[1]
|
Shah, S.C., Piazuelo, M.B., Kuipers, E.J. and Li, D. (2021) AGA Clinical Practice Update on the Diagnosis and Management of Atrophic Gastritis: Expert Review. Gastroenterology, 161, 1325-1332.e7. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
黎永鸿, 黄穗溱, 卢域西, 等. 慢性萎缩性胃炎中医治疗进展[J]. 中国民间疗法, 2023, 31(19): 118-122.
|
[4]
|
Kuang, W., Xu, J., Xu, F., Huang, W., Majid, M., Shi, H., et al. (2024) Current Study of Pathogenetic Mechanisms and Therapeutics of Chronic Atrophic Gastritis: A Comprehensive Review. Frontiers in Cell and Developmental Biology, 12, Article 1513426. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. and Bilanges, B. (2010) The Emerging Mechanisms of Isoform-Specific PI3K Signalling. Nature Reviews Molecular Cell Biology, 11, 329-341. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Meng, D., He, W., Zhang, Y., Liang, Z., Zheng, J., Zhang, X., et al. (2021) Development of PI3K Inhibitors: Advances in Clinical Trials and New Strategies (Review). Pharmacological Research, 173, Article 105900. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Yang, J., Nie, J., Ma, X., Wei, Y., Peng, Y. and Wei, X. (2019) Targeting PI3K in Cancer: Mechanisms and Advances in Clinical Trials. Molecular Cancer, 18, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Guerau-de-Arellano, M., Piedra-Quintero, Z.L. and Tsichlis, P.N. (2022) Akt Isoforms in the Immune System. Frontiers in Immunology, 13, Article 990874. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Cantrell, D. (2002) Protein Kinase B (Akt) Regulation and Function in T Lymphocytes. Seminars in Immunology, 14, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Léger, B., Cartoni, R., Praz, M., Lamon, S., Dériaz, O., Crettenand, A., et al. (2006) Akt Signalling through GSK‐3β, mTOR and Foxo1 Is Involved in Human Skeletal Muscle Hypertrophy and Atrophy. The Journal of Physiology, 576, 923-933. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Lemoine, K.A., Fassas, J.M., Ohannesian, S.H. and Purcell, N.H. (2021) On the Phlppside: Emerging Roles of PHLPP Phosphatases in the Heart. Cellular Signalling, 86, Article 110097. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Mao, B., Zhang, Q., Ma, L., Zhao, D., Zhao, P. and Yan, P. (2022) Overview of Research into mTOR Inhibitors. Molecules, 27, Article 5295. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Yang, M., Lu, Y., Piao, W. and Jin, H. (2022) The Translational Regulation in mTOR Pathway. Biomolecules, 12, Article 802. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Deleyto-Seldas, N. and Efeyan, A. (2021) The mTOR-Autophagy Axis and the Control of Metabolism. Frontiers in Cell and Developmental Biology, 9, Article 655731. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Xu, X., Lai, Y. and Hua, Z. (2019) Apoptosis and Apoptotic Body: Disease Message and Therapeutic Target Potentials. Bioscience Reports, 39, BSR20180992. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Xu, Z., Han, X., Ou, D., Liu, T., Li, Z., Jiang, G., et al. (2020) Targeting PI3K/Akt/mTOR-Mediated Autophagy for Tumor Therapy. Applied Microbiology and Biotechnology, 104, 575-587. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Inoki, K., Zhu, T. and Guan, K. (2003) TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115, 577-590. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., et al. (1999) Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell, 96, 857-868. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
黎乐怡, 卓俊城, 谢凯枫, 等. 健脾化瘀解毒方调控PI3K/Akt/HIF-1α通路干预胃癌前病变大鼠胃黏膜上皮细胞自噬及凋亡[J]. 中药新药与临床药理, 2021, 32(10): 1444-1451.
|
[20]
|
Morgan, D.R., Corral, J.E., Li, D., Montgomery, E.A., Riquelme, A., Kim, J.J., et al. (2025) ACG Clinical Guideline: Diagnosis and Management of Gastric Premalignant Conditions. American Journal of Gastroenterology, 120, 709-737. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Morgos, D., Stefani, C., Miricescu, D., Greabu, M., Stanciu, S., Nica, S., et al. (2024) Targeting PI3K/Akt/mTOR and MAPK Signaling Pathways in Gastric Cancer. International Journal of Molecular Sciences, 25, Article 1848. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Hawkins, P.T. and Stephens, L.R. (2015) PI3K Signalling in Inflammation. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1851, 882-897. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Cianciulli, A., Calvello, R., Porro, C., Trotta, T., Salvatore, R. and Panaro, M.A. (2016) PI3K/Akt Signalling Pathway Plays a Crucial Role in the Anti-Inflammatory Effects of Curcumin in LPS-Activated Microglia. International Immunopharmacology, 36, 282-290. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
杨自豪, 周亨露. 党参多糖调控miR-361-5p/TLR4/NF-κB通路对胃癌细胞AGS增殖、凋亡和炎症因子表达的影响[J]. 免疫学杂志, 2022, 38(4): 347-353.
|
[25]
|
Zheng, L., Xing, L., Zeng, C., Wu, T., Gui, Y., Li, W., et al. (2015) Inactivation of PI3Kδ Induces Vascular Injury and Promotes Aneurysm Development by Upregulating the AP-1/MMP-12 Pathway in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 368-377. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
郭敏, 王晓鸽, 杨国红, 等. 健脾活瘀方抑制IL-6/JAK1/STAT3信号通路抗胃癌前病变的机制研究[J]. 中医药信息, 2020, 37(3): 44-49.
|
[27]
|
Yan, H.Z., Wang, H.F., Yin, Y., et al. (2021) GHR Is Involved in Gastric Cell Growth and Apoptosis via PI3K/AKT Signalling. Journal of Cellular and Molecular Medicine, 25, 2450-2458.
|
[28]
|
Hu, R., Xue, X., Sun, X., Mi, Y., Wen, H., Xi, H., et al. (2024) Revealing the Role of Metformin in Gastric Intestinal Metaplasia Treatment. Frontiers in Pharmacology, 15, Article 1340309. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Bahrami, A., Jafari, A. and Ferns, G.A. (2022) The Dual Role of Microrna-9 in Gastrointestinal Cancers: Oncomir or Tumor Suppressor? Biomedicine & Pharmacotherapy, 145, Article 112394. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Sun, Z., Jiang, Q., Gao, B., Zhang, X., Bu, L., Wang, L., et al. (2023) AKT Blocks SIK1-Mediated Repression of STAT3 to Promote Breast Tumorigenesis. Cancer Research, 83, 1264-1279. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Guo, W., Liu, M., Luo, W., Peng, J., Liu, F., Ma, X., et al. (2024) FERMT1 Promotes Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma by Activating EGFR/AKT/β-Catenin and EGFR/ERK Pathways. Translational Oncology, 50, Article 102144. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
黄凯悦, 洪银洁, 罗文谦, 等. 基于网络药理学及分子对接技术探讨陈皮-半夏治疗慢性萎缩性胃炎的作用机制[J]. 福建中医药, 2024, 55(4): 44-50.
|
[33]
|
王杰, 杜朋丽, 董佳琪, 等. 黄连碱对慢性萎缩性胃炎大鼠PI3K/Akt/mTOR信号通路的影响[J]. 中国实验方剂学杂志, 2024, 30(18): 117-124.
|
[34]
|
Tong, Y., Liu, L., Wang, R., Yang, T., Wen, J., Wei, S., et al. (2021) Berberine Attenuates Chronic Atrophic Gastritis Induced by MNNG and Its Potential Mechanism. Frontiers in Pharmacology, 12, Article 644638. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
柳嘉茜, 李玟静, 许梦萍, 等. 基于网络药理学探讨白芍治疗慢性萎缩性胃炎的分子机制研究[J]. 中医临床研究, 2024, 16(7): 8-14.
|
[36]
|
Tu, W., Hong, Y., Huang, M., Chen, M. and Gan, H. (2022) Effect of Kaempferol on Hedgehog Signaling Pathway in Rats with Chronic Atrophic Gastritis-Based on Network Pharmacological Screening and Experimental Verification. Biomedicine & Pharmacotherapy, 145, Article 112451. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
朱海涛, 戴明. 基于网络药理学与分子对接技术探究乌梅治疗慢性萎缩性胃炎作用机制[J]. 临床合理用药, 2025, 18(8): 30-33.
|
[38]
|
赵琦, 张飞, 刘杰民, 等. 基于网络药理学和分子对接方法探究铁皮石斛治疗慢性萎缩性胃炎的作用机制[J]. 现代药物与临床, 2022, 37(4): 692-699.
|
[39]
|
蔡可珍, 郑琴, 章德林, 等. 基于网络药理学探讨丁香挥发油治疗慢性萎缩性胃炎的作用机制[J]. 江西中医药大学学报, 2022, 34(1): 66-74.
|
[40]
|
赓迪, 陶志, 陈攀龙, 等. 吴茱萸干预胃炎-癌转化的潜在活性成分和机制研究[J]. 时珍国医国药, 2021, 32(9): 2105-2109.
|
[41]
|
梁玉华, 梅全喜, 李亦聪, 等. 基于网络药理学的党参治疗慢性萎缩性胃炎的机制研究[J]. 时珍国医国药, 2020, 31(4): 838-841.
|
[42]
|
钱峻. 甘草多糖对萎缩性胃炎胃粘膜细胞的保护作用及其机制研究[D]: [博士学位论文]. 苏州: 苏州大学, 2018.
|
[43]
|
孙庆生, 黄彭, 李希, 等. NLRP3介导的六君子汤治疗慢性萎缩性胃炎及炎癌转化的作用机制分析[J]. 中医学报, 2023, 38(11): 2434-2442.
|
[44]
|
罗文谦, 涂文玲, 洪银洁, 等. 基于网络药理学和实验验证的六君子汤治疗慢性萎缩性胃炎的作用机制研究[J]. 中医药学报, 2024, 52(1): 49-57.
|
[45]
|
段永强, 巩子汉, 王丽园, 等. 香砂六君子汤对慢性萎缩性胃炎大鼠胃组织PI3K信号通路相关因子表达的影响[J]. 中国中医药信息杂志, 2020, 27(3): 33-38.
|
[46]
|
邢崇溢. 加味柴芍六君子汤治疗肝郁脾虚型慢性萎缩性胃炎的临床疗效观察及机制研究[D]: [博士学位论文]. 长春: 长春中医药大学, 2024.
|
[47]
|
熊丽辉, 范静怡, 赵继福. 四君子汤治疗慢性萎缩性胃炎作用机制的网络药理学及实验验证[J]. 中国老年学杂志, 2024, 44(12): 2848-2856.
|
[48]
|
马力亚, 李梅梅, 黄玉卓, 等. 基于数据挖掘和网络药理学探讨泻心汤类方治疗慢性萎缩性胃炎的用药规律及作用机制[J]. 中医临床研究, 2024, 16(28): 9-16.
|
[49]
|
徐甜, 叶冠成, 樊姝宁, 等. 半夏泻心汤治疗慢性萎缩性胃炎的网络药理学研究[J]. 辽宁中医杂志, 2019, 46(12): 2527-2530+2685.
|
[50]
|
朱俊霞, 史佩玉, 綦向军, 等. 基于网络药理学和分子对接的半夏泻心汤治疗慢性萎缩性胃炎作用机制探讨[J]. 药物评价研究, 2021, 44(1): 98-110.
|
[51]
|
王晨, 王建, 刘万里. 基于网络药理学附子泻心汤治疗慢性萎缩性胃炎作用机制研究[J]. 现代药物与临床, 2021, 36(10): 2008-2016.
|
[52]
|
胡嘉敏, 孙宇杰, 马敏, 等. 益胃汤加减治疗慢性萎缩性胃炎的系统评价与分析[J]. 湖北民族大学学报(医学版), 2024, 41(2): 33-39+43.
|
[53]
|
韦维, 林寿宁, 汪波, 等. 安胃汤对慢性萎缩性胃炎大鼠PI3K/Akt信号传导通路的影响[J]. 辽宁中医杂志, 2018, 45(5): 1088-1091+1122.
|
[54]
|
黄贵华, 唐友明, 郑超伟, 等. PTEN-PI3K-Akt-mTOR-自噬与凋亡交互介导胃粘膜萎缩机制及安胃汤的拮抗效应[Z]. 广西中医药大学, 2023.
|
[55]
|
刘远婷, 赵磊, 丁甜甜, 等. 加味沙参麦冬汤调控PTEN/PI3K/AKT通路对CAG大鼠的治疗作用[J]. 吉林中医药, 2024, 44(1): 73-78.
|
[56]
|
刘远婷, 李慧, 丁甜甜, 等. 基于TGF-β1/PI3K/Akt通路探讨加味沙参麦冬汤对慢性萎缩性胃炎大鼠的影响[J]. 实用临床医药杂志, 2023, 27(14): 82-89.
|
[57]
|
胡子朝, 王睿, 张雯婧, 等. 基于网络药理学和分子对接的半夏厚朴汤合左金丸治疗慢性萎缩性胃炎机制[J]. 云南中医中药杂志, 2024, 45(3): 69-77.
|
[58]
|
邵昌明, 智勇, 谢姗珊, 等. 养阴活胃合剂对慢性萎缩性胃炎大鼠PI3K/Akt信号通路的影响[J]. 天津中医药大学学报, 2025, 44(2): 145-151.
|
[59]
|
邵昌明, 谢姗珊, 智勇, 等. 基于网络药理学及实验验证探讨养阴活胃合剂治疗慢性萎缩性胃炎的作用机制[J]. 湖南中医药大学学报, 2023, 43(5): 847-856.
|
[60]
|
杨泽虹, 麦紫涵, 陈彦彤, 等. 扶正通络解毒方对慢性萎缩性胃炎“炎-癌”转化小鼠的作用及机制研究[J]. 中药新药与临床药理, 2025, 36(3): 338-348.
|
[61]
|
叶芸, 李春灵, 屈孟琪, 等. 乐胃饮加味方通过PI3K/AKT/mTOR信号通路调控糖酵解干预慢性萎缩性胃炎[J]. 中国中西医结合杂志, 2025, 45(2): 190-197.
|
[62]
|
李盟, 赵迪, 杜燕青, 等. 参佛胃康治疗慢性萎缩性胃炎胃癌前病变作用机制研究[J]. 西部中医药, 2024, 37(9): 30-34.
|
[63]
|
黄项鸣, 樊欣钰, 陆敏. 基于PI3K/Akt通路探讨芪灵方对慢性萎缩性胃炎伴肠化大鼠的保护作用[J]. 中国实验方剂学杂志, 2024, 30(22): 79-86.
|
[64]
|
王斌, 宋增杰, 裘磊, 等. 益气化瘀阻萎方通过调控PI3K/AKT信号通路缓解慢性萎缩性胃炎的实验研究[J]. 浙江中医药大学学报, 2023, 47(10): 1123-1128.
|
[65]
|
王杰, 高云霄, 马虹宇, 等. 基于网络药理学和实验验证探讨香连化浊方对慢性萎缩性胃炎的作用机制[J]. 中国实验方剂学杂志, 2022, 28(18): 161-168.
|
[66]
|
刘晓萌, 刘建平, 郎晓猛, 等. 基于网络药理学及实验验证探讨香连化浊方治疗慢性萎缩性胃炎大鼠作用机制[J]. 中药药理与临床, 2022, 38(4): 21-28.
|
[67]
|
王丽华, 张永强. 清化逆萎汤治疗萎缩性胃炎伴低级别上皮内瘤变临床观察及对PTEN、AKT表达的影响[J]. 中国中医基础医学杂志, 2021, 27(10): 1614-1618.
|
[68]
|
吴凯瑞, 叶宇, 裴蓓, 等. 脾胃培源丸联合艾灸治疗慢性萎缩性胃炎脾胃虚弱证的临床研究[J]. 北京中医药大学学报, 2025, 48(2): 280-290.
|
[69]
|
陈锦, 何琳俐, 高颖, 等. 摩罗丹浓缩丸通过TNF/PI3K/AKT信号通路治疗慢性萎缩性胃炎[J]. 数理医药学杂志, 2024, 37(11): 823-830.
|
[70]
|
蔡玉丰, 李欢, 钱正刚, 等. 基于网络药理学探讨石丹颗粒治疗慢性萎缩性胃炎的作用机制[J]. 南京中医药大学学报, 2023, 39(6): 564-574.
|
[71]
|
李萍, 李园, 李可歆, 等. 基于生物分子网络探讨胃复春片治疗慢性萎缩性胃炎的作用机制研究[J]. 世界中西医结合杂志, 2020, 15(1): 48-53.
|
[72]
|
蒋欣琪, 卢涛, 罗志强, 等. 基于网络药理学及分子对接的胃复春片治疗慢性萎缩性胃炎机制探讨及体外细胞实验验证[J]. 药物评价研究, 2022, 45(10): 1959-1971.
|
[73]
|
孙尧, 王艺璇, 张洪铭, 等. 基于网络药理学和分子对接技术研究四逆胃痛颗粒治疗萎缩性胃炎的作用机制[J]. 特产研究, 2022, 44(2): 64-70.
|
[74]
|
罗金童, 赵春燕, 战丽彬, 等. 基于网络药理学探究清幽养胃胶囊治疗Hp感染慢性萎缩性胃炎的作用机制[J]. 世界科学技术-中医药现代化, 2021, 23(9): 3344-3355.
|
[75]
|
沈家林, 许雨晴, 曹若彤, 等. 金果胃康胶囊对胃癌前病变模型大鼠胃黏膜ULK1/AMPK/mTOR信号通路的影响[J]. 陕西中医, 2024, 45(4): 446-450.
|
[76]
|
张杨, 刘睿, 赵悦, 等. 欣胃颗粒对胃癌前病变大鼠胃粘膜CyclinD1及其相关因子表达的影响[Z]. 黑龙江中医药大学, 2023.
|
[77]
|
谢晶日, 李明, 于存国, 等. 基于PI3K/Akt通路对P-糖蛋白的调控研究欣胃颗粒对胃癌前病变的干预作用[Z]. 黑龙江大学, 2019.
|
[78]
|
Zheng, J., Jiao, Z., Yang, X., Ruan, Q., Huang, Y., Jin, C., et al. (2025) Network Pharmacology-Based Exploration of the Mechanism of Wenweishu Granule in Treating Chronic Atrophic Gastritis with Spleen-Stomach Cold Deficiency Syndrome. Journal of Ethnopharmacology, 345, Article 119591. [Google Scholar] [CrossRef] [PubMed]
|