胰岛素抵抗及其新型替代指标在心血管疾病中的作用:叙述性文献综述
The Role of Insulin Resistance and Its Novel Surrogate Indexes in Cardiovascular Disease: A Narrative Literature Review
摘要: 心血管疾病(CVD)是全球主要的致死原因之一,胰岛素抵抗(IR)作为其独立风险因素,即使在非糖尿病人群中亦然,通过中断胰岛素信号通路(如PI3K/Akt途径)、促进内皮功能障碍、氧化应激、炎症和血栓形成等机制,加速动脉粥样硬化和CVD进展。传统IR评估方法如高胰岛素正常血糖钳夹试验(HEC)和稳态模型评估胰岛素抵抗指数(HOMA-IR)操作复杂且成本高昂,限制其临床和流行病学应用。本综述通过PubMed数据库检索关键词“insulin resistance”“cardiovascular disease”“triglyceride-glucose index”和“METS-IR”,纳入叙述性综述、荟萃分析、队列研究和回顾性研究,旨在回顾IR在CVD中的病理生理作用,评估新型非胰岛素依赖替代指标如甘油三酯–葡萄糖指数(TyG指数)和胰岛素抵抗代谢评分(METS-IR)的进展,并识别现有知识缺口。结果显示,TyG指数与高血压、动脉硬化、动脉粥样硬化性心血管疾病(ASCVD)风险、冠心病(CAD)严重程度和预后(如主要不良心血管事件,MACE)显著相关,并可提升GRACE评分的预测价值(如AUC增加);METS-IR在某些研究中优于TyG指数预测CAD严重程度,但两者比较结果不一致,一些研究支持TyG在预后评估中的优势。现有证据主要基于观察性研究,异质性高、人群偏倚明显(多局限于亚洲人群)。未来需开展多民族纵向队列研究、头对头比较以及随机对照试验,验证这些指标的临床转化价值,以指导CVD风险分层和个性化干预。
Abstract: Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Insulin resistance (IR), as an independent risk factor for CVD—even in non-diabetic populations—accelerates atherosclerosis and CVD progression by disrupting insulin signaling pathways (such as the PI3K/Akt pathway) and promoting endothelial dysfunction, oxidative stress, inflammation, and thrombosis. Traditional IR assessment methods, such as the hyperinsulinemic-euglycemic clamp (HEC) and the homeostasis model assessment of insulin resistance (HOMA-IR), are operationally complex and costly, limiting their clinical and epidemiological applications. This review searched the PubMed database using keywords “insulin resistance”, “cardiovascular disease”, “triglyceride-glucose index”, and “METS-IR”, and included narrative reviews, meta-analyses, cohort studies, and retrospective studies. It aims to review the pathophysiological role of IR in CVD, evaluate the progress of novel non-insulin-dependent surrogate markers such as the triglyceride-glucose index (TyG index) and the metabolic score for insulin resistance (METS-IR), and identify existing knowledge gaps. Results show that the TyG index is significantly associated with hypertension, arterial stiffness, atherosclerotic cardiovascular disease (ASCVD) risk, coronary artery disease (CAD) severity, and prognosis (such as major adverse cardiovascular events, MACE), and can enhance the predictive value of the GRACE score (e.g., increased AUC). METS-IR outperforms the TyG index in predicting CAD severity in some studies, but comparison results between the two are inconsistent, with some studies supporting the superiority of TyG in prognostic assessment. Existing evidence is primarily based on observational studies, with high heterogeneity and evident population bias (mostly limited to Asian populations). In the future, multi-ethnic longitudinal cohort studies, head-to-head comparisons, and randomized controlled trials are needed to validate the clinical translational value of these indicators, in order to guide CVD risk stratification and personalized interventions.
文章引用:何烨, 肖建民. 胰岛素抵抗及其新型替代指标在心血管疾病中的作用:叙述性文献综述[J]. 临床医学进展, 2025, 15(10): 1266-1276. https://doi.org/10.12677/acm.2025.15102882

1. 引言

心血管疾病(cardiovascular disease, CVD)是全球主要的致死原因之一,每年导致约1790万人死亡,占总死亡人数的32% [1]。胰岛素抵抗(insulin resistance, IR)作为代谢综合征的核心组成部分,被广泛认定为CVD的独立风险因素,即使在非糖尿病人群中亦然[2] [3]。IR指靶组织对胰岛素作用的敏感性降低,导致高血糖和高胰岛素血症,进而促进内皮功能障碍、氧化应激、炎症和血栓形成。这些机制共同加速了动脉粥样硬化和CVD进展[1] [3]。传统IR评估方法,如高胰岛素正常血糖钳夹试验(hyperinsulinemic-euglycemic clamp, HEC)和稳态模型评估胰岛素抵抗指数(homeostasis model assessment of insulin resistance, HOMA-IR),虽精确但操作复杂且成本高昂,限制了其在临床和流行病学中的应用[2] [4]。近年来,非胰岛素依赖的胰岛素抵抗替代指标逐渐兴起,如甘油三酯–葡萄糖指数(Triglyceride-Glucose Index, TyG指数)和胰岛素抵抗代谢评分(Metabolic Score for Insulin Resistance, METS-IR),这些指标基于常规生化参数计算,已经展示出在预测IR、糖尿病和CVD风险方面的潜力[5] [6]。本综述采用关键词“insulin resistance”“cardiovascular disease”“triglyceride-glucose index”和“METS-IR”,通过PubMed数据库检索英文文献,纳入叙述性综述、荟萃分析、队列研究和回顾性研究,旨在回顾IR在CVD中的病理生理作用,评估TyG指数和METS-IR等新型IR替代指标的研究进展,并识别现有知识缺口,为未来临床实践和研究方向提供些许见解。

2. IR在CVD中的病理生理学作用

2.1. IR的定义与CVD病理生理机制

IR定义为胰岛素促进葡萄糖摄取和利用的效率降低,是代谢紊乱和全身炎症的标志物[7]。IR被认为是由于胰岛素反应细胞暴露于缺氧、过量糖分、某些类型的脂肪酸、环境污染物或应激和肥胖期间释放的激素等各种细胞应激和应激反应之间的协同作用而产生的。从分子水平分析,IR主要通过中断胰岛素信号通路如磷脂酰肌醇3-激酶/蛋白激酶B (PI3K/Akt)途径,导致内皮一氧化氮合成酶(eNOS)活性降低,从而减少一氧化氮(NO)产生,促进血管内皮功能障碍和炎症反应[8] [9]。研究表明,IR是动脉粥样硬化早期阶段的关键病理生理过程[10]。IR导致动脉粥样硬化斑块的形成的机制包括以下几个方面:IR导致高血糖,从而激活炎症过程并引起氧化应激,最终导致血管内皮损伤[8]。它还可诱发血脂异常[8]。并且可直接刺激血管平滑肌细胞增殖和迁移至内膜,导致内皮功能障碍,并参与纤维帽的形成[11]。与此同时,胰岛素信号在血管内膜细胞(包括内皮细胞、吞噬细胞和平滑肌细胞)之间的转导中断也可能导致动脉粥样硬化[9]。以往的研究还发现IR可通过一系列分子机制导致心脏功能障碍,包括心肌–内皮相互作用失调、线粒体功能障碍、氧化应激、钙信号受损、底物代谢改变和内质网应激[12]。此外,与IR相关的高甘油三酯血症和高血糖与纤溶活性降低和血栓形成活性增加有关[13]。因此,IR也被认为是急性冠状动脉综合征患者微血管和心肌损伤的原因[14]。研究还发现,IR与心肌灌注不良和更大的梗死面积相关,这两者都被认为是ST段抬高型心肌梗死(ST-segment elevation myocardial infarction, STEMI)患者死亡率的预测因素[15]。尽管这些机制已经在动物模型中得到支持,但仍需得到更多人类队列研究验证以澄清因果关系。总的来说,胰岛素抵抗已被广泛证明与炎症反应、内皮功能障碍、凝血失衡、氧化应激、心肌再灌注不良、微循环功能障碍、斑块易损性和心血管重塑显著相关[8] [15]-[17],这些病理反应和状态都介导了心血管疾病的发生和不良预后。因此,IR不仅被确定为糖尿病的主要发病机制,也是心血管疾病发生和预后的重要危险因素[18]-[22]

2.2. 传统IR评估方法(HEC与HOMA-IR)的介绍与局限

由DeFronzo等人[4]开发的HEC,被广泛认为是直接测定人体胰岛素抵抗/敏感性的金标准[23]-[25]。但因为成本高昂、相对耗时及操作复杂的特点,该试验不仅在大型流行病学调查中难以实施、也无法广泛应用于临床实践中[26]-[28]。基于空腹胰岛素和血糖计算的HOMA-IR是一种用于研究葡萄糖与胰岛素动态变化之间相关性的模型[29]。作为另一种成熟的评估胰岛素抵抗的方法[24] [28],其容易受外源胰岛素使用的影响,而且由于空腹胰岛素浓度在临床实践中并不常规测量,该模型同样不适用于广泛的临床应用[30] [31]

3. 新型IR替代指标与CVD的关联:研究进展与知识缺口

3.1. TyG指数作为IR的简单替代指标

鉴于HEC和HOMA-IR等传统IR评估方法的缺陷,有研究人员提出采用TyG指数[32]作为IR的简单可靠替代指标。TyG指数使用以下公式计算:TyG指数 = ln[甘油三酯(mg/dL) × 空腹血糖(mg/dL)/2]。其易于计算,不需要特定技术和不常见参数,有利于临床应用。该指数能够很好地反映脂毒性和糖毒性状态[33] [34]。具体而言,TyG指数中的甘油三酯成分反映了脂毒性,该毒性通过诱导氧化应激和炎症反应,促进内皮功能障碍和动脉粥样硬化[7] [8];而空腹血糖成分则体现了糖毒性,即高血糖激活炎症过程并引起血管内皮损伤[7] [8]。此外,与IR相关的高甘油三酯血症可降低纤溶活性并增加血栓形成[13],从而加速CVD进展。Sánchez-García, A等人[35]在对15项研究中的69,922名患者进行的荟萃分析中表明,TyG指数在诊断胰岛素抵抗方面的灵敏度为96%,其它几项研究结果同样显示出该指数与HEC和HOMA-IR有良好的相关性[36]-[38],无论是在有或没有2型糖尿病的个体中[32] [39] [40]。因此,TyG指数作为便捷良好的胰岛素抵抗指标是可靠的[32]-[34] [36] [41]-[44]。甚至部分研究结果还表明TyG指数在评估胰岛素抵抗[44] [45]和预测动脉粥样硬化方面优于HOMA-IR [43] [46]

3.2. TyG指数与CVD风险和严重程度的关联研究

近年来,TyG指数与CVD之间的关系的研究在逐渐增加。Yang等人[47]纳入35,848名参与者的7项队列研究进行荟萃分析后结果显示TyG指数的升高显著增加了普通人群中新发高血压的风险,并且亚组分析表明TyG指数与高血压之间的关系不受年龄、性别、身体质量指数(Body Mass Index, BMI)、参与者种族和随访时间的显著影响(交互作用的P值均 > 0.05);Lukito等人[48]的荟萃分析进一步指出TyG指数与高血压以非线性剂量反应方式强烈相关。Zhang等人[49]招募了1979名参与者进行队列研究,还纳入13项研究进行荟萃分析,结果表明高TyG指数与增加的动脉硬化程度风险相关,该指数可以作为亚临床动脉粥样硬化和动脉硬化风险增加的独立预测因子,该研究的动脉硬化程度通过臂踝脉搏波速度(Brachial-Ankle Pulse Wave Velocity, baPWV)检查得出;另外的2篇荟萃分析也得出类似的结论[50] [51]。一项包括8项队列研究,共涉及5,731,294名参与者的荟萃分析结果显示:无论将TyG指数作为分类变量还是连续变量,较高的TyG指数可能与基线无动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)的人群中ASCVD的更高发病率独立相关,亚组分析进一步表明TyG指数与随后ASCVD发病率之间的关联不受参与者的年龄、性别或糖尿病状态的显著影响[52]。一项目的在于研究TyG指数与冠心病(Coronary Artery Disease, CAD)风险、严重程度和预后的系统回顾和荟萃分析表明与TyG指数较低的患者相比,TyG指数较高的患者CAD风险更高、冠状动脉病变更严重、预后更差;该研究对于CAD严重程度的分析,结局包括冠状动脉钙化、冠状动脉狭窄、冠状动脉斑块进展、多支血管CAD和支架内再狭窄;对于CAD预后的分析,主要结局是主要不良心血管事件(Major Adverse Cardiovascular Events, MACE) [53]。Jiang等人纳入5篇文章、共包含3912名参与者的旨在研究TyG指数与支架内再狭窄(In-Stent Restenosis, ISR)之间的关系的荟萃分析结果显示TyG指数与ISR显著相关,TyG指数升高的患者ISR的倾向更高,而且亚组分析表明这种关联不受冠心病类型的影响[54]。甚至研究者还发现纳入5项研究(土耳其2项、中国3项)、共3518名患者(年龄范围:57.6至68.22岁),在调整了糖尿病和肾功能等潜在混杂因素后,TyG指数与经皮冠状动脉介入治疗后造影剂诱发肾病的风险显示出显著的相关性[55]

这些荟萃分析表明TyG指数与高血压、动脉硬化和ASCVD的关联强劲,但多数研究集中在亚洲人群,异质性高,可能受出版偏倚和观察性设计影响。并且需要注意到亚组分析的局限性,如未充分考虑混杂因素的交互作用。未来应开展全球多民族纵向研究以提升证据强度。

3.3. TyG指数在CAD预后中的相关性

特别值得注意的是TyG指数与CAD预后的相关性研究。例如Akbar等人[56]纳入了4项研究中的13,684名受试者,进行荟萃分析显示,TyG指数最高类别与急性冠脉综合征(Acute Coronary Syndrome, ACS)患者MACE两倍相关(RR 2.09 [1.59, 2.76])。另外一项共纳入21个队列,包括20,403名个体的荟萃分析结果显示与TyG指数最低类别的个体相比,最高TyG类别的患者表现出更高的主要不良心脑血管事件(Major Adverse Cardiac and Cerebrovascular Events, MACCEs) (P < 0.00001)和全因死亡(P < 0.00001)风险,这些发现与作为连续变量分析的TyG指数一致(MACCEs:P = 0.006;全因死亡:P < 0.00001);亚组分析表明,糖尿病状态、急性心肌梗死(Acute Myocardial Infarction, AMI)类型和再灌注治疗均未破坏这种相关性[57]

最后Sun等人在一项共纳入了9项队列研究、样本量从515到2055不等、随访时间均超过12个月的旨在研究TyG指数与中国经皮冠状动脉介入治疗后心血管预后的关系的荟萃分析结果提示TyG指数每增加一个单位,MACE的风险比(Hazard Ratio, HR)为1.82 (95% CI 1.34~2.46),非致命性心肌梗死(Myocardial Infarction, MI)的HR为2.57 (95% CI 1.49~4.41; I2 = 63%),血管重建的HR为2.06 (95% CI 1.23~3.50; I2 = 90%)。TyG指数与MACE风险之间建立了线性关系(R2 = 0.6114),全因死亡的HR为1.93 (95% CI 1.35~2.75; I2 = 50%)。高TyG指数与PCI后MACE、非致命性MI、全因死亡和血管重建均有强烈的相关性[58]

这些荟萃分析强调TyG指数在预测冠心病预后中的价值,但研究存在的高异质性、短期随访和特定人群(如中国患者)偏倚等不足,可能限制其在全球的推广应用。未来需考虑混杂因素如治疗差异等,并且有必要通过随机对照试验验证其作为独立预测指标的可靠性。

3.4. TyG指数与风险模型的整合及其预测增量价值

在Sun等人的荟萃分析中,与纳入的6篇文章中将TyG指数与由互相之间并不完全相同的常见冠状动脉粥样硬化危险因素如年龄、性别、BMI、吸烟史、高血压、血脂异常等组成的基线模型结合后加以分析TyG指数对基线模型预测不良预后的增量价值[59]-[61]、或仅采用多变量模型分析TyG指数与终点事件的独立相关性[62]-[64]的做法不同,纳入的另外3篇文章在分析TyG指数的预测增量价值的过程中主要是直接联合了TyG指数与全球急性冠脉事件注册研究评分(Global Registry of Acute Coronary Events, GRACE) [65]-[67]。其它4篇[68]-[71]未纳入该荟萃分析的具有类似研究目的的文章也表明TyG指数与经皮冠状动脉介入治疗(Percutaneous Coronary Intervention, PCI)后MACE具有相关性,TyG指数可作为PCI术后MACE的预测因子。

上述13篇文章中的3篇主要联合了TyG指数和GRACE评分进行分析接受经皮冠状动脉介入治疗患者不良心血管预后的文章均表明TyG指数对GRACE评分的不良心血管事件预测能力具有增益作用(AUC:GRACE评分0.798 vs. GRACE评分 + TyG指数0.849 [67]、AUC:GRACE评分0.712 vs. GRACE评分 + TyG指数0.751 [66]、C统计量值从0.735增加到0.744 [68])。

另外Wang等人[69]的研究结果显示在TyG和中性粒细胞与淋巴细胞比值(Neutrophil-to-Lymphocyte Ratio, NLR)均是STEMI患者PCI术后院内MACE的独立危险因素的前提下、TyG和NLR结合传统预测模型GRACE评分具有更高的诊断价值(AUC:GRACE评分0.749 vs. GRACE评分 + TyG指数 + NLR指数0.839),而Ma等人[71]的研究表明当超敏C反应蛋白(High-Sensitivity C-Reactive Protein, hsCRP)水平低于2 mg/L时,TyG指数与MACE可靠且独立相关,TyG指数和hsCRP两者的加入对基于GRACE评分的MACE预后模型的预测能力有增量作用(C统计量:从0.631增加到0.661)。

这些研究显示出TyG指数对GRACE评分有明显的增益作用,但还存在样本规模小、随访时间短,且主要为回顾性设计、可能存在选择偏倚等问题。这些不足要求开展更多前瞻性研究以评估其在不同CAD亚型中的预测增量价值。

3.5. METS-IR作为新型IR替代指标及其与TyG指数的比较

作为IR的另外一种简单可靠替代指标[72],METS-IR可根据以下公式计算得出:METS-IR = [ln(2 ×空腹血糖(mg/dL) + 甘油三酯(mg/dL)) × BMI (kg/m2)]/ln(高密度脂蛋白胆固醇(mg/dL))。METS-IR的组分进一步整合了IR的多维病理环节:空腹血糖和甘油三酯分别反映了糖毒性和脂毒性,与氧化应激、炎症和血栓形成相关[8] [13];BMI可反映整体肥胖风险,虽因无法区分脂肪分布,不能单独代表中心性肥胖,但与中心性肥胖高度相关;而中心性肥胖以内脏脂肪堆积为核心,通过释放激素(如瘦素、TNF-α)和游离脂肪酸等应激因子,协同诱导IR [7];而高密度脂蛋白胆固醇的倒数则捕捉了脂质异常状态,该异常状态常伴随IR并促进动脉粥样硬化[8]。有研究表明就C-统计量而言,在基线风险预测模型中加入METS-IR后,MACE的风险预测显著改善(C-统计量从0.71增加到0.72),提示在基线风险预测模型中加入METS-IR可提高早发性CAD患者MACE的预后能力[73]。但该指数在与CVD关系的研究当中大多数情况下以与其他新型非胰岛素相关的IR指标如TyG指数、甘油三酯/高密度脂蛋白胆固醇比值(Triglycerides/High-Density Lipoprotein Cholesterol Ratio, TG/HDL-C)等相比较的形式出现,其中METS-IR和TyG指数对研究CVD的价值比较结果在不同研究之间也不尽相同。

一方面,研究结果支持METS-IR优于TyG指数的如下:一项旨在分析TG/HDL-C、TyG指数和METS-IR与CAD的关系,并对各指标的预测价值进行比较的研究结果显示:TG/HDL-C、TyG指数和METS-IR是CAD存在和严重程度的有价值的预测因子。受试者工作特征曲线(Receiver Operating Characteristic Curve, ROC)分析显示,METS-IR对CAD的存在和严重程度的预测价值最高(METS-IR [AUC (95% CI): 0.636 (0.589~0.683)]与TG/HDL-C [0.567 (0.517~0.618)]和TyG指数[0.562 (0.509~0.614)]) [74]。Zhang等人[75]在目的是探讨四种非胰岛素基础的IR指标在预测CAD严重程度方面的表现的研究中,调整混杂因素后,TyG指数、甘油三酯葡萄糖–体重(Triglyceride-Glucose-Body Mass Index, TyG-BMI)指数、TG/HDL-C以及METS-IR与多支血管CAD的风险显著相关。构建ROC曲线以评估CAD严重程度提示,METS-IR的AUC值为0.726 (95% CI 0.677~0.775),优于TyG指数的AUC值0.673 (95% CI 0.620~0.726)。来自泰国的一项为了了解IR替代标志物与泰国警察代谢综合征和高血压患病率之间的关系的研究中,关于预测高血压的能力,TyG指数、METS-IR的AUC值(分别为0.634到0.638)高于传统肥胖指标如BMI (AUC: 0.630)和腰围(Waist Circumference, WC) (AUC: 0.618) [76]。一项旨在比较METS-IR、TG/HDL-C、TyG指数、TyG-BMI指数在预测PCI术后患者心血管预后方面的能力的回顾性研究结果提示:四种IR指标在女性个体中均与MACCEs显著相关,而在老年患者中只有TyG-BMI指数和METS-IR与MACCEs相关。纳入这些IR指标并未提高女性或老年患者基本风险模型对MACCEs的预测能力[77]

另一方面,研究结果支持TyG指数优于METS-IR的如下:一项为了评估传统心脏代谢指标以及更新颖的致动脉粥样硬化指数和胰岛素抵抗替代标志物在识别CAD风险个体中的价值的研究表明,进行针对潜在混杂因素调整的多元回归分析后,TyG指数水平升高使CAD风险显著恶化,增加近4倍;然而在多元回归模型中将METS-IR作为连续变量与CAD风险进行分析时,未发现显著的总体关联[78]。再一项旨在比较TyG指数、TG/HDL-C以及METS-IR在复杂PCI术后患者中的预后价值的大规模的队列研究中,TyG指数,而非TG/HDL-C或METS-IR,与接受复杂PCI患者的MACE呈正相关;同时,将TyG指数添加到原始模型中导致C统计量(0.618对0.627)、净重新分类改善指数(Net Reclassification Improvement, NRI) (0.12)和综合判别改善指数(Integrated Discrimination Improvement, IDI) (0.14%)显著改善,而将TG/HDL-C或METS-IR添加到原始模型中未观察到显著改善;复杂PCI定义为具有以下至少1个特征:植入3个或更多支架、治疗3个或更多病变、分叉PCI、总支架长度60 mm或更长、左主干PCI或重度钙化[79]

最后Mirjalili等人[80]在对2000名年龄在20至74岁的个体进行了为期9.9年的随访后,利用多变量Cox比例风险模型研究了TyG指数、TyG-BMI、甘油三酯–葡萄糖–腰围指数(Triglyceride-Glucose-Waist Circumference, TyG-WC)、TG/HDL-C以及METS-IR与CAD发生之间的关联,采用ROC来比较这些指标的预测效能及其预测CAD的相应临界值,以及使用三种不同的嵌入式特征选择方法:LASSO、随机森林特征选择和Boruta算法以评估和比较胰岛素抵抗替代标志物在预测CAD中的作用时,结果显示TyG指数是唯一在完全调整模型中显示与CAD相关的胰岛素抵抗替代标志物(HR: 2.54, 95% CI: 1.34~4.81)。此外,与其他胰岛素抵抗替代指标相比,它在ROC曲线下面积最高(0.67 [0.63~0.7])。所有嵌入式特征选择方法都表明TyG指数是预测CAD最可靠的胰岛素抵抗替代标志物。根据随机森林的其他条件不变曲线,TyG指数的预测能力在9之后随着正斜率稳定增加。

总的来说,TyG和METS-IR在心血管预测中的比较结果不一致,一些研究支持METS-IR在CAD严重程度预测中的优越性,而其他则显示TyG在预后评估中更佳。但已有研究同样存在异质性高、样本多样性不足,且缺乏直接比较的纵向数据的缺点。需要更多头对头研究评估两者在不同人群中的相对优势。

4. 结论

综上所述,IR作为代谢紊乱的核心机制,通过促进炎症反应、内皮功能障碍、氧化应激和斑块易损性等病理过程,在CVD的发生、进展和预后中发挥关键作用。传统胰岛素抵抗评估方法如HEC和HOMA-IR因操作复杂和成本高昂,其临床适用性受限,推动了新型非胰岛素依赖替代指标的发展。TyG指数作为简单可靠的IR替代指标,已被证实与高血压、动脉硬化、ASCVD发病风险以及CAD预后(如MACE和全因死亡)密切相关,尤其在PCI术后患者中显示出对GRACE评分的预测增量价值。METS-IR作为另一种新兴指标,在某些研究中表现出优于TyG的CAD严重程度预测能力,但由于研究异质性和人群偏倚的存在致使两者之间的比较结果不一致。

这些发现强调新型IR替代指标在CVD风险分层和预后评估中的潜在临床价值,有助于指导个性化干预策略。根据现有证据,在资源有限的基层医疗机构,TyG指数可作为CVD风险初筛的有效工具,便于基于常规生化参数快速识别高风险患者,并指导初步的生活方式干预和脂质血糖管理;而在综合性医院,可结合METS-IR进行更全面的代谢风险评估,以优化CAD严重程度和预后的判断。然而,现有的证据主要依赖观察性和荟萃分析,缺乏大型随机对照试验来确立因果关系和干预效果,且多局限于亚洲人群。未来研究应聚焦多民族纵向队列、头对头比较以及整合机器学习方法,更具体地设计前瞻性研究,评估例如以降低TyG指数为治疗靶点的干预策略(如基于TyG阈值的强化生活方式调整或他汀类药物联合降糖治疗)是否能带来心血管获益,以填补知识缺口并验证这些指标在预防CVD中的转化应用。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., Papakonstantinou, E.J., Salamou, E. and Guzman, E. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medical Research, 51, 1-49. [Google Scholar] [CrossRef] [PubMed]
[2] Wang, T., Li, M., Zeng, T., Hu, R., Xu, Y., Xu, M., et al. (2022) Association between Insulin Resistance and Cardiovascular Disease Risk Varies According to Glucose Tolerance Status: A Nationwide Prospective Cohort Study. Diabetes Care, 45, 1863-1872. [Google Scholar] [CrossRef] [PubMed]
[3] Adeva-Andany, M.M., Martínez-Rodríguez, J., González-Lucán, M., Fernández-Fernández, C. and Castro-Quintela, E. (2019) Insulin Resistance Is a Cardiovascular Risk Factor in Humans. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 13, 1449-1455. [Google Scholar] [CrossRef] [PubMed]
[4] DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. American Journal of Physiology-Endocrinology and Metabolism, 237, E214. [Google Scholar] [CrossRef] [PubMed]
[5] Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article No. 68. [Google Scholar] [CrossRef] [PubMed]
[6] Duan, M., Zhao, X., Li, S., Miao, G., Bai, L., Zhang, Q., et al. (2024) Metabolic Score for Insulin Resistance (METS-IR) Predicts All-Cause and Cardiovascular Mortality in the General Population: Evidence from NHANES 2001-2018. Cardiovascular Diabetology, 23, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
[7] Yaribeygi, H., Farrokhi, F.R., Butler, A.E. and Sahebkar, A. (2018) Insulin Resistance: Review of the Underlying Molecular Mechanisms. Journal of Cellular Physiology, 234, 8152-8161. [Google Scholar] [CrossRef] [PubMed]
[8] Ormazabal, V., Nair, S., Elfeky, O., Aguayo, C., Salomon, C. and Zuñiga, F.A. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
[9] Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. [Google Scholar] [CrossRef] [PubMed]
[10] Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.B., et al. (2020) Pathophysiology of Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 21, Article No. 6275. [Google Scholar] [CrossRef] [PubMed]
[11] Beneit, N., Martín-Ventura, J.L., Rubio-Longás, C., Escribano, Ó., García-Gómez, G., Fernández, S., et al. (2018) Potential Role of Insulin Receptor Isoforms and IGF Receptors in Plaque Instability of Human and Experimental Atherosclerosis. Cardiovascular Diabetology, 17, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
[12] Aroor, A.R., Mandavia, C.H. and Sowers, J.R. (2012) Insulin Resistance and Heart Failure. Heart Failure Clinics, 8, 609-617. [Google Scholar] [CrossRef] [PubMed]
[13] Calles-Escandon, J., Mirza, S.A., Sobel, B.E. and Schneider, D.J. (1998) Induction of Hyperinsulinemia Combined with Hyperglycemia and Hypertriglyceridemia Increases Plasminogen Activator Inhibitor 1 in Blood in Normal Human Subjects. Diabetes, 47, 290-293.
[14] Ma, X., Dong, L., Shao, Q., Cheng, Y., Lv, S., Sun, Y., et al. (2020) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes after Percutaneous Coronary Intervention in Patients with Type 2 Diabetes Mellitus and Acute Coronary Syndrome. Cardiovascular Diabetology, 19, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
[15] Trifunovic, D., Stankovic, S., Sobic-Saranovic, D., Marinkovic, J., Petrovic, M., Orlic, D., et al. (2014) Acute Insulin Resistance in ST-Segment Elevation Myocardial Infarction in Non-Diabetic Patients Is Associated with Incomplete Myocardial Reperfusion and Impaired Coronary Microcirculatory Function. Cardiovascular Diabetology, 13, Article No. 73. [Google Scholar] [CrossRef] [PubMed]
[16] Laakso, M. and Kuusisto, J. (2014) Insulin Resistance and Hyperglycaemia in Cardiovascular Disease Development. Nature Reviews Endocrinology, 10, 293-302. [Google Scholar] [CrossRef] [PubMed]
[17] Iguchi, T., Hasegawa, T., Otsuka, K., Matsumoto, K., Yamazaki, T., Nishimura, S., et al. (2013) Insulin Resistance Is Associated with Coronary Plaque Vulnerability: Insight from Optical Coherence Tomography Analysis. European Heart JournalCardiovascular Imaging, 15, 284-291. [Google Scholar] [CrossRef] [PubMed]
[18] Bonora, E., Kiechl, S., Willeit, J., Oberhollenzer, F., Egger, G., Meigs, J.B., et al. (2007) Insulin Resistance as Estimated by Homeostasis Model Assessment Predicts Incident Symptomatic Cardiovascular Disease in Caucasian Subjects from the General Population. Diabetes Care, 30, 318-324. [Google Scholar] [CrossRef] [PubMed]
[19] Jeppesen, J., Hansen, T.W., Rasmussen, S., Ibsen, H., Torp-Pedersen, C. and Madsbad, S. (2007) Insulin Resistance, the Metabolic Syndrome, and Risk of Incident Cardiovascular Disease. Journal of the American College of Cardiology, 49, 2112-2119. [Google Scholar] [CrossRef] [PubMed]
[20] Gast, K.B., Tjeerdema, N., Stijnen, T., Smit, J.W.A. and Dekkers, O.M. (2012) Insulin Resistance and Risk of Incident Cardiovascular Events in Adults without Diabetes: Meta-Analysis. PLOS ONE, 7, e52036. [Google Scholar] [CrossRef] [PubMed]
[21] Tenenbaum, A., Adler, Y., Boyko, V., Tenenbaum, H., Fisman, E.Z., Tanne, D., et al. (2007) Insulin Resistance Is Associated with Increased Risk of Major Cardiovascular Events in Patients with Preexisting Coronary Artery Disease. American Heart Journal, 153, 559-565. [Google Scholar] [CrossRef] [PubMed]
[22] Uetani, T., Amano, T., Harada, K., Kitagawa, K., Kunimura, A., Shimbo, Y., et al. (2012) Impact of Insulin Resistance on Post-Procedural Myocardial Injury and Clinical Outcomes in Patients Who Underwent Elective Coronary Interventions with Drug-Eluting Stents. JACC: Cardiovascular Interventions, 5, 1159-1167. [Google Scholar] [CrossRef] [PubMed]
[23] Choi, C.S., Kim, M.Y., Han, K. and Lee, M. (2012) Assessment of β-Cell Function in Human Patients. Islets, 4, 79-83. [Google Scholar] [CrossRef] [PubMed]
[24] Antuna-Puente, B., Disse, E., Rabasa-Lhoret, R., Laville, M., Capeau, J. and Bastard, J. (2011) How Can We Measure Insulin Sensitivity/Resistance? Diabetes & Metabolism, 37, 179-188. [Google Scholar] [CrossRef] [PubMed]
[25] Tam, C.S., Xie, W., Johnson, W.D., Cefalu, W.T., Redman, L.M. and Ravussin, E. (2012) Defining Insulin Resistance from Hyperinsulinemic-Euglycemic Clamps. Diabetes Care, 35, 1605-1610. [Google Scholar] [CrossRef] [PubMed]
[26] Pacini, G. and Mari, A. (2003) Methods for Clinical Assessment of Insulin Sensitivity and β-Cell Function. Best Practice & Research Clinical Endocrinology & Metabolism, 17, 305-322. [Google Scholar] [CrossRef] [PubMed]
[27] Yusuf, S., Hawken, S., Ôunpuu, S., et al. (2005) Obesity and the Risk of Myocardial Infarction in 27000 Participants from 52 Countries: A Case-Control Study. The Lancet, 366, 1640-1649.
[28] Park, S.Y., Gautier, J. and Chon, S. (2021) Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes & Metabolism Journal, 45, 641-654. [Google Scholar] [CrossRef] [PubMed]
[29] Matthews, D.R., Hosker, J.R., Rudenski, A.S., et al. (1985) Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
[30] Rudvik, A. and Månsson, M. (2018) Evaluation of Surrogate Measures of Insulin Sensitivity—Correlation with Gold Standard Is Not Enough. BMC Medical Research Methodology, 18, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
[31] Manley, S.E., Stratton, I.M., Clark, P.M. and Luzio, S.D. (2007) Comparison of 11 Human Insulin Assays: Implications for Clinical Investigation and Research. Clinical Chemistry, 53, 922-932. [Google Scholar] [CrossRef] [PubMed]
[32] Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., et al. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology & Metabolism, 95, 3347-3351. [Google Scholar] [CrossRef] [PubMed]
[33] Yu, X., Wang, L., Zhang, W., Ming, J., Jia, A., Xu, S., et al. (2018) Fasting Triglycerides and Glucose Index Is More Suitable for the Identification of Metabolically Unhealthy Individuals in the Chinese Adult Population: A Nationwide Study. Journal of Diabetes Investigation, 10, 1050-1058. [Google Scholar] [CrossRef] [PubMed]
[34] Liu, X., He, G., Lo, K., Huang, Y. and Feng, Y. (2021) The Triglyceride-Glucose Index, an Insulin Resistance Marker, Was Non-Linear Associated with All-Cause and Cardiovascular Mortality in the General Population. Frontiers in Cardiovascular Medicine, 7, Article ID: 628109. [Google Scholar] [CrossRef] [PubMed]
[35] Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., González-Nava, V., Díaz González-Colmenero, A., Solis, R.C., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, Article ID: 4678526. [Google Scholar] [CrossRef] [PubMed]
[36] Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
[37] Tuo, X., Yuan, J., Wang, X. and Xin, Z. (2020) Identifying the Insulin Resistance Index in Nondiabetic Chinese Subjects. Medicine, 99, e19023. [Google Scholar] [CrossRef] [PubMed]
[38] Lee, S.B., Ahn, C.W., Lee, B.K., Kang, S., Nam, J.S., You, J.H., et al. (2018) Association between Triglyceride Glucose Index and Arterial Stiffness in Korean Adults. Cardiovascular Diabetology, 17, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
[39] Mazidi, M., Kengne, A., Katsiki, N., Mikhailidis, D.P. and Banach, M. (2018) Lipid Accumulation Product and Triglycerides/Glucose Index Are Useful Predictors of Insulin Resistance. Journal of Diabetes and its Complications, 32, 266-270. [Google Scholar] [CrossRef] [PubMed]
[40] Du, T., Yuan, G., Zhang, M., Zhou, X., Sun, X. and Yu, X. (2014) Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovascular Diabetology, 13, 146.
[41] Mahdavi-Roshan, M., Salari, A., Vakilpour, A., Savar Rakhsh, A. and Ghorbani, Z. (2021) Rice Bran Oil Could Favorably Ameliorate Atherogenicity and Insulin Resistance Indices among Men with Coronary Artery Disease: Post Hoc Analysis of a Randomized Controlled Trial. Lipids in Health and Disease, 20, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
[42] Bastard, J., Lavoie, M., Messier, V., Prud’homme, D. and Rabasa-Lhoret, R. (2012) Evaluation of Two New Surrogate Indices Including Parameters Not Using Insulin to Assess Insulin Sensitivity/Resistance in Non-Diabetic Postmenopausal Women: A MONET Group Study. Diabetes & Metabolism, 38, 258-263. [Google Scholar] [CrossRef] [PubMed]
[43] Vasques, A.C.J., Novaes, F.S., de Oliveira, M.d.S., Matos Souza, J.R., Yamanaka, A., Pareja, J.C., et al. (2011) TyG Index Performs Better than HOMA in a Brazilian Population: A Hyperglycemic Clamp Validated Study. Diabetes Research and Clinical Practice, 93, e98-e100. [Google Scholar] [CrossRef] [PubMed]
[44] Navarro-González, D., Sánchez-Íñigo, L., Pastrana-Delgado, J., Fernández-Montero, A. and Martinez, J.A. (2016) Triglyceride-glucose Index (TyG Index) in Comparison with Fasting Plasma Glucose Improved Diabetes Prediction in Patients with Normal Fasting Glucose: The Vascular-Metabolic CUN Cohort. Preventive Medicine, 86, 99-105. [Google Scholar] [CrossRef] [PubMed]
[45] Lee, S.-H., Kwon, H.-S., Park, Y.-M., Ha, H., Jeong, S.H., Yang, H.K., et al. (2014) Predicting the Development of Diabetes Using the Product of Triglycerides and Glucose: The Chungju Metabolic Disease Cohort (CMC) Study. PLOS ONE, 9, e90430. [Google Scholar] [CrossRef] [PubMed]
[46] Irace, C., Carallo, C., Scavelli, F.B., De Franceschi, M.S., Esposito, T., Tripolino, C., et al. (2013) Markers of Insulin Resistance and Carotid Atherosclerosis. A Comparison of the Homeostasis Model Assessment and Triglyceride Glucose Index. International Journal of Clinical Practice, 67, 665-672. [Google Scholar] [CrossRef] [PubMed]
[47] Yang, C., Song, Y. and Wang, P. (2024) Relationship between Triglyceride-Glucose Index and New-Onset Hypertension in General Population—A Systemic Review and Meta-Analysis of Cohort Studies. Clinical and Experimental Hypertension, 46, Article ID: 2341631. [Google Scholar] [CrossRef] [PubMed]
[48] Lukito, A.A., Kamarullah, W., Huang, I. and Pranata, R. (2024) Association between Triglyceride-Glucose Index and Hypertension: A Systematic Review and Meta-Analysis. Narra J, 4, e951. [Google Scholar] [CrossRef] [PubMed]
[49] Zhang, W., Huo, W., Hu, H., Li, T., Yuan, L., Zhang, J., et al. (2024) Dose-Response Associations of Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Triglyceride-Glucose Index with Arterial Stiffness Risk. Lipids in Health and Disease, 23, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
[50] Zhong, H., Shao, Y., Guo, G., Zhan, Y., Liu, B., Shao, M., et al. (2023) Association between the Triglyceride-Glucose Index and Arterial Stiffness: A Meta-Analysis. Medicine, 102, e33194. [Google Scholar] [CrossRef] [PubMed]
[51] Sajdeya, O., Beran, A., Mhanna, M., Alharbi, A., Burmeister, C., Abuhelwa, Z., et al. (2022) Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-Analysis of 37,780 Individuals. Current Problems in Cardiology, 47, Article ID: 101390. [Google Scholar] [CrossRef] [PubMed]
[52] Ding, X., Wang, X., Wu, J., Zhang, M. and Cui, M. (2021) Triglyceride-Glucose Index and the Incidence of Atherosclerotic Cardiovascular Diseases: A Meta-Analysis of Cohort Studies. Cardiovascular Diabetology, 20, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
[53] Liang, S., Wang, C., Zhang, J., Liu, Z., Bai, Y., Chen, Z., et al. (2023) Triglyceride-Glucose Index and Coronary Artery Disease: A Systematic Review and Meta-Analysis of Risk, Severity, and Prognosis. Cardiovascular Diabetology, 22, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
[54] Jiang, H., Liu, Y., Guo, H., Liu, Z. and Li, Z. (2024) The Association between the Triglyceride-Glucose Index and In-Stent Restenosis in Patients Undergoing Percutaneous Coronary Intervention: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 24, Article No. 234. [Google Scholar] [CrossRef] [PubMed]
[55] Chang, W., Liu, C., Huang, Y., Wu, J., Tsai, W., Hung, K., et al. (2023) Diagnostic Efficacy of the Triglyceride-Glucose Index in the Prediction of Contrast-Induced Nephropathy Following Percutaneous Coronary Intervention. Frontiers in Endocrinology, 14, Article ID: 1282675. [Google Scholar] [CrossRef] [PubMed]
[56] Akbar, M.R., Pranata, R., Wibowo, A., Irvan, Sihite, T.A. and Martha, J.W. (2021) The Association between Triglyceride-Glucose Index and Major Adverse Cardiovascular Events in Patients with Acute Coronary Syndrome—Dose-Response Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 3024-3030. [Google Scholar] [CrossRef] [PubMed]
[57] Liu, H., Wang, L., Wang, H., Hao, X., Du, Z., Li, C., et al. (2024) The Association of Triglyceride-Glucose Index with Major Adverse Cardiovascular and Cerebrovascular Events after Acute Myocardial Infarction: A Meta-Analysis of Cohort Studies. Nutrition & Diabetes, 14, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
[58] Sun, C., Hu, L., Li, X., Zhang, X., Chen, J., Li, D., et al. (2024) Triglyceride‐Glucose Index’s Link to Cardiovascular Outcomes Post‐Percutaneous Coronary Intervention in China: A Meta‐Analysis. ESC Heart Failure, 11, 1317-1328. [Google Scholar] [CrossRef] [PubMed]
[59] Zhao, Q., Zhang, T., Cheng, Y., Ma, Y., Xu, Y., Yang, J., et al. (2021) Triglyceride-Glucose Index as a Surrogate Marker of Insulin Resistance for Predicting Cardiovascular Outcomes in Nondiabetic Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Journal of Atherosclerosis and Thrombosis, 28, 1175-1194. [Google Scholar] [CrossRef] [PubMed]
[60] Zhao, Q., Zhang, T., Cheng, Y., Ma, Y., Xu, Y., Yang, J., et al. (2020) Impacts of Triglyceride-Glucose Index on Prognosis of Patients with Type 2 Diabetes Mellitus and Non-ST-Segment Elevation Acute Coronary Syndrome: Results from an Observational Cohort Study in China. Cardiovascular Diabetology, 19, Article No. 108. [Google Scholar] [CrossRef] [PubMed]
[61] Xiong, S., Chen, Q., Zhang, Z., Chen, Y., Hou, J., Cui, C., et al. (2022) A Synergistic Effect of the Triglyceride-Glucose Index and the Residual SYNTAX Score on the Prediction of Intermediate-Term Major Adverse Cardiac Events in Patients with Type 2 Diabetes Mellitus Undergoing Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 115. [Google Scholar] [CrossRef] [PubMed]
[62] Sun, T., Huang, X., Zhang, B., Ma, M., Chen, Z., Zhao, Z., et al. (2023) Prognostic Significance of the Triglyceride-Glucose Index for Patients with Ischemic Heart Failure after Percutaneous Coronary Intervention. Frontiers in Endocrinology, 14, Article ID: 1100399. [Google Scholar] [CrossRef] [PubMed]
[63] Jin, J.-L., Cao, Y.-X., Wu, L.-G., You, X., Guo, Y., Wu, N., et al. (2018) Triglyceride Glucose Index for Predicting Cardiovascular Outcomes in Patients with Coronary Artery Disease. Journal of Thoracic Disease, 10, 6137-6146. [Google Scholar] [CrossRef] [PubMed]
[64] Luo, E., Wang, D., Yan, G., Qiao, Y., Liu, B., Hou, J., et al. (2019) High Triglyceride-Glucose Index Is Associated with Poor Prognosis in Patients with Acute ST-Elevation Myocardial Infarction after Percutaneous Coronary Intervention. Cardiovascular Diabetology, 18, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
[65] Huang, H., Li, Q., Liu, J., Qiao, L., Chen, S., Lai, W., et al. (2022) Association between Triglyceride Glucose Index and Worsening Heart Failure in Significant Secondary Mitral Regurgitation Following Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 260. [Google Scholar] [CrossRef] [PubMed]
[66] Qin, Z., Xu, S., Yuan, R., Wang, Z., Lu, Y., Xu, Y., et al. (2022) Combination of TyG Index and GRACE Risk Score as Long-Term Prognostic Marker in Patients with ACS Complicated with T2DM Undergoing PCI. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 3015-3025. [Google Scholar] [CrossRef] [PubMed]
[67] Pang, S., Miao, G., Zhou, Y., Du, Y., Rui, Z. and Zhao, X. (2022) Addition of TyG Index to the GRACE Score Improves Prediction of Adverse Cardiovascular Outcomes in Patients with Non-ST-Segment Elevation Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: A Retrospective Study. Frontiers in Cardiovascular Medicine, 9, Article ID: 957626. [Google Scholar] [CrossRef] [PubMed]
[68] Xiong, S., Chen, Q., Chen, X., Hou, J., Chen, Y., Long, Y., et al. (2022) Adjustment of the GRACE Score by the Triglyceride Glucose Index Improves the Prediction of Clinical Outcomes in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Cardiovascular Diabetology, 21, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
[69] Wang, L., Wang, Y., Wang, W. and Wang, Z. (2024) Predictive Value of Triglyceride Glucose Index Combined with Neutrophil-to-Lymphocyte Ratio for Major Adverse Cardiac Events after PCI for Acute ST-Segment Elevation Myocardial Infarction. Scientific Reports, 14, Article No. 12634. [Google Scholar] [CrossRef] [PubMed]
[70] Çınar, T., Selçuk, M., Tanboğa, H. (2022) The Predictive Value of Triglyceride-Glucose Index for In-Hospital and One-Year Mortality in Elderly Non-Diabetic Patients with ST-Segment Elevation Myocardial Infarction. Journal of Geriatric Cardiology, 19, 610-617.
[71] Ma, X., Chu, H., Sun, Y., Cheng, Y., Zhang, D., Zhou, Y., et al. (2024) The Effect of hsCRP on TyG Index-Associated Cardiovascular Risk in Patients with Acute Coronary Syndrome Undergoing PCI. Scientific Reports, 14, Article No. 18083. [Google Scholar] [CrossRef] [PubMed]
[72] Bello-Chavolla, O.Y., Almeda-Valdes, P., Gomez-Velasco, D., Viveros-Ruiz, T., Cruz-Bautista, I., Romo-Romo, A., et al. (2018) METS-IR, a Novel Score to Evaluate Insulin Sensitivity, Is Predictive of Visceral Adiposity and Incident Type 2 Diabetes. European Journal of Endocrinology, 178, 533-544. [Google Scholar] [CrossRef] [PubMed]
[73] Guo, D., Zhang, C., Zhang, M., Wu, Z., Liu, X., Zhang, Y., et al. (2024) Metabolic Score for Insulin Resistance Predicts Major Adverse Cardiovascular Event in Premature Coronary Artery Disease. Aging, 16, 6364-6383. [Google Scholar] [CrossRef] [PubMed]
[74] Wu, Z., Cui, H., Li, W., Zhang, Y., Liu, L., Liu, Z., et al. (2022) Comparison of Three Non-Insulin-Based Insulin Resistance Indexes in Predicting the Presence and Severity of Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 9, Article ID: 918359. [Google Scholar] [CrossRef] [PubMed]
[75] Zhang, Y., Wang, R., Fu, X. and Song, H. (2022) Non-Insulin-Based Insulin Resistance Indexes in Predicting Severity for Coronary Artery Disease. Diabetology & Metabolic Syndrome, 14, Article No. 191. [Google Scholar] [CrossRef] [PubMed]
[76] Rattanatham, R., Tangpong, J., Chatatikun, M., Sun, D., Kawakami, F., Imai, M., et al. (2023) Assessment of Eight Insulin Resistance Surrogate Indexes for Predicting Metabolic Syndrome and Hypertension in Thai Law Enforcement Officers. PeerJ, 11, e15463. [Google Scholar] [CrossRef] [PubMed]
[77] Zhang, Z., Zhao, L., Lu, Y., Meng, X. and Zhou, X. (2023) Association between Non-Insulin-Based Insulin Resistance Indices and Cardiovascular Events in Patients Undergoing Percutaneous Coronary Intervention: A Retrospective Study. Cardiovascular Diabetology, 22, Article No. 161. [Google Scholar] [CrossRef] [PubMed]
[78] Mahdavi-Roshan, M., Mozafarihashjin, M., Shoaibinobarian, N., Ghorbani, Z., Salari, A., Savarrakhsh, A., et al. (2022) Evaluating the Use of Novel Atherogenicity Indices and Insulin Resistance Surrogate Markers in Predicting the Risk of Coronary Artery Disease: A Case-Control Investigation with Comparison to Traditional Biomarkers. Lipids in Health and Disease, 21, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
[79] He, J., Song, C., Yuan, S., Bian, X., Lin, Z., Yang, M., et al. (2024) Triglyceride-Glucose Index as a Suitable Non-Insulin-Based Insulin Resistance Marker to Predict Cardiovascular Events in Patients Undergoing Complex Coronary Artery Intervention: A Large-Scale Cohort Study. Cardiovascular Diabetology, 23, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
[80] Mirjalili, S.R., Soltani, S., Meybodi, Z.H., Marques-Vidal, P., Firouzabadi, D.D., Eshraghi, R., et al. (2024) Which Surrogate Insulin Resistance Indices Best Predict Coronary Artery Disease? A Machine Learning Approach. Cardiovascular Diabetology, 23, Article No. 214. [Google Scholar] [CrossRef] [PubMed]