[1]
|
Armand-Labit, V. and Pradines, A. (2017) Circulating Cell-Free MicroRNAs as Clinical Cancer Biomarkers. Biomolecular Concepts, 8, 61-81. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Fridrichova, I., Kalinkova, L., Karhanek, M., Smolkova, B., Machalekova, K., Wachsmannova, L., et al. (2020) miR-497-5p Decreased Expression Associated with High-Risk Endometrial Cancer. International Journal of Molecular Sciences, 22, Article 127. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Hisamatsu, T., McGuire, M., Wu, S.Y., Rupaimoole, R., Pradeep, S., Bayraktar, E., et al. (2019) PRKRA/PACT Expression Promotes Chemoresistance of Mucinous Ovarian Cancer. Molecular Cancer Therapeutics, 18, 162-172. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Ali, F.T., Soliman, R.M., Hassan, N.S., Ibrahim, A.M., El-Gizawy, M.M., Mandoh, A.A.Y., et al. (2022) Sensitivity and Specificity of MicroRNA-204, CA125, and CA19.9 as Biomarkers for Diagnosis of Ovarian Cancer. PLOS ONE, 17, e0272308. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Liang, C.Y., Li, Z.Y., Gan, T.Q., et al. (2020) Downregulation of Hsa-MicroRNA-204-5p and Identification of Its Potential Regulatory Network in Non-Small Cell Lung Cancer: RT-qPCR, Bioinformatic-and Meta-Analyses. Respiratory Research, 21, Article No. 60.
|
[6]
|
Di Fiore, R., Drago-Ferrante, R., Suleiman, S., Calleja, N. and Calleja-Agius, J. (2024) The Role of MicroRNA-9 in Ovarian and Cervical Cancers: An Updated Overview. European Journal of Surgical Oncology, 51, Article 108546. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Aichen, Z., Kun, W., Xiaochun, S. and Lingling, T. (2021) LncRNA FGD5-AS1 Promotes the Malignant Phenotypes of Ovarian Cancer Cells via Targeting miR-142-5p. Apoptosis, 26, 348-360. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Kobayashi, M., Salomon, C., Tapia, J., Illanes, S.E., Mitchell, M.D. and Rice, G.E. (2014) Ovarian Cancer Cell Invasiveness Is Associated with Discordant Exosomal Sequestration of Let-7 miRNA and miR-200. Journal of Translational Medicine, 12, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Samia, H., Lasheen, A., Abdelrahman, A., Al-Karamany, A., Sameh, R. and Algazeery, A. (2022) Association between miR-196a-2 Gene Polymorphism and Ovarian Cancer Prognosis in Egyptian Females. Asian Pacific Journal of Cancer Prevention, 23, 1761-1768. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Biray, C.A. and Yusuf, B. (2014) Use of MicroRNAs in Personalized Medicine. Methods in Molecular Biology (Clifton, N.J.), 1107, 311-325.
|
[11]
|
Meng, X.D., Müller, V., Milde-Langosch, K., et al. (2016) Circulating Cell-Free miR-373, miR-200a, miR-200b and miR-200c in Patients with Epithelial Ovarian Cancer. Advances in Experimental Medicine and Biology, 2016, 9243-9248.
|
[12]
|
Zhu, Z., Chen, Z., Wang, M., Zhang, M., Chen, Y., Yang, X., et al. (2022) Detection of Plasma Exosomal MiRNA-205 as a Biomarker for Early Diagnosis and an Adjuvant Indicator of Ovarian Cancer Staging. Journal of Ovarian Research, 15, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Delek, F.S.P., Tunçer, Ş.B., Ödemiş, D.A., Erciyas, S.K., Erdoğan, Ö.Ş., Saip, P., et al. (2024) miR-3653-3p Expression in PBMCs: Unveiling the Diagnostic Potential for Ovarian Cancer. Biochemical Genetics, 63, 2172-2189. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Wang, M.J., Mao, X.M. and Wang, S.Y. (2021) Clinical Significance of miR-139-5p and FGF2 in Ovarian Cancer. Journal of BUON, 26, 663-669.
|
[15]
|
Zuo, Y., Zheng, W., Tang, Q., Liu, J., Wang, S. and Xin, C. (2021) miR-576-3p Overexpression Enhances Cisplatin Sensitivity of Ovarian Cancer Cells by Dysregulating PD-L1 and Cyclin D1. Molecular Medicine Reports, 23, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Lili, Y. and Yu, W. (2022) Extracellular Vesicles Derived from M2-Polarized Tumor-Associated Macrophages Promote Immune Escape in Ovarian Cancer through NEAT1/miR-101-3p/ZEB1/PD-L1 Axis. Cancer Immunology, Immunotherapy, 72, 743-758.
|
[17]
|
Feng, S., Sun, H. and Zhu, W. (2020) miR-92 Overexpression Suppresses Immune Cell Function in Ovarian Cancer via LATS2/YAP1/PD-L1 Pathway. Clinical and Translational Oncology, 23, 450-458. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Wang, R., Ye, H., Yang, B., Ao, M., Yu, X., Wu, Y., et al. (2023) M6a-modified Circnfix Promotes Ovarian Cancer Progression and Immune Escape via Activating IL-6R/JAK1/STAT3 Signaling by Sponging miR-647. International Immunopharmacology, 124, Article 110879. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Zhuang, R., Bai, X. and Liu, W. (2019) MicroRNA-23a Depletion Promotes Apoptosis of Ovarian Cancer Stem Cell and Inhibits Cell Migration by Targeting DLG2. Cancer Biology & Therapy, 20, 897-911. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Lheureux, S., Gourley, C., Vergote, I. and Oza, A.M. (2019) Epithelial Ovarian Cancer. The Lancet, 393, 1240-1253. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Yoshikawa, N., Kajiyama, H., Mizuno, M., Shibata, K., Kawai, M., Nagasaka, T., et al. (2014) Clinicopathologic Features of Epithelial Ovarian Carcinoma in Younger vs. Older Patients: Analysis in Japanese Women. Journal of Gynecologic Oncology, 25, 118-123. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Wang, J., Paris, P.L., Chen, J., Ngo, V., Yao, H., Frazier, M.L., et al. (2015) Next Generation Sequencing of Pancreatic Cyst Fluid MicroRNAs from Low Grade-Benign and High Grade-Invasive Lesions. Cancer Letters, 356, 404-409. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Dolivet, E., Gaichies, L., Jeanne, C., Bazille, C., Briand, M., Vernon, M., et al. (2023) Synergy of the MicroRNA Ratio as a Promising Diagnosis Biomarker for Mucinous Borderline and Malignant Ovarian Tumors. International Journal of Molecular Sciences, 24, Article 16016. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Agostini, A., Brunetti, M., Davidson, B., Tropé, C.G., Eriksson, A.G.Z., Heim, S., et al. (2018) The MicroRNA miR-192/215 Family Is Upregulated in Mucinous Ovarian Carcinomas. Scientific Reports, 8, Article No. 11069. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Lee, H., Park, C.S., Deftereos, G., Morihara, J., Stern, J.E., Hawes, S.E., et al. (2012) MicroRNA Expression in Ovarian Carcinoma and Its Correlation with Clinicopathological Features. World Journal of Surgical Oncology, 10, Article No. 174. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Velle, A., Pesenti, C., Grassi, T., Beltrame, L., Martini, P., Jaconi, M., et al. (2022) A Comprehensive Investigation of Histotype-Specific MicroRNA and Their Variants in Stage I Epithelial Ovarian Cancers. International Journal of Cancer, 152, 1989-2001. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Chen, X., Chen, S., Xiu, Y., Sun, K., Zong, Z. and Zhao, Y. (2015) Rhoc Is a Major Target of MicroRNA-93-5p in Epithelial Ovarian Carcinoma Tumorigenesis and Progression. Molecular Cancer, 14, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Dai, F., Zhang, Y. and Chen, Y. (2014) Involvement of miR-29b Signaling in the Sensitivity to Chemotherapy in Patients with Ovarian Carcinoma. Human Pathology, 45, 1285-1293. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Calura, E., Fruscio, R., Paracchini, L., Bignotti, E., Ravaggi, A., Martini, P., et al. (2013) MiRNA Landscape in Stage I Epithelial Ovarian Cancer Defines the Histotype Specificities. Clinical Cancer Research, 19, 4114-4123. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Pal, K.M., Jaiswar, P.S., Dwivedi, N.V., et al. (2015) MicroRNA: A New and Promising Potential Biomarker for Diagnosis and Prognosis of Ovarian Cancer. Cancer Biology & Medicine, 12, 328-341.
|
[31]
|
Sun, Y., Hu, L., Zheng, H., Bagnoli, M., Guo, Y., Rupaimoole, R., et al. (2015) miR-506 Inhibits Multiple Targets in the Epithelial-to-Mesenchymal Transition Network and Is Associated with Good Prognosis in Epithelial Ovarian Cancer. The Journal of Pathology, 235, 25-36. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Rosso, M., Majem, B., Devis, L., Lapyckyj, L., Besso, M.J., Llauradó, M., et al. (2017) E-Cadherin: A Determinant Molecule Associated with Ovarian Cancer Progression, Dissemination and Aggressiveness. PLOS ONE, 12, e0184439. [Google Scholar] [CrossRef]
|
[33]
|
Zhang, F., Luo, B., Wu, Q., Li, Q. and Yang, K. (2022) LncRNA HCG18 Upregulates TRAF4/TRAF5 to Facilitate Proliferation, Migration and EMT of Epithelial Ovarian Cancer by Targeting miR-29a/b. Molecular Medicine, 28, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Wang, L., Zhao, S. and Yu, M. (2019) Mechanism of Low Expression of miR-30a-5p on Epithelial-Mesenchymal Transition and Metastasis in Ovarian Cancer. DNA and Cell Biology, 38, 341-351. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Gao, F., Wu, Q. and Lu, D. (2024) MicroRNA-10a-5p-Mediated Downregulation of GATA6 Inhibits Tumor Progression in Ovarian Cancer. Human Cell, 37, 271-284. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Peng, D., Wu, T., Wang, J., Huang, J., Zheng, L., Wang, P., et al. (2022) MicroRNA-671-5p Reduces Tumorigenicity of Ovarian Cancer via Suppressing HDAC5 and Hif-1α Expression. Chemico-Biological Interactions, 355, Article 109780. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Zhang, C., Li, Y., Zhao, W., Liu, G. and Yang, Q. (2020) Circ-PGAM1 Promotes Malignant Progression of Epithelial Ovarian Cancer through Regulation of the miR-542-3p/CDC5l/PEAK1 Pathway. Cancer Medicine, 9, 3500-3521. [Google Scholar] [CrossRef] [PubMed]
|