[1]
|
Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Li, L., Liao, J., Yuan, Q., Hong, X., Li, J., Peng, Y., et al. (2021) Fibrillin-1-Enriched Microenvironment Drives Endothelial Injury and Vascular Rarefaction in Chronic Kidney Disease. Science Advances, 7, eabc7170. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Cao, S., Pan, Y., Terker, A.S., Arroyo Ornelas, J.P., Wang, Y., Tang, J., et al. (2023) Epidermal Growth Factor Receptor Activation Is Essential for Kidney Fibrosis Development. Nature Communications, 14, Article No. 7357. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Huang, R., Fu, P. and Ma, L. (2023) Kidney Fibrosis: From Mechanisms to Therapeutic Medicines. Signal Transduction and Targeted Therapy, 8, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Yi, H., Huang, C., Shi, Y., Cao, Q., Chen, J., Chen, X., et al. (2021) Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury through Inhibiting Tgf-Β1 Signaling Pathways. Frontiers in Cell and Developmental Biology, 9, Article 603802. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
李旭萍, 马鸿斌, 马海兰. 中医药抗肾脏纤维化的研究进展[J]. 中成药, 2023, 45(12): 4036-4041.
|
[7]
|
王晖, 郑翊轩, 杨梦凡, 毛楠, 樊均明, 任思冲. 基于脾肾互根理论治疗慢性肾脏病[J]. 中医学报, 2024, 11(24): 1-7.
|
[8]
|
陈澍, 马钰, 张赛, 等. 基于补肾活血法对治疗慢性肾脏病的临床有效性及安全性的Meta分析[J]. 天津中医药, 2023, 40(12): 1558-1566.
|
[9]
|
高燕翔, 张琪. 张琪教授调脾补肾法治疗慢性肾脏病经验[J]. 中华中医药杂志, 2015, 30(8): 2786-2789.
|
[10]
|
左文明, 李锦萍, 李彩明, 等. UPLC-Q-TOF-MS/MS结合网络药理学和分子对接探讨椭圆叶花锚抗肝炎的药效物质及作用机制[J]. 天然产物研究与开发, 2021, 33(11): 1946-1956.
|
[11]
|
Li, Y., Xu, B., An, R., Du, X., Yu, K., Sun, J., et al. (2019) Protective Effect of Anisodamine in Rats with Glycerol-Induced Acute Kidney Injury. BMC Nephrology, 20, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Liu, F., Li, Y., Wang, F., Jiang, Y. and Jiang, Y. (2012) Shenfushu Granule and Atropine Attenuate Microvasculature Loss in Rat Models with 5/6 Nephrectomy. Renal Failure, 34, 600-609. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Pohanka, M., Pikula, J., Kuca, K., et al. (2011) Biochemical Insight into Soman Intoxication and Treatment with Atropine, HI-6, Trimedoxime, and K203 in a Rat Model. Bratislavské Lekárske Listy, 112, 539-544.
|
[14]
|
Ebert, T., Neytchev, O., Witasp, A., Kublickiene, K., Stenvinkel, P. and Shiels, P.G. (2021) Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxidants & Redox Signaling, 35, 1426-1448. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Ibrahim, S.R.M., Mohamed, G.A., Khedr, A.I.M., et al. (2017) Anti-Oxidant and Anti-Inflammatory Cyclic Diarylheptanoids from Alnus japonica Stem Bark. Iranian Journal of Pharmaceutical Research, 16, 83-91.
|
[16]
|
Ting, Y., Ko, H., Wang, H., Peng, C., Chang, H., Hsieh, P., et al. (2014) Biological Evaluation of Secondary Metabolites from the Roots of Myrica Adenophora. Phytochemistry, 103, 89-98. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Bhargava, S. and Rathore, D. (2017) Synthetic Routes and Biological Activities of Benzofuran and Its Derivatives: A Review. Letters in Organic Chemistry, 14, 381-402. [Google Scholar] [CrossRef]
|
[18]
|
Jiang, Z., Gao, W. and Huang, L. (2019) Tanshinones, Critical Pharmacological Components in Salvia Miltiorrhiza. Frontiers in Pharmacology, 10, Article 202. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Wang, Y., Liu, L., Qu, Z., Wang, D., Huang, W., Kong, L., et al. (2022) Tanshinone Ameliorates Glucocorticoid-Induced Bone Loss via Activation of AKT1 Signaling Pathway. Frontiers in Cell and Developmental Biology, 10, Article 878433. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Wang, J., Ma, R., Wang, Y., Zhang, S., Wang, J., Zheng, J., et al. (2023) rhMYDGF Alleviates I/R-Induced Kidney Injury by Inhibiting Inflammation and Apoptosis via the Akt Pathway. Transplantation, 107, 1729-1739. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Liu, Y., Gong, S., Li, K., Wu, G., Zheng, X., Zheng, J., et al. (2022) Coptisine Protects against Hyperuricemic Nephropathy through Alleviating Inflammation, Oxidative Stress and Mitochondrial Apoptosis via PI3K/Akt Signaling Pathway. Biomedicine & Pharmacotherapy, 156, Article ID: 113941. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Lin, H.Y., Chen, Y., Chen, Y., Ta, A.P., Lee, H., MacGregor, G.R., et al. (2021) Tubular Mitochondrial AKT1 Is Activated during Ischemia Reperfusion Injury and Has a Critical Role in Predisposition to Chronic Kidney Disease. Kidney International, 99, 870-884. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Kim, I.Y., Song, S.H., Seong, E.Y., Lee, D.W., Bae, S.S. and Lee, S.B. (2023) Akt1 Is Involved in Renal Fibrosis and Tubular Apoptosis in a Murine Model of Acute Kidney Injury-to-Chronic Kidney Disease Transition. Experimental Cell Research, 424, Article ID: 113509. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Liu, Y., Tavana, O. and Gu, W. (2019) P53 Modifications: Exquisite Decorations of the Powerful Guardian. Journal of Molecular Cell Biology, 11, 564-577. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Qi, R., Wang, J., Jiang, Y., Qiu, Y., Xu, M., Rong, R., et al. (2021) Snai1-Induced Partial Epithelial-Mesenchymal Transition Orchestrates p53-p21-Mediated G2/M Arrest in the Progression of Renal Fibrosis via NF-κB-Mediated Inflammation. Cell Death & Disease, 12, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Ye, Z., Xia, Y., Li, L., Li, B., Chen, L., Yu, W., et al. (2023) P53 Deacetylation Alleviates Calcium Oxalate Deposition-Induced Renal Fibrosis by Inhibiting Ferroptosis. Biomedicine & Pharmacotherapy, 164, Article ID: 114925. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Ying, Y., Kim, J., Westphal, S.N., Long, K.E. and Padanilam, B.J. (2014) Targeted Deletion of p53 in the Proximal Tubule Prevents Ischemic Renal Injury. Journal of the American Society of Nephrology, 25, 2707-2716. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Fu, S., Hu, X., Ma, Z., Wei, Q., Xiang, X., Li, S., et al. (2022) P53 in Proximal Tubules Mediates Chronic Kidney Problems after Cisplatin Treatment. Cells, 11, Article 712. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Liu, X., Liu, Z., Wang, C., Miao, J., Zhou, S., Ren, Q., et al. (2023) Kidney Tubular Epithelial Cells Control Interstitial Fibroblast Fate by Releasing TNFAIP8-Encapsulated Exosomes. Cell Death & Disease, 14, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Wang, Y., Zhang, H., Chen, Q., Jiao, F., Shi, C., Pei, M., et al. (2020) TNF‐α/HMGB1 Inflammation Signalling Pathway Regulates Pyroptosis during Liver Failure and Acute Kidney Injury. Cell Proliferation, 53, e12829. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Egli-Spichtig, D., Imenez Silva, P.H., Glaudemans, B., Gehring, N., Bettoni, C., Zhang, M.Y.H., et al. (2019) Tumor Necrosis Factor Stimulates Fibroblast Growth Factor 23 Levels in Chronic Kidney Disease and Non-Renal Inflammation. Kidney International, 96, 890-905. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Guo, X., Zhu, Y., Sun, Y. and Li, X. (2022) IL-6 Accelerates Renal Fibrosis after Acute Kidney Injury via DNMT1-Dependent FOXO3a Methylation and Activation of Wnt/β-Catenin Pathway. International Immunopharmacology, 109, Article ID: 108746. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Ridker, P.M. and Rane, M. (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research, 128, 1728-1746. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Ding, H., Jiang, M., Chan, A.M., Xia, Y., Ma, R.C.W., Yao, X., et al. (2024) Targeting the Tyrosine Kinase SRC in Endothelium Attenuates Inflammation and Atherogenesis Induced by Disturbed Flow. British Journal of Pharmacology, 182, 4861-4875. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Li, L., Guo, X., Shi, X., Li, C., Wu, W., Yan, C., et al. (2017) Ionic CD3-Lck Interaction Regulates the Initiation of T-Cell Receptor Signaling. Proceedings of the National Academy of Sciences of the United States of America, 114, E5891-E5899. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
George, R.P., Mehta, A.K., Perez, S.D., Winterberg, P., Cheeseman, J., Johnson, B., et al. (2016) Premature T Cell Senescence in Pediatric CKD. Journal of the American Society of Nephrology, 28, 359-367. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Hartzell, S., Bin, S., Cantarelli, C., Haverly, M., Manrique, J., Angeletti, A., et al. (2020) Kidney Failure Associates with T Cell Exhaustion and Imbalanced Follicular Helper T Cells. Frontiers in Immunology, 11, Article 583702. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Tang, Y., He, H., Hu, P. and Xu, X. (2020) T Lymphocytes in IgA Nephropathy (Review). Experimental and Therapeutic Medicine, 20, 186-194. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Zhao, Q., Dai, H., Liu, X., Jiang, H., Liu, W., Feng, Z., et al. (2021) Helper T Cells in Idiopathic Membranous Nephropathy. Frontiers in Immunology, 12, Article 665629. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Masenga, S.K., Desta, S., Hatcher, M., Kirabo, A. and Lee, D.L. (2025) How PPAR-α Mediated Inflammation May Affect the Pathophysiology of Chronic Kidney Disease. Current Research in Physiology, 8, Article ID: 100133. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Cosimato, C., Agoritsas, T. and Mavrakanas, T.A. (2021) Mineralocorticoid Receptor Antagonists in Patients with Chronic Kidney Disease. Pharmacology & Therapeutics, 219, Article ID: 107701. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Cao, W., Yang, Z., Liu, X., Ren, S., Su, H., Yang, B., et al. (2023) A Kidney-Brain Neural Circuit Drives Progressive Kidney Damage and Heart Failure. Signal Transduction and Targeted Therapy, 8, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Pladevall-Vila, M., Ziemiecki, R., Johannes, C.B., Khan, A.M., Mines, D., Ebert, N., et al. (2025) Clinical Profile and Treatment Patterns in Individuals with Type 2 Diabetes and Chronic Kidney Disease Who Initiate a GLP-1 Receptor Agonist: A Multinational Cohort Study. Diabetes Therapy, 16, 931-954. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Liu, J., Miao, H., Deng, D., Vaziri, N.D., Li, P. and Zhao, Y. (2020) Gut Microbiota-Derived Tryptophan Metabolism Mediates Renal Fibrosis by Aryl Hydrocarbon Receptor Signaling Activation. Cellular and Molecular Life Sciences, 78, 909-922. [Google Scholar] [CrossRef] [PubMed]
|