miRNA在粘液性卵巢癌诊断及预后中的作用进展
The Role of miRNA in the Diagnosis and Prognosis of Mucinous Ovarian Cancer
DOI: 10.12677/acm.2025.15102891, PDF, HTML, XML,   
作者: 邬舒琪, 路会侠*:大理大学临床医学院,云南 大理;大理大学临床医学院妇产科教研室,云南 大理
关键词: 粘液性卵巢癌MiRNA诊断预后Mucinous Ovarian Cancer MiRNA Diagnosis Prognosis
摘要: 粘液性卵巢癌(mucinous ovarian cancer, MOC)是上皮性卵巢癌(epithelial ovarian cancer, EOC)的一种特殊类型,早期诊断对改善MOC患者预后具有重要意义。微小核糖核酸(microRNA, miRNA)可反映肿瘤负荷,miRNA过表达能导致抑癌基因表达下降、肿瘤发生。miR-194、miR-192等在MOC中上调并影响预后,MOC的miRNA表达在不同亚型之间不同,特定miRNA与组织学类型相关,可以作为独立诊断的生物标志物;miRNA通过调控细胞周期、抑制上皮–间充质转化(EMT)等多种途径调控MOC的预后,miRNA作为新的诊断和预后标记物,为MOC的诊断和治疗提供了新思路和策略。
Abstract: Mucinous ovarian cancer (MOC) is a special type of epithelial ovarian cancer (EOC). Early diagnosis is of great significance in improving the prognosis of patients with MOC. microRNA (miRNA) can reflect tumor burden, and overexpression of miRNA can lead to decreased expression of tumor suppressor genes and tumorigenesis. miR-194 and miR-192 are upregulated in MOC and affect prognosis. miRNA expression in MOC varies among different subtypes, and specific mirnas are correlated with histological types and can be used as biomarkers for independent diagnosis. miRNA regulates the prognosis of MOC by regulating cell cycle and inhibiting epithelial mesenchymal transition (EMT). As a new diagnostic and prognostic marker, miRNA provides new ideas and strategies for the diagnosis and treatment of MOC.
文章引用:邬舒琪, 路会侠. miRNA在粘液性卵巢癌诊断及预后中的作用进展[J]. 临床医学进展, 2025, 15(10): 1342-1348. https://doi.org/10.12677/acm.2025.15102891

1. 引言

MOC是EOC的一种特殊类型,早期症状隐匿,由于缺乏敏感性和特异性的诊断方法容易漏诊、误诊,晚期则预后较差,早期诊断对改善MOC患者预后具有重要意义。微小核糖核酸(microRNA, miRNA)来自肿瘤组织并可反映肿瘤负荷,miRNA过表达导致抑癌基因表达下降,肿瘤发生[1]。miR-199a通过上调跨膜黏蛋白16 (circMUC16)/Beclin1通路调控和影响MOC的预后[2]。上调miR-515-3p与受体酪氨酸激酶(receptor tyrosine kinase, RTKs)的3'非翻译区(UnTranslated Region, 3-UTR)结合通过干扰素诱导的蛋白激酶的蛋白质激活剂(PRKRA)/PKR细胞蛋白激活剂(cellular protein activator of PKR, PACT)轴可提高MOC对奥沙利铂的敏感性[3]。miR-199a、miR-515-3p、miR-192/194等作为靶基因调节MOC的发生和发展,对检测早期MOC显示出巨大潜力。本文就miRNA在MOC诊断及预后中的研究进展做一综述。

2. 卵巢癌(OC)和miRNA之间的联系

miRNA属于内源性小分子非编码RNA,通过降解靶信使核糖核酸(mRNAs)或抑制靶基因翻译调控相关基因的表达,在各种生物体的调节机制中发挥重要作用,包括细胞分化、增殖、细胞凋亡和肿瘤发生[4]。在不同卵巢癌(ovarian cancer, OC)患者中,数个通路的多个miRNA失调(上调或下调) [5]。miRNA不仅参与OC的发生、发展,还能影响预后,通过与靶mRNA的3'-UTR以及其他区域和基因启动子相互作用引起翻译抑制和mRNA降解[6] [7]。OC细胞的侵袭性不受miRNA家族let-7转录本表达的影响,let-7家族miRNA在外泌体中高度表达,但它在高侵袭性OC细胞中的表达显著减少。高侵袭性肿瘤细胞衍生的外泌体发出低侵袭性肿瘤细胞的信号,低侵袭性肿瘤细胞衍生的外泌体可以发出高侵袭性肿瘤细胞的信号,以增加受体细胞的侵袭性,以此证实let-7 miR参与OC肿瘤发生过程[8]。miR-142-5p具有细胞程序性死亡–配体1 (Programmed cell death 1 ligand 1, PD-L1)的3' UTR结合位点,LncRNA FYVE RhoGEF和PH结构域5反义链1 (FGD5 Antisense RNA 1, FGD5-AS1)可通miR-142-5p/PD-L1轴促进miR-142-5p上调致PD-L1过表达,从而促进了OC细胞的增殖、迁移和侵袭[7]。miR-196 a-2多态性与OC的肿瘤分级、p53免疫组织化学表达和FIGO分类之间存在显著统计学差异,因此,miR-196a-2多态性可能是OC的一个可能的预后因素[9]

2.1. miRNA在OC诊断中的作用

OC血液循环中的miRNA因其稳定性和较易检测出而成为有前途的癌症标记物[10]。孟晓丹[11]等证实OC患者的血清游离miR-373、miR-200a、miR200b和miR-200c浓度显著升高,miR-200a、miR-200b和miR-200c的组合诊断恶性和良性卵巢肿瘤具有83%的敏感性和100%的特异性。朱泽华[12]等发现,血浆外泌体miR-205在OC中显著上调,与传统的血清学肿瘤生物标志物癌抗原125 (cancer antigen 125, CA125)和人附睾蛋白4 (human epididymis 4, HE4)相结合,提高了OC的诊断效率。miRNA-204对OC的阳性预测率为59.57%,ROC曲线敏感性98.04%;特异性58.33% [4]。miR-3653-3p在OC患者外周血中的表达水平比健康人高9.49倍,可作为OC的非侵入性生物标志物[13]。MiR-139-5p在OC中表达降低,成纤维细胞生长因子2 (Fibroblast growth factor 2, FGF-2)表达增加,miR-139-5p和FGF-2联合检测有助于OC的诊断,MiR-139-5p是OC诊断的可用生物标志物,通过敏感性、特异性和曲线下面积(AUC)评估其诊断性能,198例患者单一miR-139-5p检测特异性高达93.07%,曲线下面积AUC达84%,对OC的临床诊断有启发[14]

2.2. miRNA在OC预后中的作用

上调miR-576-3p通过降低PD-L1和细胞周期蛋白1 (cyclin D1)增加了OC细胞的顺铂化疗敏感性,促使细胞凋亡,是有前途的OC治疗靶点[15]。miR-101-3p下调通过长链非编码RNA核旁斑组装转录本1 (Nuclear Paraspeckle Assembly Transcript 1, NEAT1)/miR-101-3p轴上调锌指E-box binding同源框1 (Zinc Finger E-Box Binding Homeobox 1, ZEB1)表达激活PD-L1,促进OC细胞增殖并增加CD8+ T 细胞凋亡[16]。上调miR-92通过大肿瘤抑制激酶2 (Large Tumor Suppressor Kinase 2, LATS2)/Yes相关蛋白1 (Yes1 Associated Transcriptional Regulator, YAP1)/PD-L1通路使LATS2下调导致YAP1易位增加和PD-L1的上调,从而抑制自然杀伤细胞功能并促进T细胞凋亡,下调OC免疫细胞功能[17]。在OC中位于19号染色体上的宿主基因核因子IX (Nuclear Factor IX, NFIX)内的基因(circNFIX)通过下调miR-647而增加白细胞介素-6受体(Interleukin 6 receptor, IL-6R)表达,从而激活酪氨酸蛋白激酶(Janus kinase, JAK)/转录激活因子3 (Signal Transducer and Activator of Transcription 3, STAT3)信号传导和PD-L1介导的OC转移和免疫逃逸的机制,致OC预后不良[18]。上调圆盘大MAGUK支架蛋白2基因(Discs Large MAGUK Scaffold Protein 2, DLG2)可抑制miR-23a导致OC的增殖、侵袭和迁移减少,为未来的OC治疗开辟新的途径[19]

3. miRNA在MOC的价值

3.1. 诊断价值

EOC约占OC的90% [20],MOC占EOC的3%,MOC是40岁以下女性中最常见的组织学亚型,具有独特的临床、组织学和分子学特征[21],目前无法通过CA-125等标志物和影像技术在术前确诊。miRNA在检测早期MOC方面有巨大的发展空间。

早期MOC的miRNA表达在不同亚型之间不同,与正常上皮细胞miRNA特征没有重叠[2]。miR-192/194在MOC中比其他亚型(浆液性、子宫内膜样、透明细胞型)高5~8倍,可用于鉴别诊断MOC [22]。Dolivet [23]等证实miR-192/215家族在MOC中上调,而在其他类型EOC和性索间质瘤中下调,强调了miRNA在不同肿瘤中表达谱的特异性及用作诊断生物标志物的可能性。Agostini [24]等证实miR-194、miR-192的表达在MOC中显著上调,在其他组织型中下调,可将MOC与其他亚型区分开来。这些miRNA在MOC中表达水平高于EOC组织学类型,可能具有诊断意义。

特定miRNA的表达与组织学类型相关[25]。OC中miR-30a-3p (浆液性P = 0.0002,黏液性P < 0.0001)、miR-30c (浆液性P = 0.01,黏液性P = 0.0006)和miR-30e-3p (浆液性P = 0.006,黏液性P = 0.0005)的表达显著高于MOC和EOC。miR-30d在透明细胞样本的表达(P = 0.03)显著高于MOC样本。浆液性卵巢癌中miR-30c (P = 0.04)和miR-30d (P = 0.04)的表达显著高于MOC样本,miR-30e-3p (P = 0.04)在透明细胞中的表达显著高于子宫内膜样癌,在MOC中表达最低。结合配对的miRNA表达比率可增强诊断特异性和灵敏度,有助于提高组织学诊断的精确度[25]。miRNA表达比率的组合涉及2个上调的miRNA (miR-210-3p和miR-375)和10个下调的miRNA中的9个(miR-6132除外),这些基于双miRNA的表达比率特征可用于区分MOC和交界性卵巢肿瘤(miRNA对比的比率:miR-210-3p/miR-195-5p、miR-210-3p/miR-152-3p、miR-210-3p/miR-199a-3p、miR-210-3p/miR-487b-3p、miR-210-3p/miR-497-5p、miR-210-3p/miR-130a-3p、miR-210-3p/miR-26a-5p) [25]。Angelo等人[26]观察到1个只在MOC表达的特异生物标志物miR-574-5p,可以辅助诊断MOC。

3.2. 预后价值

miRNA可以影响细胞周期。miR-93-5p在MOC中的表达高于OC的其他类型,促进G1或S期阻滞和细胞凋亡;抑制迁移和侵袭;降低Ras同源基因家族成员C (RhoC)、70 kDa核糖体蛋白S6激酶(P70S6 激酶)、多功能抗凋亡蛋白(Bcl-xL)、基质金属蛋白酶9 (MMP9) mRNA或蛋白质表达;诱导P53并裂解聚腺苷二磷酸核糖聚合酶(PARP)表达,miR-93-5p过表达降低了MOC癌细胞的增殖[27]。OC中miR-29b mRNA表达降低是独立的不良预后预测因子,miR-29b在MOC中显著低于正常组织,与MOC不良预后相关[28]。miR-192/194受TP53控制下调多梳无名指基因(BMI1)/细胞周期蛋白依赖的激酶抑制剂2A基因(cyclin-dependent kinase inhibitor 2A, CDKN2A)/MDM2原癌基因(murine double minute 2, MDM2)/蛋白酶体激活剂(Proteasome Activator Subunit 3, PSME3)/库林4A (Cullin 4A, CUL4A)的相关通路,从而下调MOC细胞的G1/G2期基因(miR-192、miR-194的靶标),阻止细胞周期[29];与其他亚型相比,PSME3和CUL4A在MOC中下调3~4倍(对数刻度),是有前途的miR-192/194靶标,为改善和提高MOC患者的预后提供了新方向。

miRNA可以影响上皮-间充质转化(EMT)。细胞运动的获得是肿瘤迁移和转移的重要步骤,EMT可以描述细胞运动,是肿瘤发展的第一个迹象[30]。在MOC中miR-506与E-钙粘蛋白(E-cadherin, E-cad)呈正相关[31],与波形蛋白和N-钙粘蛋白(N-cadherin, N-cad)呈负相关[32]。miR-506在EMT和转移中调节E-cad和N-cad,高水平的miR-506与MOC的早期FIGO分期和较长的生存期呈正相关,与MOC良好预后相关[31]。miR-29a/b上调直接靶向下游肿瘤坏死因子受体相关因子4/5 (TRAF4/5),进一步调节 EOC细胞中细胞因子释放和EMT中的蛋白激酶B (Akt)/核因子κB (nuclear factor kappa-B, NF-κB)通路,抑制增殖、迁移和侵袭[33]。miR-30a-5p过表达下调S期激酶相关蛋白2基因(S-phase associated kinase protein 2, SKP2)、细胞淋巴瘤9蛋白基因(B-Cell CLL/Lymphoma 9, BCL9)和跨膜受体蛋白1基因(Notch Receptor 1, NOTCH1),下调EMT过程,抑制OC细胞的迁移和侵袭[34]

miRNA可以通过众多通路来调控OC患者的预后。上调的miR-10a-5p通过靶向GATA结合蛋白6 (GATA binding protein 6, GATA6)显著抑制OC细胞增殖、致瘤能力、迁移和侵袭;靶向miR-10a-5p/GATA6/Akt轴可以改善该患者群体的预后[35]。上调miR-671-5p通过抑制组蛋白脱乙酰酶5 (Histone deacetylase 5, HDAC5)和缺氧诱导因子-1α (Hypoxia Inducible Factor 1 Subunit Alpha, HIF-1α)表达水平降低 OC的致瘤性[36]。细胞分裂周期5样(Cell Division Cycle 5 Like, CDC5L)是miR-542-3p的直接靶点,CDC5L蛋白直接与非典型激酶1 (Pseudopodium Enriched Atypical Kinase 1, PEAK1)启动子结合以促进其转录,PEAK1过表达激活细胞外调节蛋白激酶(Extracellular regulated protein kinases1/2, ERK1/2)和酪氨酸蛋白激酶(Janus kinase 2, JAK2)信号通路,促进卵巢癌细胞的恶性生物学行为[37]。也为我们寻找miRNA调控MOC的通路提供了新思路和线索。

4. 临床转化挑战与未来展望

miRNA标志物广泛用于协助临床诊断多种癌症,但它从实验室推向临床会面临诸多实际问题,例如,目前临床上常用检测miRNA标志物的方法是定量逆转录酶PCR (qRT-PCR)和下一代测序(NGS),均易出现缺乏标准化程序的现象,但使用独特的参考基因可能不足以准确测量miRNA,还需要结合不同的对照miRNA。以上过程比较费时、费力且花费的成本较高昂,未来需要建立标准测量循环miRNA的参考程序、详细研究miRNA在疾病病理学中的分子作用机制。在我们的研究中发现,miR-192、miR-215、miR-30c、miR-30a-3p、miR-30e-3p、miR-30d、miR-574-5p等在诊断MOC疾病中显示出巨大潜力,在未来的研究中,可以设想miR-192/miR-215/miR-574-5p、miR-30c/miR-30e-3p/miR-30d/miR-30e-3p等具有前景的联合诊断MOC的组合指标。miR-574-5p是只在MOC表达的特异性标志物,提高了诊断的特异性。

5. 总结

提高早期确诊率对改善MOC患者预后具有极重要意义,miR-192、miR-215、miR-30c、miR-30a-3p、miR-30e-3p、miR-30d、miR-574-5p等在诊断MOC中彰显巨大潜力,miR-192/194通过作用于细胞周期、EMT等多种途径影响MOC患者的预后,也为MOC的治疗提供了新思路和策略。希望未来能发掘出miRNA作为MOC新的诊断治疗生物标志物和治疗靶点更多领域,为改善MOC患者预后作出更大贡献。

作者贡献

邬舒琪负责文章的构思与设计、研究资料的收集与整理、论文撰写、论文起草;路会侠负责论文修订、文章的质量控制及审校。

利益冲突声明

本文无利益冲突。

NOTES

*通讯作者。

参考文献

[1] Armand-Labit, V. and Pradines, A. (2017) Circulating Cell-Free MicroRNAs as Clinical Cancer Biomarkers. Biomolecular Concepts, 8, 61-81. [Google Scholar] [CrossRef] [PubMed]
[2] Fridrichova, I., Kalinkova, L., Karhanek, M., Smolkova, B., Machalekova, K., Wachsmannova, L., et al. (2020) miR-497-5p Decreased Expression Associated with High-Risk Endometrial Cancer. International Journal of Molecular Sciences, 22, Article 127. [Google Scholar] [CrossRef] [PubMed]
[3] Hisamatsu, T., McGuire, M., Wu, S.Y., Rupaimoole, R., Pradeep, S., Bayraktar, E., et al. (2019) PRKRA/PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Molecular Cancer Therapeutics, 18, 162-172. [Google Scholar] [CrossRef] [PubMed]
[4] Ali, F.T., Soliman, R.M., Hassan, N.S., Ibrahim, A.M., El-Gizawy, M.M., Mandoh, A.A.Y., et al. (2022) Sensitivity and Specificity of MicroRNA-204, CA125, and CA19.9 as Biomarkers for Diagnosis of Ovarian Cancer. PLOS ONE, 17, e0272308. [Google Scholar] [CrossRef] [PubMed]
[5] Liang, C.Y., Li, Z.Y., Gan, T.Q., et al. (2020) Downregulation of Hsa-MicroRNA-204-5p and Identification of Its Potential Regulatory Network in Non-Small Cell Lung Cancer: RT-qPCR, Bioinformatic-and Meta-Analyses. Respiratory Research, 21, Article No. 60.
[6] Di Fiore, R., Drago-Ferrante, R., Suleiman, S., Calleja, N. and Calleja-Agius, J. (2024) The Role of MicroRNA-9 in Ovarian and Cervical Cancers: An Updated Overview. European Journal of Surgical Oncology, 51, Article 108546. [Google Scholar] [CrossRef] [PubMed]
[7] Aichen, Z., Kun, W., Xiaochun, S. and Lingling, T. (2021) LncRNA FGD5-AS1 Promotes the Malignant Phenotypes of Ovarian Cancer Cells via Targeting miR-142-5p. Apoptosis, 26, 348-360. [Google Scholar] [CrossRef] [PubMed]
[8] Kobayashi, M., Salomon, C., Tapia, J., Illanes, S.E., Mitchell, M.D. and Rice, G.E. (2014) Ovarian Cancer Cell Invasiveness Is Associated with Discordant Exosomal Sequestration of Let-7 miRNA and miR-200. Journal of Translational Medicine, 12, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
[9] Samia, H., Lasheen, A., Abdelrahman, A., Al-Karamany, A., Sameh, R. and Algazeery, A. (2022) Association between miR-196a-2 Gene Polymorphism and Ovarian Cancer Prognosis in Egyptian Females. Asian Pacific Journal of Cancer Prevention, 23, 1761-1768. [Google Scholar] [CrossRef] [PubMed]
[10] Biray, C.A. and Yusuf, B. (2014) Use of MicroRNAs in Personalized Medicine. Methods in Molecular Biology (Clifton, N.J.), 1107, 311-325.
[11] Meng, X.D., Müller, V., Milde-Langosch, K., et al. (2016) Circulating Cell-Free miR-373, miR-200a, miR-200b and miR-200c in Patients with Epithelial Ovarian Cancer. Advances in Experimental Medicine and Biology, 2016, 9243-9248.
[12] Zhu, Z., Chen, Z., Wang, M., Zhang, M., Chen, Y., Yang, X., et al. (2022) Detection of Plasma Exosomal MiRNA-205 as a Biomarker for Early Diagnosis and an Adjuvant Indicator of Ovarian Cancer Staging. Journal of Ovarian Research, 15, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
[13] Delek, F.S.P., Tunçer, Ş.B., Ödemiş, D.A., Erciyas, S.K., Erdoğan, Ö.Ş., Saip, P., et al. (2024) miR-3653-3p Expression in PBMCs: Unveiling the Diagnostic Potential for Ovarian Cancer. Biochemical Genetics, 63, 2172-2189. [Google Scholar] [CrossRef] [PubMed]
[14] Wang, M.J., Mao, X.M. and Wang, S.Y. (2021) Clinical Significance of miR-139-5p and FGF2 in Ovarian Cancer. Journal of BUON, 26, 663-669.
[15] Zuo, Y., Zheng, W., Tang, Q., Liu, J., Wang, S. and Xin, C. (2021) miR-576-3p Overexpression Enhances Cisplatin Sensitivity of Ovarian Cancer Cells by Dysregulating PD-L1 and Cyclin D1. Molecular Medicine Reports, 23, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
[16] Lili, Y. and Yu, W. (2022) Extracellular Vesicles Derived from M2-Polarized Tumor-Associated Macrophages Promote Immune Escape in Ovarian Cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 Axis. Cancer Immunology, Immunotherapy, 72, 743-758.
[17] Feng, S., Sun, H. and Zhu, W. (2020) miR-92 Overexpression Suppresses Immune Cell Function in Ovarian Cancer via LATS2/YAP1/PD-L1 Pathway. Clinical and Translational Oncology, 23, 450-458. [Google Scholar] [CrossRef] [PubMed]
[18] Wang, R., Ye, H., Yang, B., Ao, M., Yu, X., Wu, Y., et al. (2023) M6a-modified Circnfix Promotes Ovarian Cancer Progression and Immune Escape via Activating IL-6R/JAK1/STAT3 Signaling by Sponging miR-647. International Immunopharmacology, 124, Article 110879. [Google Scholar] [CrossRef] [PubMed]
[19] Zhuang, R., Bai, X. and Liu, W. (2019) MicroRNA-23a Depletion Promotes Apoptosis of Ovarian Cancer Stem Cell and Inhibits Cell Migration by Targeting DLG2. Cancer Biology & Therapy, 20, 897-911. [Google Scholar] [CrossRef] [PubMed]
[20] Lheureux, S., Gourley, C., Vergote, I. and Oza, A.M. (2019) Epithelial Ovarian Cancer. The Lancet, 393, 1240-1253. [Google Scholar] [CrossRef] [PubMed]
[21] Yoshikawa, N., Kajiyama, H., Mizuno, M., Shibata, K., Kawai, M., Nagasaka, T., et al. (2014) Clinicopathologic Features of Epithelial Ovarian Carcinoma in Younger vs. Older Patients: Analysis in Japanese Women. Journal of Gynecologic Oncology, 25, 118-123. [Google Scholar] [CrossRef] [PubMed]
[22] Wang, J., Paris, P.L., Chen, J., Ngo, V., Yao, H., Frazier, M.L., et al. (2015) Next Generation Sequencing of Pancreatic Cyst Fluid MicroRNAs from Low Grade-Benign and High Grade-Invasive Lesions. Cancer Letters, 356, 404-409. [Google Scholar] [CrossRef] [PubMed]
[23] Dolivet, E., Gaichies, L., Jeanne, C., Bazille, C., Briand, M., Vernon, M., et al. (2023) Synergy of the MicroRNA Ratio as a Promising Diagnosis Biomarker for Mucinous Borderline and Malignant Ovarian Tumors. International Journal of Molecular Sciences, 24, Article 16016. [Google Scholar] [CrossRef] [PubMed]
[24] Agostini, A., Brunetti, M., Davidson, B., Tropé, C.G., Eriksson, A.G.Z., Heim, S., et al. (2018) The MicroRNA miR-192/215 Family Is Upregulated in Mucinous Ovarian Carcinomas. Scientific Reports, 8, Article No. 11069. [Google Scholar] [CrossRef] [PubMed]
[25] Lee, H., Park, C.S., Deftereos, G., Morihara, J., Stern, J.E., Hawes, S.E., et al. (2012) MicroRNA Expression in Ovarian Carcinoma and Its Correlation with Clinicopathological Features. World Journal of Surgical Oncology, 10, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
[26] Velle, A., Pesenti, C., Grassi, T., Beltrame, L., Martini, P., Jaconi, M., et al. (2022) A Comprehensive Investigation of Histotype-Specific MicroRNA and Their Variants in Stage I Epithelial Ovarian Cancers. International Journal of Cancer, 152, 1989-2001. [Google Scholar] [CrossRef] [PubMed]
[27] Chen, X., Chen, S., Xiu, Y., Sun, K., Zong, Z. and Zhao, Y. (2015) Rhoc Is a Major Target of MicroRNA-93-5p in Epithelial Ovarian Carcinoma Tumorigenesis and Progression. Molecular Cancer, 14, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
[28] Dai, F., Zhang, Y. and Chen, Y. (2014) Involvement of miR-29b Signaling in the Sensitivity to Chemotherapy in Patients with Ovarian Carcinoma. Human Pathology, 45, 1285-1293. [Google Scholar] [CrossRef] [PubMed]
[29] Calura, E., Fruscio, R., Paracchini, L., Bignotti, E., Ravaggi, A., Martini, P., et al. (2013) MiRNA Landscape in Stage I Epithelial Ovarian Cancer Defines the Histotype Specificities. Clinical Cancer Research, 19, 4114-4123. [Google Scholar] [CrossRef] [PubMed]
[30] Pal, K.M., Jaiswar, P.S., Dwivedi, N.V., et al. (2015) MicroRNA: A New and Promising Potential Biomarker for Diagnosis and Prognosis of Ovarian Cancer. Cancer Biology & Medicine, 12, 328-341.
[31] Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015) miR-506 Inhibits Multiple Targets in the Epithelial-to-Mesenchymal Transition Network and Is Associated with Good Prognosis in Epithelial Ovarian Cancer. The Journal of Pathology, 235, 25-36. [Google Scholar] [CrossRef] [PubMed]
[32] Rosso, M., Majem, B., Devis, L., Lapyckyj, L., Besso, M.J., Llauradó, M., et al. (2017) E-Cadherin: A Determinant Molecule Associated with Ovarian Cancer Progression, Dissemination and Aggressiveness. PLOS ONE, 12, e0184439. [Google Scholar] [CrossRef
[33] Zhang, F., Luo, B., Wu, Q., Li, Q. and Yang, K. (2022) LncRNA HCG18 Upregulates TRAF4/TRAF5 to Facilitate Proliferation, Migration and EMT of Epithelial Ovarian Cancer by Targeting miR-29a/b. Molecular Medicine, 28, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
[34] Wang, L., Zhao, S. and Yu, M. (2019) Mechanism of Low Expression of miR-30a-5p on Epithelial-Mesenchymal Transition and Metastasis in Ovarian Cancer. DNA and Cell Biology, 38, 341-351. [Google Scholar] [CrossRef] [PubMed]
[35] Gao, F., Wu, Q. and Lu, D. (2024) MicroRNA-10a-5p-Mediated Downregulation of GATA6 Inhibits Tumor Progression in Ovarian Cancer. Human Cell, 37, 271-284. [Google Scholar] [CrossRef] [PubMed]
[36] Peng, D., Wu, T., Wang, J., Huang, J., Zheng, L., Wang, P., et al. (2022) MicroRNA-671-5p Reduces Tumorigenicity of Ovarian Cancer via Suppressing HDAC5 and Hif-1α Expression. Chemico-Biological Interactions, 355, Article 109780. [Google Scholar] [CrossRef] [PubMed]
[37] Zhang, C., Li, Y., Zhao, W., Liu, G. and Yang, Q. (2020) Circ-PGAM1 Promotes Malignant Progression of Epithelial Ovarian Cancer through Regulation of the miR-542-3p/CDC5l/PEAK1 Pathway. Cancer Medicine, 9, 3500-3521. [Google Scholar] [CrossRef] [PubMed]