[1]
|
Al-Ghraiybah, N.F., Wang, J., Alkhalifa, A.E., Roberts, A.B., Raj, R., Yang, E., et al. (2022) Glial Cell-Mediated Neuroinflammation in Alzheimer’s Disease. International Journal of Molecular Sciences, 23, Article 10572. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Piton, M., Hirtz, C., Desmetz, C., Milhau, J., Lajoix, A.D., Bennys, K., et al. (2018) Alzheimer’s Disease: Advances in Drug Development. Journal of Alzheimer’s Disease, 65, 3-13. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
于飞, 陈佩佩, 李紫璇, 等. 多奈哌齐不良反应的研究进展[J]. 中国药物评价, 2022, 39(5): 422-426.
|
[4]
|
Yin, W., Chen, Y., Xu, A., Tang, Y., Zeng, Q., Wang, X., et al. (2022) Acupuncture May Be a Potential Complementary Therapy for Alzheimer’s Disease: A Network Meta-Analysis. Evidence-Based Complementary and Alternative Medicine, 2022, Article ID: 6970751. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Yu, C., Du, Y., Wang, S., Liu, L., Shen, F., Wang, L., et al. (2020) Experimental Evidence of the Benefits of Acupuncture for Alzheimer’s Disease: An Updated Review. Frontiers in Neuroscience, 14, Article 549772. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
孔寅子, 沈峰. 头针的研究进展[J]. 光明中医, 2023, 38(24): 4774-4776.
|
[7]
|
胡效萌, 孙畅, 李妍, 等. 试论头针流派的共同性和头针方案统一的可能性[J]. 中国针灸, 2025, 45(1): 110-122.
|
[8]
|
王琼, 邢海娇, 鲍娜, 等. 基于数据挖掘的头针疗法临床应用特点研究[J]. 针刺研究, 2018, 43(3): 199-203.
|
[9]
|
Wang, S., Liu, K., Wang, Y., Wang, S., He, X., Cui, X., et al. (2017) A Proposed Neurologic Pathway for Scalp Acupuncture: Trigeminal Nerve-Meninges-Cerebrospinal Fluid-Contacting Neurons-Brain. Medical Acupuncture, 29, 322-326. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Lapi, D., Scuri, R. and Colantuoni, A. (2016) Trigeminal Cardiac Reflex and Cerebral Blood Flow Regulation. Frontiers in Neuroscience, 10, Article 470. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
王舒娅, 王佳, 刘坤, 等. 头针与脑联系的捷径通路[J]. 针刺研究, 2020, 45(12): 947-953.
|
[12]
|
唐萍萍, 许骞, 陈栋, 等. 头针刺激层次影响大脑皮层功能的机制探讨[J]. 针刺研究, 2020, 45(6): 504-507.
|
[13]
|
Barage, S.H. and Sonawane, K.D. (2015) Amyloid Cascade Hypothesis: Pathogenesis and Therapeutic Strategies in Alzheimer’s Disease. Neuropeptides, 52, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
张巍. 阿尔茨海默病与神经免疫炎症[J]. 中国医刊, 2021, 56(1): 5-8.
|
[15]
|
Liu, Y., Tan, Y., Zhang, Z., Li, H., Yi, M., Zhang, Z., et al. (2023) Neuroimmune Mechanisms Underlying Alzheimer’s Disease: Insights into Central and Peripheral Immune Cell Crosstalk. Ageing Research Reviews, 84, Article ID: 101831. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Botella Lucena, P. and Heneka, M.T. (2024) Inflammatory Aspects of Alzheimer’s Disease. Acta Neuropathologica, 148, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Zhao, M., Jiang, X., Zhang, H., Sun, J., Pei, H., Ma, L., et al. (2021) Interactions between Glial Cells and the Blood-Brain Barrier and Their Role in Alzheimer’s Disease. Ageing Research Reviews, 72, Article ID: 101483. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Bai, R., Guo, J., Ye, X., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Migliore, L. and Coppedè, F. (2022) Gene-Environment Interactions in Alzheimer Disease: The Emerging Role of Epigenetics. Nature Reviews Neurology, 18, 643-660. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Firdous, S.M., Khan, S.A. and Maity, A. (2024) Oxidative Stress-Mediated Neuroinflammation in Alzheimer’s Disease. Naunyn-Schmiedeberg’s Archives of Pharmacology, 397, 8189-8209. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Monteiro, A.R., Barbosa, D.J., Remião, F. and Silva, R. (2023) Alzheimer’s Disease: Insights and New Prospects in Disease Pathophysiology, Biomarkers and Disease-Modifying Drugs. Biochemical Pharmacology, 211, Article ID: 115522. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Bhatia, V. and Sharma, S. (2021) Role of Mitochondrial Dysfunction, Oxidative Stress and Autophagy in Progression of Alzheimer’s Disease. Journal of the Neurological Sciences, 421, Article ID: 117253. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Song, T., Song, X., Zhu, C., Patrick, R., Skurla, M., Santangelo, I., et al. (2021) Mitochondrial Dysfunction, Oxidative Stress, Neuroinflammation, and Metabolic Alterations in the Progression of Alzheimer’s Disease: A Meta-Analysis of in Vivo Magnetic Resonance Spectroscopy Studies. Ageing Research Reviews, 72, Article ID: 101503. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Nasb, M., Tao, W. and Chen, N. (2024) Alzheimer’s Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging and Disease, 15, 43-73.
|
[25]
|
Filippone, A., Esposito, E., Mannino, D., Lyssenko, N. and Praticò, D. (2022) The Contribution of Altered Neuronal Autophagy to Neurodegeneration. Pharmacology & Therapeutics, 238, Article ID: 108178. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
林祎嘉, 程丽珍, 苗雅. 线粒体自噬异常在阿尔茨海默病中的作用及机制研究综述[J]. 上海交通大学学报(医学版), 2022, 42(3): 387-392.
|
[27]
|
贾俊, 周迎松, 楼琼, 等. 运动调控自噬溶酶体通路改善阿尔茨海默病的机制[J]. 生物化学与生物物理进展, 2023, 50(10): 2314-2324.
|
[28]
|
Lo, C.H. and Zeng, J. (2023) Defective Lysosomal Acidification: A New Prognostic Marker and Therapeutic Target for Neurodegenerative Diseases. Translational Neurodegeneration, 12, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Jorfi, M., Maaser-Hecker, A. and Tanzi, R.E. (2023) The Neuroimmune Axis of Alzheimer’s Disease. Genome Medicine, 15, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
王贺, 李艳丽, 郭蓉霞, 等. 基于脑-肠轴理论探讨针灸治疗认知障碍的机制[J]. 生物化学与生物物理进展, 2023, 50(10): 2336-2348.
|
[31]
|
Das, T.K. and Ganesh, B.P. (2023) Interlink between the Gut Microbiota and Inflammation in the Context of Oxidative Stress in Alzheimer’s Disease Progression. Gut Microbes, 15, Article ID: 2206504. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
胡建庆, 赵俊, 卢梦晗, 等. “通督启神”针法治疗阿尔茨海默病的理论探讨[J]. 世界科学技术-中医药现代化, 2020, 22(8): 2634-2640.
|
[33]
|
李奕彤, 陈瑜, 高效铭, 等. “通督启神”针法对APPswe/PS1dE9小鼠海马铁死亡相关因子表达的影响[J]. 针刺研究, 2023, 48(12): 1236-1241, 1257.
|
[34]
|
吴萌, 郝心, 李婷, 等. “通督启神”针法对SAMP8小鼠海马和皮质区细胞焦亡通路的影响[J]. 针刺研究, 2025, 50(9): 995-1004.
|
[35]
|
王煜, 赵岚, 阚伯红, 等. 三焦针法通过激活SDF-1α/CXCR4通路对快速老化模型小鼠学习和记忆能力的改善作用[J]. 吉林大学学报(医学版), 2021, 47(3): 545-550.
|
[36]
|
张雪竹, 刘涛, 贾玉洁, 等. 三焦针法对阿尔茨海默病模型小鼠学习和记忆功能及相关基因的影响[J]. 中医杂志, 2019, 60(12): 1056-1061.
|
[37]
|
王渊, 刘智斌, 牛文民, 等. 嗅三针对阿尔茨海默病小鼠认知功能和海马Aβ、磷酸化JNK、ERK1/2、Tau蛋白表达的影响[J]. 南京中医药大学学报, 2018, 34(4): 376-380.
|
[38]
|
杨培丹, 贺君. 智三针电针治疗对血管性痴呆小鼠工作记忆改善及作用机制的研究[J]. 新中医, 2022, 54(20): 165-170.
|
[39]
|
许民栋, 韩为, 易玮, 等. 电针对阿尔茨海默病小鼠认知功能和肠道菌群的影响[J]. 针灸临床杂志, 2025, 41(1): 71-77.
|
[40]
|
温华能, 林润, 王逸潇, 等. 电针“智三针”对5xFAD小鼠Notch信号通路及突触可塑性的影响[J]. 中国组织工程研究, 2024, 28(32): 5148-5153.
|
[41]
|
布雨, 魏宇唯, 唐中生, 等. 电针智三针对血管性痴呆大鼠Syt-4、IL-18、C3a表达的影响[J]. 中国老年学杂志, 2021, 41(20): 4449-4453.
|
[42]
|
杨培丹, 贺君谭穗. 智三针对血管性痴呆小鼠前额叶和海马小清蛋白、生长激素抑制素、神经肽Y神经元表达的影响[J]. 广州中医药大学学报, 2022, 39(3): 599-604.
|
[43]
|
吴建丽, 尹洪娜, 王德龙, 等. 头针疗法的起源及发展现状[J]. 广州中医药大学学报, 2019, 36(11): 1783-1787.
|
[44]
|
毛旭, 毛军, 杨鸿飞, 等. 头穴丛刺法对阿尔茨海默病大鼠学习记忆能力及海马CA1区炎症介质的影响[J]. 海南医学院学报, 2019, 25(14): 1051-1056.
|