[1]
|
Watanabe, S., Alexander, M., Misharin, A.V. and Budinger, G.R.S. (2019) The Role of Macrophages in the Resolution of Inflammation. Journal of Clinical Investigation, 129, 2619-2628. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Hao, N., Lü, M., Fan, Y., Cao, Y., Zhang, Z. and Yang, S. (2012) Macrophages in Tumor Microenvironments and the Progression of Tumors. Clinical and Developmental Immunology, 2012, Article ID: 948098. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Smithy, J.W. and O’Reilly, E.M. (2021) Pancreas Cancer: Therapeutic Trials in Metastatic Disease. Journal of Surgical Oncology, 123, 1475-1488. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Morrison, A.H., Byrne, K.T. and Vonderheide, R.H. (2018) Immunotherapy and Prevention of Pancreatic Cancer. Trends in Cancer, 4, 418-428. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Bear, A.S., Vonderheide, R.H. and O’Hara, M.H. (2020) Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell, 38, 788-802. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Tempero, M.A., Malafa, M.P., Al-Hawary, M., Behrman, S.W., Benson, A.B., Cardin, D.B., et al. (2021) Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 19, 439-457. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Carvalho, T.M.A., Di Molfetta, D., Greco, M.R., Koltai, T., Alfarouk, K.O., Reshkin, S.J., et al. (2021) Tumor Microenvironment Features and Chemoresistance in Pancreatic Ductal Adenocarcinoma: Insights into Targeting Physicochemical Barriers and Metabolism as Therapeutic Approaches. Cancers, 13, Article 6135. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Sherman, M.H. and Beatty, G.L. (2023) Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annual Review of Pathology: Mechanisms of Disease, 18, 123-148. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Wang, K. and He, H. (2020) Pancreatic Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironments in Organs, Springer, 243-257. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Mantovani, A., Marchesi, F., Malesci, A., Laghi, L. and Allavena, P. (2017) Tumour-Associated Macrophages as Treatment Targets in Oncology. Nature Reviews Clinical Oncology, 14, 399-416. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Zhu, Y., Knolhoff, B.L., Meyer, M.A., Nywening, T.M., West, B.L., Luo, J., et al. (2014) CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-Cell Checkpoint Immunotherapy in Pancreatic Cancer Models. Cancer Research, 74, 5057-5069. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Pu, Y. and Ji, Q. (2022) Tumor-Associated Macrophages Regulate PD-1/PD-L1 Immunosuppression. Frontiers in Immunology, 13, Article 874589. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Kurahara, H., Takao, S., Maemura, K., et al. (2011) M2-Polarized Tumor-Associated Macrophage Infiltration of Regional Lymph Nodes Is Associated with Nodal Lymphangiogenesis and Metastasis in Pancreatic Cancer. Pancreas, 40, 884-891.
|
[14]
|
Qian, B. and Pollard, J.W. (2010) Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell, 141, 39-51. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Zhang, Q., He, Y., Luo, N., Patel, S.J., Han, Y., Gao, R., et al. (2019) Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell, 179, 829-845.e20. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Li, M., He, L., Zhu, J., Zhang, P. and Liang, S. (2022) Targeting Tumor-Associated Macrophages for Cancer Treatment. Cell & Bioscience, 12, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Wood, L.D., Canto, M.I., Jaffee, E.M. and Simeone, D.M. (2022) Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology, 163, 386-402.e1. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Yang, S., Liu, Q. and Liao, Q. (2021) Tumor-associated Macrophages in Pancreatic Ductal Adenocarcinoma: Origin, Polarization, Function, and Reprogramming. Frontiers in Cell and Developmental Biology, 8, Article 607209. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Guan, F., Wang, R., Yi, Z., Luo, P., Liu, W., Xie, Y., et al. (2025) Tissue Macrophages: Origin, Heterogenity, Biological Functions, Diseases and Therapeutic Targets. Signal Transduction and Targeted Therapy, 10, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Cruz, A.F., et al. (2020) Macrophages in the Pancreas: Villains by Circumstances, Not Necessarily by Actions. Immunity, Inflammation and Disease, 8, 807-824.
|
[21]
|
Zhu, Y., Herndon, J.M., Sojka, D.K., Kim, K., Knolhoff, B.L., Zuo, C., et al. (2017) Tissue-Resident Macrophages in Pancreatic Ductal Adenocarcinoma Originate from Embryonic Hematopoiesis and Promote Tumor Progression. Immunity, 47, 323-338.e6. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Zhu, S., Yi, M., Wu, Y., Dong, B. and Wu, K. (2021) Roles of Tumor-Associated Macrophages in Tumor Progression: Implications on Therapeutic Strategies. Experimental Hematology & Oncology, 10, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Yang, C., et al. (2021) Macrophages in Pancreatic Cancer: Pathogenic Mechanisms and Therapeutic Opportunities. Frontiers in Cell and Developmental Biology, 8, Article ID: 607209.
|
[24]
|
Storz, P. (2023) Roles of Differently Polarized Macrophages in the Initiation and Progression of Pancreatic Cancer. Frontiers in Immunology, 14, [page]. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Liou, G.Y., et al. (2017) Macrophage-Secreted Cytokines Drive Pancreatic Acinar-to-Ductal Metaplasia Through NF-κB and STAT3. Molecular Cancer Research, 15, 480-488.
|
[26]
|
Mantovani, A., Sozzani, S., Locati, M., Allavena, P. and Sica, A. (2002) Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends in Immunology, 23, 549-555. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Pathria, P., Louis, T.L. and Varner, J.A. (2019) Targeting Tumor-Associated Macrophages in Cancer. Trends in Immunology, 40, 310-327. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Kumar, V., Donthireddy, L., Marvel, D., Condamine, T., Wang, F., Lavilla-Alonso, S., et al. (2017) Cancer-Associated Fibroblasts Neutralize the Anti-Tumor Effect of CSF1 Receptor Blockade by Inducing PMN-MDSC Infiltration of Tumors. Cancer Cell, 32, 654-668.e5. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Raghavan, S., Winter, P.S., Navia, A.W., Williams, H.L., DenAdel, A., Lowder, K.E., et al. (2021) Microenvironment Drives Cell State, Plasticity, and Drug Response in Pancreatic Cancer. Cell, 184, 6119-6137.e26. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Zhang, Y., Zoltan, M., Riquelme, E., et al. (2022) Pancreatic Cancer-Intrinsic Immunomodulatory Programs Promote Tumor Progression, Immune Escape and Immunotherapy Resistance. Cancer Discovery, 12, 1022-1041.
|
[31]
|
Ho, W.J., Jaffee, E.M. and Zheng, L. (2020) The Tumour Microenvironment in Pancreatic Cancer—Clinical Challenges and Opportunities. Nature Reviews Clinical Oncology, 17, 527-540. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Salmon, H., Franciszkiewicz, K., Damotte, D., Dieu-Nosjean, M., Validire, P., Trautmann, A., et al. (2012) Matrix Architecture Defines the Preferential Localization and Migration of T Cells into the Stroma of Human Lung Tumors. Journal of Clinical Investigation, 122, 899-910. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Zhang, Y., He, J., Li, W., Chen, Y., Zhou, Y., Deng, J., et al. (2024) Targeting Tumor-Associated Macrophages Reprograms the Immune Microenvironment and Enhances Immunotherapy in Pancreatic Cancer. Signal Transduction and Targeted Therapy, 9, Article No. 196.
|