Rudvik, A. and Månsson, M. (2018) Evaluation of Surrogate Measures of Insulin Sensitivity—Correlation with Gold Standard Is Not Enough. BMC Medical Research Methodology, 18, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Manley, S.E., Stratton, I.M., Clark, P.M. and Luzio, S.D. (2007) Comparison of 11 Human Insulin Assays: Implications for Clinical Investigation and Research. Clinical Chemistry, 53, 922-932. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Yu, X., Wang, L., Zhang, W., Ming, J., Jia, A., Xu, S., et al. (2018) Fasting Triglycerides and Glucose Index Is More Suitable for the Identification of Metabolically Unhealthy Individuals in the Chinese Adult Population: A Nationwide Study. Journal of Diabetes Investigation, 10, 1050-1058. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Liu, X., He, G., Lo, K., Huang, Y. and Feng, Y. (2021) The Triglyceride-Glucose Index, an Insulin Resistance Marker, Was Non-Linear Associated with All-Cause and Cardiovascular Mortality in the General Population. Frontiers in Cardiovascular Medicine, 7, Article ID: 628109. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., González-Nava, V., Díaz González-Colmenero, A., Solis, R.C., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, Article ID: 4678526. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Tuo, X., Yuan, J., Wang, X. and Xin, Z. (2020) Identifying the Insulin Resistance Index in Nondiabetic Chinese Subjects. Medicine, 99, e19023. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Lee, S.B., Ahn, C.W., Lee, B.K., Kang, S., Nam, J.S., You, J.H., et al. (2018) Association between Triglyceride Glucose Index and Arterial Stiffness in Korean Adults. Cardiovascular Diabetology, 17, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Mazidi, M., Kengne, A., Katsiki, N., Mikhailidis, D.P. and Banach, M. (2018) Lipid Accumulation Product and Triglycerides/Glucose Index Are Useful Predictors of Insulin Resistance. Journal of Diabetes and its Complications, 32, 266-270. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Du, T., Yuan, G., Zhang, M., Zhou, X., Sun, X. and Yu, X. (2014) Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovascular Diabetology, 13, 146.
|
[41]
|
Mahdavi-Roshan, M., Salari, A., Vakilpour, A., Savar Rakhsh, A. and Ghorbani, Z. (2021) Rice Bran Oil Could Favorably Ameliorate Atherogenicity and Insulin Resistance Indices among Men with Coronary Artery Disease: Post Hoc Analysis of a Randomized Controlled Trial. Lipids in Health and Disease, 20, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Bastard, J., Lavoie, M., Messier, V., Prud’homme, D. and Rabasa-Lhoret, R. (2012) Evaluation of Two New Surrogate Indices Including Parameters Not Using Insulin to Assess Insulin Sensitivity/Resistance in Non-Diabetic Postmenopausal Women: A MONET Group Study. Diabetes & Metabolism, 38, 258-263. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Vasques, A.C.J., Novaes, F.S., de Oliveira, M.d.S., Matos Souza, J.R., Yamanaka, A., Pareja, J.C., et al. (2011) TyG Index Performs Better than HOMA in a Brazilian Population: A Hyperglycemic Clamp Validated Study. Diabetes Research and Clinical Practice, 93, e98-e100. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Navarro-González, D., Sánchez-Íñigo, L., Pastrana-Delgado, J., Fernández-Montero, A. and Martinez, J.A. (2016) Triglyceride-glucose Index (TyG Index) in Comparison with Fasting Plasma Glucose Improved Diabetes Prediction in Patients with Normal Fasting Glucose: The Vascular-Metabolic CUN Cohort. Preventive Medicine, 86, 99-105. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Lee, S.-H., Kwon, H.-S., Park, Y.-M., Ha, H., Jeong, S.H., Yang, H.K., et al. (2014) Predicting the Development of Diabetes Using the Product of Triglycerides and Glucose: The Chungju Metabolic Disease Cohort (CMC) Study. PLOS ONE, 9, e90430. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Irace, C., Carallo, C., Scavelli, F.B., De Franceschi, M.S., Esposito, T., Tripolino, C., et al. (2013) Markers of Insulin Resistance and Carotid Atherosclerosis. A Comparison of the Homeostasis Model Assessment and Triglyceride Glucose Index. International Journal of Clinical Practice, 67, 665-672. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Yang, C., Song, Y. and Wang, P. (2024) Relationship between Triglyceride-Glucose Index and New-Onset Hypertension in General Population—A Systemic Review and Meta-Analysis of Cohort Studies. Clinical and Experimental Hypertension, 46, Article ID: 2341631. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Lukito, A.A., Kamarullah, W., Huang, I. and Pranata, R. (2024) Association between Triglyceride-Glucose Index and Hypertension: A Systematic Review and Meta-Analysis. Narra J, 4, e951. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Zhang, W., Huo, W., Hu, H., Li, T., Yuan, L., Zhang, J., et al. (2024) Dose-Response Associations of Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Triglyceride-Glucose Index with Arterial Stiffness Risk. Lipids in Health and Disease, 23, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Zhong, H., Shao, Y., Guo, G., Zhan, Y., Liu, B., Shao, M., et al. (2023) Association between the Triglyceride-Glucose Index and Arterial Stiffness: A Meta-Analysis. Medicine, 102, e33194. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Sajdeya, O., Beran, A., Mhanna, M., Alharbi, A., Burmeister, C., Abuhelwa, Z., et al. (2022) Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-Analysis of 37,780 Individuals. Current Problems in Cardiology, 47, Article ID: 101390. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Ding, X., Wang, X., Wu, J., Zhang, M. and Cui, M. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Liang, S., Wang, C., Zhang, J., Liu, Z., Bai, Y., Chen, Z., et al. (2023) Triglyceride-Glucose Index and Coronary Artery Disease: A Systematic Review and Meta-Analysis of Risk, Severity, and Prognosis. Cardiovascular Diabetology, 22, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Jiang, H., Liu, Y., Guo, H., Liu, Z. and Li, Z. (2024) The Association between the Triglyceride-Glucose Index and In-Stent Restenosis in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 24, Article No. 234. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Chang, W., Liu, C., Huang, Y., Wu, J., Tsai, W., Hung, K., et al. (2023) Diagnostic Efficacy of the Triglyceride-Glucose Index in the Prediction of Contrast-Induced Nephropathy Following Percutaneous Coronary Intervention. Frontiers in Endocrinology, 14, Article ID: 1282675. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Akbar, M.R., Pranata, R., Wibowo, A., Irvan, Sihite, T.A. and Martha, J.W. (2021) The Association between Triglyceride-Glucose Index and Major Adverse Cardiovascular Events in Patients with Acute Coronary Syndrome—Dose-Response Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 3024-3030. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Liu, H., Wang, L., Wang, H., Hao, X., Du, Z., Li, C., et al. (2024) The Association of Triglyceride-Glucose Index with Major Adverse Cardiovascular and Cerebrovascular Events after Acute Myocardial Infarction: A Meta-Analysis of Cohort Studies. Nutrition & Diabetes, 14, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Sun, C., Hu, L., Li, X., Zhang, X., Chen, J., Li, D., et al. (2024) Triglyceride‐Glucose Index’s Link to Cardiovascular Outcomes Post‐Percutaneous Coronary Intervention in China: A Meta‐Analysis. ESC Heart Failure, 11, 1317-1328. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Zhao, Q., Zhang, T., Cheng, Y., Ma, Y., Xu, Y., Yang, J., et al. (2021) Triglyceride-Glucose Index as a Surrogate Marker of Insulin Resistance for Predicting Cardiovascular Outcomes in Nondiabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Journal of Atherosclerosis and Thrombosis, 28, 1175-1194. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Zhao, Q., Zhang, T., Cheng, Y., Ma, Y., Xu, Y., Yang, J., et al. (2020) Impacts of Triglyceride-Glucose Index on Prognosis of Patients with Type 2 Diabetes Mellitus and Non-ST-Segment Elevation Acute Coronary Syndrome: Results from an Observational Cohort Study in China. Cardiovascular Diabetology, 19, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Xiong, S., Chen, Q., Zhang, Z., Chen, Y., Hou, J., Cui, C., et al. (2022) A Synergistic Effect of the Triglyceride-Glucose Index and the Residual SYNTAX Score on the Prediction of Intermediate-Term Major Adverse Cardiac Events in Patients with Type 2 Diabetes Mellitus Undergoing Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Sun, T., Huang, X., Zhang, B., Ma, M., Chen, Z., Zhao, Z., et al. (2023) Prognostic Significance of the Triglyceride-Glucose Index for Patients with Ischemic Heart Failure after Percutaneous Coronary Intervention. Frontiers in Endocrinology, 14, Article ID: 1100399. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Jin, J.-L., Cao, Y.-X., Wu, L.-G., You, X., Guo, Y., Wu, N., et al. (2018) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. Journal of Thoracic Disease, 10, 6137-6146. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
Luo, E., Wang, D., Yan, G., Qiao, Y., Liu, B., Hou, J., et al. (2019) High Triglyceride-Glucose Index Is Associated with Poor Prognosis in Patients with Acute ST-Elevation Myocardial Infarction after Percutaneous Coronary Intervention. Cardiovascular Diabetology, 18, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
Huang, H., Li, Q., Liu, J., Qiao, L., Chen, S., Lai, W., et al. (2022) Association between Triglyceride Glucose Index and Worsening Heart Failure in Significant Secondary Mitral Regurgitation Following Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 260. [Google Scholar] [CrossRef] [PubMed]
|
[66]
|
Qin, Z., Xu, S., Yuan, R., Wang, Z., Lu, Y., Xu, Y., et al. (2022) Combination of TyG Index and GRACE Risk Score as Long-Term Prognostic Marker in Patients with ACS Complicated with T2DM Undergoing PCI. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3015-3025. [Google Scholar] [CrossRef] [PubMed]
|
[67]
|
Pang, S., Miao, G., Zhou, Y., Du, Y., Rui, Z. and Zhao, X. (2022) Addition of TyG Index to the GRACE Score Improves Prediction of Adverse Cardiovascular Outcomes in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: A Retrospective Study. Frontiers in Cardiovascular Medicine, 9, Article ID: 957626. [Google Scholar] [CrossRef] [PubMed]
|
[68]
|
Xiong, S., Chen, Q., Chen, X., Hou, J., Chen, Y., Long, Y., et al. (2022) Adjustment of the GRACE Score by the Triglyceride Glucose Index Improves the Prediction of Clinical Outcomes in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
[69]
|
Wang, L., Wang, Y., Wang, W. and Wang, Z. (2024) Predictive Value of Triglyceride Glucose Index Combined with Neutrophil-to-Lymphocyte Ratio for Major Adverse Cardiac Events after PCI for Acute ST-Segment Elevation Myocardial Infarction. Scientific Reports, 14, Article No. 12634. [Google Scholar] [CrossRef] [PubMed]
|
[70]
|
Çınar, T., Selçuk, M., Tanboğa, H. (2022) The Predictive Value of Triglyceride-Glucose Index for In-Hospital and One-Year Mortality in Elderly Non-Diabetic Patients with ST-Segment Elevation Myocardial Infarction. Journal of Geriatric Cardiology, 19, 610-617.
|
[71]
|
Ma, X., Chu, H., Sun, Y., Cheng, Y., Zhang, D., Zhou, Y., et al. (2024) The Effect of hsCRP on TyG Index-Associated Cardiovascular Risk in Patients with Acute Coronary Syndrome Undergoing PCI. Scientific Reports, 14, Article No. 18083. [Google Scholar] [CrossRef] [PubMed]
|
[72]
|
Bello-Chavolla, O.Y., Almeda-Valdes, P., Gomez-Velasco, D., Viveros-Ruiz, T., Cruz-Bautista, I., Romo-Romo, A., et al. (2018) METS-IR, a Novel Score to Evaluate Insulin Sensitivity, Is Predictive of Visceral Adiposity and Incident Type 2 Diabetes. European Journal of Endocrinology, 178, 533-544. [Google Scholar] [CrossRef] [PubMed]
|
[73]
|
Guo, D., Zhang, C., Zhang, M., Wu, Z., Liu, X., Zhang, Y., et al. (2024) Metabolic Score for Insulin Resistance Predicts Major Adverse Cardiovascular Event in Premature Coronary Artery Disease. Aging, 16, 6364-6383. [Google Scholar] [CrossRef] [PubMed]
|
[74]
|
Wu, Z., Cui, H., Li, W., Zhang, Y., Liu, L., Liu, Z., et al. (2022) Comparison of Three Non-Insulin-Based Insulin Resistance Indexes in Predicting the Presence and Severity of Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 9, Article ID: 918359. [Google Scholar] [CrossRef] [PubMed]
|
[75]
|
Zhang, Y., Wang, R., Fu, X. and Song, H. (2022) Non-Insulin-Based Insulin Resistance Indexes in Predicting Severity for Coronary Artery Disease. Diabetology & Metabolic Syndrome, 14, Article No. 191. [Google Scholar] [CrossRef] [PubMed]
|
[76]
|
Rattanatham, R., Tangpong, J., Chatatikun, M., Sun, D., Kawakami, F., Imai, M., et al. (2023) Assessment of Eight Insulin Resistance Surrogate Indexes for Predicting Metabolic Syndrome and Hypertension in Thai Law Enforcement Officers. PeerJ, 11, e15463. [Google Scholar] [CrossRef] [PubMed]
|
[77]
|
Zhang, Z., Zhao, L., Lu, Y., Meng, X. and Zhou, X. (2023) Association between Non-Insulin-Based Insulin Resistance Indices and Cardiovascular Events in Patients Undergoing Percutaneous Coronary Intervention: A Retrospective Study. Cardiovascular Diabetology, 22, Article No. 161. [Google Scholar] [CrossRef] [PubMed]
|
[78]
|
Mahdavi-Roshan, M., Mozafarihashjin, M., Shoaibinobarian, N., Ghorbani, Z., Salari, A., Savarrakhsh, A., et al. (2022) Evaluating the Use of Novel Atherogenicity Indices and Insulin Resistance Surrogate Markers in Predicting the Risk of Coronary Artery Disease: A Case-Control Investigation with Comparison to Traditional Biomarkers. Lipids in Health and Disease, 21, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
|
[79]
|
He, J., Song, C., Yuan, S., Bian, X., Lin, Z., Yang, M., et al. (2024) Triglyceride-Glucose Index as a Suitable Non-Insulin-Based Insulin Resistance Marker to Predict Cardiovascular Events in Patients Undergoing Complex Coronary Artery Intervention: A Large-Scale Cohort Study. Cardiovascular Diabetology, 23, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
[80]
|
Mirjalili, S.R., Soltani, S., Meybodi, Z.H., Marques-Vidal, P., Firouzabadi, D.D., Eshraghi, R., et al. (2024) Which Surrogate Insulin Resistance Indices Best Predict Coronary Artery Disease? A Machine Learning Approach. Cardiovascular Diabetology, 23, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
|