基于网络药理学与分子对接探究芪参补肾活血颗粒治疗慢性肾脏病的作用机制
Using Network Pharmacology and Molecular Docking to Investigate the Mechanism of Action of Qishen Bushen Huoxue Granule in Treating Chronic Kidney Disease
DOI: 10.12677/tcm.2025.1410601, PDF, HTML, XML,    科研立项经费支持
作者: 张昊天, 谷午平, 董梓贤:黑龙江省中医药科学院研究生院,黑龙江 哈尔滨;刘 雪:黑龙江省中医医院肾病八科,黑龙江 哈尔滨;李淑菊*:黑龙江省中医药科学院研究生院,黑龙江 哈尔滨;黑龙江省中医医院肾病八科,黑龙江 哈尔滨
关键词: 慢性肾脏病芪参补肾活血颗粒网络药理学分子对接作用机制活性成分Chronic Kidney Disease Qishen Bushen Huoxue Granule Network Pharmacology Molecular Docking Mechanism of Action Active Components
摘要: 目的:基于网络药理学与分子对接,探讨芪参补肾活血颗粒治疗慢性肾脏病的活性成分和潜在作用机制。方法:基于TCMSP数据库进行芪参补肾活血颗粒化合物筛选,利用PubChem数据库获得活性成分SMILE号并用于Swiss Target Prediction平台预测候选成分的作用靶标。整合OMIM、GeneCards数据库资源,收集CKD相关疾病靶点,基于Uniprot数据库规范靶点名称。借助Venny在线工具提取药物与疾病的共有靶标。最终采用Cytoscape 3.9.0软件构建包含药物分子、活性成分及疾病靶点的三维互作网络模型。使用STRING数据库及Cytoscape 3.9.0构建蛋白质–蛋白质相互作用(PPI)网络,筛选核心靶点并构建网络图。借助DAVID Bioinformatics Resources对交集核心靶点进行富集分析。并将关键靶点结构和核心活性成分结构进行分子对接。结果:筛选得芪参补肾活血颗粒223个活性成分,药物靶点1013个,疾病靶点18151个,共同靶点987个。核心活性成分包括阿托品、川芎醌、杨梅酮、XH-14、丹参醇B。PPI网络中筛选出5个关键靶点,包括RAC-α丝氨酸/苏氨酸蛋白激酶(AKT1),肿瘤蛋白p53 (TP53),肿瘤坏死因子(TNF),白细胞介素-6 (IL-6),Src酪氨酸蛋白激酶(SRC)。GO分析显示主要涉及蛋白质磷酸化、蛋白质自磷酸化等生物学过程,KEGG分析显示主要涉及神经活性配体–受体相互作用、癌症的发病途径、钙离子等信号通路。分子对接结果显示所有核心活性成分与核心靶点结合能均 < −5.0 kcal/mol,有较好的结合能力。结论:芪参补肾活血颗粒通过神经活性配体–受体相互作用等信号通路作用于AKT1、TP53、TNF、IL-6、SRC等靶点,实现多靶点、多通路调节治疗CKD。
Abstract: Objective: To investigate the active components and potential mechanism of action of Qishen Bushen Huoxue Granule (QSBSHX) in treating chronic kidney disease (CKD) using network pharmacology and molecular docking. Methods: Compounds of QSBSHX were screened using the TCMSP database. SMILES notations of active components were obtained from the PubChem database and utilized on the SwissTargetPrediction platform to predict potential targets. Disease targets associated with CKD were collected by integrating resources from the OMIM and GeneCards databases, and target names were standardized using the UniProt database. Common targets between the drug and the disease were identified using the Venny online tool. A tripartite interaction network model encompassing drug molecules, active components, and disease targets was constructed using Cytoscape 3.9.0 software. The STRING database and Cytoscape 3.9.0 were employed to build a protein-protein interaction (PPI) network, from which core targets were screened and visualized. Enrichment analysis of the intersecting core targets was performed using DAVID Bioinformatics Resources. Molecular docking was conducted between the structures of key targets and core active components. Results: Screening identified 223 active components of QSBHXG, 1013 drug targets, 18,151 disease targets, and 987 common targets. Core active components included atropine, senkyunone, myricanone, XH-14, and danshenol B. Five key targets were identified from the PPI network: RAC-alpha serine/threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53), tumor necrosis factor (TNF), interleukin-6 (IL-6), and proto-oncogene tyrosine-protein kinase Src (SRC). Gene Ontology (GO) analysis indicated that the biological processes primarily involved included protein phosphorylation and protein autophosphorylation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant involvement in pathways such as neuroactive ligand-receptor interaction, pathways in cancer, and calcium signaling pathway. Molecular docking results demonstrated that all core active components exhibited favorable binding affinity with the core targets, with binding energies < −5.0 kcal/mol. Conclusion: QSBSHX exerts its therapeutic effects on CKD through a multi-target and multi-pathway mechanism, primarily by acting on targets such as AKT1, TP53, TNF, IL-6, and SRC, and modulating signaling pathways including neuroactive ligand-receptor interaction.
文章引用:张昊天, 刘雪, 谷午平, 董梓贤, 李淑菊. 基于网络药理学与分子对接探究芪参补肾活血颗粒治疗慢性肾脏病的作用机制[J]. 中医学, 2025, 14(10): 4131-4145. https://doi.org/10.12677/tcm.2025.1410601

1. 引言

慢性肾脏病(Chronic Kidney Disease, CKD)是指由各种原因引起的肾脏结构或功能异常在3个月以上,或肾小球滤过率(GFR) < 60 mL/(min·1.73m2)并持续3个月以上,有或无肾脏损伤证据的一组肾脏疾病[1]。CKD的进展呈持续且难逆并表现出炎症、肾小管萎缩、肾间质纤维化等特点[2]。肾纤维化是多种CKD的共同病理改变,纤维化在CKD的发展中发挥重要作用,持续性的纤维化会导致肾脏衰竭,最终进入终末期肾病,但目前临床尚无针对纤维化的特异性治疗方法[3]-[5],找到有效改善CKD的药物是临床上待解决的问题之一。

近年来,中医从整体观念出发,发挥辨证论治的优势,在治疗CKD临床症状、延缓其进展、防治并发症和防控高风险因素等方面积累了丰富的理论和实践经验[6]。CKD发病原因复杂多样,中医理论将CKD归于“尿浊”“关格”“虚劳”等范畴,病机上常被认为与肺、脾、肾、三焦的功能失调有关,现代各医家基于前人的基础加之自己的经验与研究,常采用“补肾活血”“健脾补肾”等方法对CKD展开治疗[7] [8]。国医大师张琪教授在治疗肾病时,常强调补脾肾理论。张老认为CKD的病机关键在于脾肾虚损,虽然其临床表现各异但病机相同,并在此病理基础上逐渐出现湿浊羁留、成毒成瘀的标实之象[9]。脾主运化,肾司开阖,CKD患者脾肾虚损气化不行,导致人体水液代谢功能障碍,湿浊毒邪内蕴,日久腐败为瘀,耗伤人体气血阴阳,加之肾病病程日久,缠绵难愈,使得病情愈发加重,故需施以健脾补肾活血治疗CKD患者。黑龙江省名中医李淑菊教授为张琪教授学术继承人,师从张老,随师侍诊多年,芪参补肾活血方是李淑菊教授基于张老治疗CKD的理论,在全国名中医张佩青教授的指导下,加以多年经验总结而得出的经验方,其组成包括:黄芪,熟地黄,党参,山茱萸,山药,茯苓,牛膝,土茯苓,胡芦巴,巴戟天,枸杞子,炒山桃仁,丹参,川芎。具有健脾补肾活血之效。芪参补肾活血方在黑龙江省中医医院肾病科应用数年,临床疗效好,目前已制成院内制剂芪参补肾活血颗粒(院内制剂批准文号:Z20240623000)广泛应用于CKD患者治疗。为了进一步探索芪参补肾活血颗粒对CKD的作用机制,通过网络药理学和分子对接分析芪参补肾活血颗粒治疗CKD的主要作用机制,提供其临床有效性的初步数据,为后续深入研究提供依据。

2. 资料与方法

2.1. 芪参补肾活血颗粒活性成分和靶点筛选

利用中药系统药理学数据库与分析平台(TCMSP, https://tcmsp-e.com/)数据库以及查阅文献,对芪参补肾活血颗粒所含成分进行对应活性成分检索,包括黄芪,熟地黄,党参,山茱萸,山药,茯苓,牛膝,土茯苓,胡芦巴,巴戟天,枸杞子,炒山桃仁,丹参,川芎,以口服生物利用度(OB) ≥ 30%及类药性(DL) ≥ 0.18作为筛选条件,得到芪参补肾活血颗粒活性成分。基于化学信息学资源平台PubChem数据库(https://pubchem.ncbi.nlm.nih.gov/)对芪参补肾活血颗粒活性成分进行检索,将SMILE号输入到SwissTarget Prediction平台来预测靶点,对预测到的药物靶点进行汇总去重,依据预测可信度参数设置筛选标准(概率值 > 0),确立有效作用靶点集合作为后续网络药理学研究的核心数据集。

2.2. CKD相关靶点的获取

利用GeneCardard数据库(https://www.genecards.org)、OMIM数据库(https://omim.org),以“Chronic Kidney Disease”作为检索词进行靶点检索,设置物种为“Homo sapiens”,获取疾病靶点基因,对数据库检索到的疾病靶点进行合并去重,基于Uniprot数据库(https://www.uniprot.org)规范靶点名称。

2.3. 构建芪参补肾活血颗粒与CKD的交集靶点

将CKD相关靶点和芪参补肾活血颗粒活性成分的靶点输入Venny2.1.0在线平台 (https://bioinfogp.cnb.csic.es/tools/venny/index.html),获取CKD-芪参补肾活血颗粒共同靶点的韦恩图。

2.4. 蛋白相互作用(PPI)网络的构建及核心靶点的筛选

将芪参补肾活血颗粒与CKD共有靶点输入String平台(https://cn.string-db.org),将生物种类设定为“Homo sapiens”,进行PPI分析。将分析结果导入到Cytoscape3.9.0软件中构建PPI网络图,再通过CytoNCA进行拓扑分析,根据Degree值排名顺序筛选出核心靶点。

2.5. 构建“活性成分–疾病靶点”网络图

将芪参补肾活血颗粒的活性成分和交集靶点作为节点,通过Cytoscape3.9.0软件构建芪参补肾活血颗粒治疗CKD的“活性成分–作用靶点”网络图。

2.6. 靶点功能与通路富集分析

将芪参补肾活血颗粒与CKD的共同靶点导入DAVID Bioinformatics Resources数据库,进行GO和KEGG富集分析,借助微生信在线平台(https://www.bioinformatics.com.cn/)绘制柱状图和气泡图。

2.7. 分子对接技术预测芪参补肾活血颗粒活性成分与潜在靶点的结合能力

通过PubChem数据库中获取核心药物主要有效成分,从PDB数据库(http://www.rcsb.org/)收集关键靶点蛋白结构,使用Pymol-2.1.0软件清除靶点的水分子和小分子配体等,使用AutoDock Tools-1.5.6软件进行分子对接,并分析结合活性。

3. 结果

3.1. 芪参补肾活血颗粒活性成分的筛选及治疗靶点预测

Figure 1. Venn diagram of common targets between QSBSHX-CKD

1. 芪参补肾活血颗粒–慢性肾脏病共有靶点韦恩图

从芪参补肾活血颗粒获得符合条件的化学成分223个。利用Swiss Target Prediction数据库汇总去重后共得到1013个药物靶点。利用GeneCards和OMIM数据库汇总去重后得到疾病靶点共18,151个。将药物靶点和疾病靶点输入Venny2.1.0在线平台,得到987个芪参补肾活血颗粒治疗CKD的作用靶点,即活性成分–疾病共同靶点,结果见图1

3.2. 蛋白–蛋白互作网络(Protein-Protein Interaction, PPI)的构筑及核心靶点的筛选

将987个活性成分–疾病共同靶点输入STRING数据库进行PPI网络的构建,生物种类设定为“Homo sapiens”,设置置信度为0.4。该PPI网络中有987节点,23,950条边,平均度值为48.6。节点表示基因蛋白,边表明其相连接的蛋白有相互作用的关系。节点的大小和颜色代表degree值的大小。将STRING数据库得到的TSV文件导入到Cytoscape3.9.0软件中,对PPI网络进行拓扑分析,根据Degree值排名高低筛选出作用于疾病的关键靶点基因,部分如表1所示,排名靠前的关键靶点为RAC-α丝氨酸/苏氨酸蛋白激酶(AKT1),肿瘤蛋白p53 (TP53),肿瘤坏死因子(TNF),白细胞介素-6 (IL-6),Src酪氨酸蛋白激酶(SRC)。芪参补肾活血颗粒治疗慢性肾脏病潜在靶点PPI网络图见图2(A),由于节点过多,故筛选Degree值大于100的99个靶点进行可视化分析,如图2(B)所示。

(A)

(B)

注:节点越大、颜色越深表示该节点Degree值越大;节点越小、颜色越浅表示该节点Degree值越小。

Figure 2. (A) Protein-Protein Interaction (PPI) Network of Potential Targets for QSBSHX in the Treatment of CKD; (B) PPI Network of Core Targets

2. (A) 芪参补肾活血颗粒治疗慢性肾脏病潜在靶点PPI网络图;(B) 核心靶点PPI网络图

Table 1. Screening of key targets

1. 关键靶点筛选

序号

蛋白标识

degree值

1

AKT1

Degree: 391.0

2

TP53

Degree: 374.0

3

TNF

Degree: 356.0

4

IL-6

Degree: 343.0

5

SRC

Degree: 343.0

6

ALB

Degree: 307.0

7

EGFR

Degree: 307.0

8

IL1B

Degree: 305.0

9

CTNNB1

Degree: 304.0

10

STAT3

Degree: 300.0

11

HSP90AA1

Degree: 279.0

12

BCL2

Degree: 269.0

13

ESR1

Degree: 268.0

14

JUN

Degree: 267.0

15

CASP3

Degree: 256.0

16

HIF1A

Degree: 248.0

17

MAPK3

Degree: 246.0

18

PPARG

Degree: 240.0

19

HSP90AB1

Degree: 238.0

20

MMP9

Degree: 216.0

3.3. 芪参补肾活血颗粒–慢性肾脏病–靶点网络构建

利用Cytoscape 3.9.0对芪参补肾活血颗粒所含化学成分和潜在作用靶点进行关联性分析。活性成分包括:黄芪12个,党参15个,熟地黄2个,山茱萸15个,山药16个,茯苓12个,牛膝18个,土茯苓10个,胡芦巴13个,巴戟天11个,枸杞子35个,桃仁15个,丹参42个,川芎7个,和degree值大于100的99个交集靶点为基础,构建了芪参补肾活血颗粒–慢性肾脏病–靶点网络图,导入Cytoscape 3.9.0软件中进行网络图的绘制(结果见图3)。拓扑分析以Degree值排序选取排名前5的化合物作为核心活性成分,包括阿托品、川芎醌、杨梅酮、XH-14、丹参醇B (见表2)。

注:橙色为药名、紫色为活性成分、绿色为靶点。

Figure 3. QSBSHX-CKD-target interaction network

3. 芪参补肾活血颗粒–慢性肾脏病–靶点网络图

Table 2. Core active ingredients

2. 核心活性成分

序号

标识

MOL name

Degree值

1

GQZ7

atropine

128

2

CX4

senkyunone

101

3

CX2

Myricanone

101

4

DanS36

CHEMBL42639

101

5

DanS35

Danshenol B

101

3.4. 共同作用靶点的GO富集分析和KEGG通路分析

对987个交集靶点进行GO功能富集分析,共得到2276个GO条目,得到1570个生物学过程(BP),主要调控和参与蛋白质磷酸化、蛋白质自磷酸化、胰岛素样生长因子受体信号通路等过程;195个细胞成分(CC),主要定位于质膜、胞质溶胶、树突等部位;511个分子功能(MF),主要表现在组蛋白H3Y41激酶活性、组蛋白H2AXY142激酶活性、蛋白丝氨酸/苏氨酸激酶活性等方面。本研究选取了P值排名前10的富集条目,通过微生信对结果进行可视化分析,如图4所示。

注:横坐标表示富集条目名称,纵坐标表示P值(−log10转化)。

Figure 4. GO biological process analysis

4. GO生物过程分析

对987个交集靶点进行KEGG通路富集分析,共富集到196条信号通路(P < 0.05)。主要富集通路包括神经活性配体–受体相互作用通路、癌症的发病途径通路、钙离子信号通路、cAMP信号通路和脂质与动脉粥样硬化等信号通路。选取P值排名前20的富集条目,通过微生信对结果进行可视化分析,如图5所示。

注:颜色表示P值,P值越小颜色越偏向绿色,P值越大则越偏向红色。

Figure 5. KEGG pathway enrichment analysis

5. KEGG通路分析

3.5. 分子对接验证结果

选取CKD疾病的关键靶点与degree值排名前5位的核心活性成分进行分子对接验证,亲和能对接结果见表3,分子对接分数的热图见图6。结合能越低代表配体与受体之间亲和力越强,其构象越稳定。通常认为结合能小于−5 kcal/mol代表核心靶点与关键成分有较好的结合能力,结合能小于−7 kcal/mol时代表两者具有较强的结合能力[10]。对接结果显示所有结合能均小于−5.1 kcal/mol,具有良好结合能力,其中杨梅酮与TP53结合能−7.1 kcal/mol,川芎醌与SRC结合能−7.2 kcal/mol,丹参醇B与AKT、TNF、TP53结合能分别为−7.2 kcal/mol、−7.5 kcal/mol和−8.6 kcal/mol,具有较强结合能力,表明核心活性成分可通过作用于核心靶点对慢性肾脏病起治疗作用。选取其中亲和能排名前5的结果作图并进行可视化分析,结果见图7(A)~(E)所示。

Table 3. Molecular docking results of binding affinity

3. 亲和能对接结果

排序

Ligand/Protein

AKT1

TP53

TNF

IL-6

SRC

1

atropine

−5.9

−6.8

−5.7

−6.2

−5.8

2

senkyunone

−5.1

−6.5

−6.0

−6.8

−7.2

3

Myricanone

−6.9

−7.1

−6.3

−6.7

−6.3

4

CHEMBL42639

−6.4

−6.7

−6.2

−6.0

−6.9

5

Danshenol B

−7.2

−8.6

−7.5

−6.9

−6.9

Figure 6. Heatmap of molecular docking scores

6. 分子对接分数的热图

Figure 7. Molecular docking results

7. 分子对接结果

4. 讨论

王清任《医林改错》“元气既虚,必不能达于血管,血管无气,必停留而瘀”强调肾中元气不足导致血行无力,瘀血内生。《金匮要略·水气病脉证治》“趺阳脉浮,水谷不化,脾气衰则骛溏,胃气衰则身肿”阐明脾胃虚损以致水湿停滞成肿。中医认为慢性肾脏病发病是先天不足、后天失养、外邪侵袭、情志失调等多因素共同作用的结果,核心在于脾肾虚损与湿热、瘀血、浊毒的交互作用[8]。李淑菊教授基于此理论框架,结合张老学术思想及全国名中医张佩青教授的临床实践经验,创新性提出“健脾补肾活血”治则,并据此研发芪参补肾活血颗粒(院内制剂批准文号:Z20240623000),芪参补肾活血颗粒处方组成深刻体现了“脾肾同治”思想,遵循“君臣佐使”配伍原则构建复方体系:君药黄芪与熟地黄共奏健脾益气、滋肾填精之效;臣药党参协同增强补气功效,山茱萸、牛膝、胡芦巴配伍调节肾中阴阳平衡,丹参协同牛膝强化活血化瘀;佐药枸杞子、山药、巴戟天增强脾肾双补作用,桃仁、川芎助活血通络,茯苓、土茯苓利湿化浊以达补而不滞之效。这种“健脾补肾、活血祛瘀”的协同效应,科学诠释了中医“标本兼治”的治疗理念。

本研究筛选出芪参补肾活血颗粒有效活性成分223种,治疗CKD的潜在作用靶点1013个,交集靶点987个。其关键活性成分包括阿托品、川芎醌、杨梅酮、XH-14及丹参醇B。已有实验证据表明:阿托品可显著改善肾功能(血清肌酐、尿素和KIM-1等标志物水平下降) [11],其与中药合用可抑制肾纤维化进程并促进胃肠道对尿酸和肌酐的清除[12],以及预防高尿酸血症和肌酐升高为代表肾病的发生[13]。川芎醌相关的实验报道较少,分子对接显示川芎醌与核心靶点AKT1 (ΔG = −5.1 kcal/mol)、TP53 (ΔG = −6.5 kcal/mol)等均呈现较好结合活性[10]。炎症和氧化损伤是CKD关键病理机制[14],杨梅酮作为环状二芳基庚烷类化合物具备抗氧化抗炎作用[15] [16]。XH-14从化学结构上属苯并呋喃类化合物,这类化合物具有广泛的药理活性,具备抗肿瘤、抗氧化、抗炎和免疫调节等作用[17],本研究中发现XH-14匹配靶点众多,分析其可能通过抗炎、抗氧化机制减缓慢性肾脏病的进展。丹参醇B属于丹参酮类化合物,缺乏直接实验证据。但丹参酮类化合物具有显着的药理活性,如抗氧化活性、抗炎活性等[18]且与AKT1的表达相关[19],而AKT1作为PPI分析中治疗CKD的关键靶点,也证明了其对慢性肾脏病作用效果的强关联性,同时分子对接显示其与AKT、TNF、TP53具有较强结合能力,表明丹参醇B具有成为研究CKD疾病活性成分的潜力。

PPI相互作用网络分析发现AKT1、TP53、TNF、IL6、SRC等靶点在芪参补肾活血颗粒治疗慢性肾脏病中发挥重要作用。AKT1所属AKT家族作为PI3K/AKT/mTOR通路枢纽,通过调控细胞凋亡、氧化应激和炎症反应来影响疾病[20] [21]。增强肾小管线粒体AKT1信号可减少活性氧(ROS)积累,减轻肾损伤并显著提高缺血再灌注损伤后患者存活率[22]。中断TGF-β1/Akt1/GSK-3β/(Snail和β-连环蛋白)信号传导通路,可达到减轻肾纤维化和肾小管上皮–间质转化的目的[23]。TP53参与调节细胞周期,可促进细胞存活[24],其表达与肾纤维化严重程度成正比[25],在CKD患者的肾小管上皮细胞中显著上调[26]。有研究通过逆向实验发现,在特异性敲除P53蛋白基因后,能抑制细胞坏死和炎症反应,实现减弱肾脏缺血性损伤和顺铂诱导的肾纤维化的作用[27] [28],抑制成纤维细胞凋亡并诱导其增殖,起到治疗纤维化CKD的目的[29]。TNF-α介导的炎症信号通路直接影响肾损伤发生后的炎症的进展[30],通过提高血浆成纤维细胞生长因子23水平,调节CKD患者磷酸盐稳态,与其预后死亡率相关[31]。IL-6诱导DNMT1依赖性FOXO3a启动子甲基化,激活Wnt/β-catenin通路,直接加速肾小管上皮细胞向间质转化和纤维化[32],针对IL-6进行单抗治疗可减轻慢性肾脏病合并动脉粥样硬化模型炎症和纤维化的进程[33]。SRC酪氨酸蛋白激酶是一种非受体型酪氨酸激酶,具有调控炎症、调控免疫等作用来影响疾病进展。SRC可通过Piezo1-Src-STAT3通路来介导内皮细胞炎症[34],中科院国家蛋白质科学中心研究发现,SRC家族酪氨酸激酶Lck对T细胞信号起直接调控作用,可以激活T细胞免疫应答[35]。其他研究发现在CKD [36]及肾脏衰竭[37]的进程中存在T细胞的耗竭和衰老的现象,这会增加患者的感染风险并加重慢性肾病的进程。因此Src可通过调控T细胞免疫应答来干预CKD的进展。并且IgA肾病[38]、特发性膜性肾病[39]也与T细胞失调直接相关,未来SRC可作为相关肾脏疾病的潜在治疗靶点。

GO及KEGG结果表明,芪参补肾活血颗粒治疗CKD主要作用于蛋白质磷酸化、蛋白质自磷酸化等,相关的重要通路主要涉及神经活性配体–受体相互作用、癌症的发病途径和脂质与动脉粥样硬化等信号通路。其中神经活性配体–受体相互作用通路相比于其他通路对CKD的富集程度更高更显著(如图5示)。其具体机制涉及调控特定受体信号通路,影响炎症调控、纤维化抑制、代谢紊乱改善等关键病理过程。而CKD早期(1~3期)肾小球高滤过、炎症–氧化应激和小管间质纤维化是核心病理环节。神经活性配体–受体相互作用通路对CKD的核心应用方向主要包括:1) 靶向核受体PPAR-α抑制TGF-β/SMAD信号,实现降低蛋白尿、抗纤维化并改善肾小球功能的效果[40]。2) 盐皮质激素受体(MR)拮抗剂减少醛固酮诱导的足细胞凋亡,实现减少蛋白尿并减缓CKD的进展[41],3) 交感神经–肾上腺素受体调控,如肾交感神经消融术来阻断肾–脑交感环路,有助于合并心血管疾病的CKD患者肾损伤的改善[42]。4) GLP-1受体激动剂(如利拉鲁肽、司美格鲁肽)可增加肾血流量,减少蛋白尿[43]等。5) 肠–肾轴与微生物代谢产物受体的相互作用,肠道微生物衍生的色氨酸代谢可通过芳烃受体信号激活介导肾纤维化[44]

由于本研究是基于数据库的模拟实验,通过数据库内靶点信息进行药物–靶点–疾病的机制探究,相比于临床实验其所对应的靶点信息有所缺失,与实际实验研究可能存在偏差,故存在一定局限性,还需细胞实验等实验研究以进一步加以验证。

综上所述,本研究通过网络药理学和分子对接技术分析芪参补肾活血颗粒治疗CKD的作用机制,结果发现芪参补肾活血颗粒的活性成分阿托品、川芎醌、杨梅酮、XH-14、丹参醇B等可能通过神经活性配体–受体相互作用等信号通路作用于AKT1、TP53、TNF、IL-6、SRC等靶点,起到调控肾脏局部微环境(炎症–纤维化–代谢三重机制)来实现治疗CKD的作用,并且在后续研究中发现神经活性配体–受体相互作用通路作为芪参补肾活血颗粒治疗CKD的关键通路,其作用于炎症调控、纤维化抑制和代谢紊乱改善的作用机制,与CKD核心病理环节(炎症和氧化损伤) [14]相契合,揭露了其在临床治疗CKD取得优异效果的潜在机制。值得围绕其关键靶点与信号通路进一步深入开展实验及临床研究,来验证这一“假说”,也为其他新的中药复方组方治疗CKD时提供新的思路。

基金项目

张佩青全国名中医传承工作室建设项目(国中医药办人教函[2022]245号)。

NOTES

*通讯作者。

参考文献

[1] Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314. [Google Scholar] [CrossRef] [PubMed]
[2] Li, L., Liao, J., Yuan, Q., Hong, X., Li, J., Peng, Y., et al. (2021) Fibrillin-1-Enriched Microenvironment Drives Endothelial Injury and Vascular Rarefaction in Chronic Kidney Disease. Science Advances, 7, eabc7170. [Google Scholar] [CrossRef] [PubMed]
[3] Cao, S., Pan, Y., Terker, A.S., Arroyo Ornelas, J.P., Wang, Y., Tang, J., et al. (2023) Epidermal Growth Factor Receptor Activation Is Essential for Kidney Fibrosis Development. Nature Communications, 14, Article No. 7357. [Google Scholar] [CrossRef] [PubMed]
[4] Huang, R., Fu, P. and Ma, L. (2023) Kidney Fibrosis: From Mechanisms to Therapeutic Medicines. Signal Transduction and Targeted Therapy, 8, Article No. 129. [Google Scholar] [CrossRef] [PubMed]
[5] Yi, H., Huang, C., Shi, Y., Cao, Q., Chen, J., Chen, X., et al. (2021) Metformin Attenuates Renal Fibrosis in a Mouse Model of Adenine-Induced Renal Injury through Inhibiting Tgf-Β1 Signaling Pathways. Frontiers in Cell and Developmental Biology, 9, Article 603802. [Google Scholar] [CrossRef] [PubMed]
[6] 李旭萍, 马鸿斌, 马海兰. 中医药抗肾脏纤维化的研究进展[J]. 中成药, 2023, 45(12): 4036-4041.
[7] 王晖, 郑翊轩, 杨梦凡, 毛楠, 樊均明, 任思冲. 基于脾肾互根理论治疗慢性肾脏病[J]. 中医学报, 2024, 11(24): 1-7.
[8] 陈澍, 马钰, 张赛, 等. 基于补肾活血法对治疗慢性肾脏病的临床有效性及安全性的Meta分析[J]. 天津中医药, 2023, 40(12): 1558-1566.
[9] 高燕翔, 张琪. 张琪教授调脾补肾法治疗慢性肾脏病经验[J]. 中华中医药杂志, 2015, 30(8): 2786-2789.
[10] 左文明, 李锦萍, 李彩明, 等. UPLC-Q-TOF-MS/MS结合网络药理学和分子对接探讨椭圆叶花锚抗肝炎的药效物质及作用机制[J]. 天然产物研究与开发, 2021, 33(11): 1946-1956.
[11] Li, Y., Xu, B., An, R., Du, X., Yu, K., Sun, J., et al. (2019) Protective Effect of Anisodamine in Rats with Glycerol-Induced Acute Kidney Injury. BMC Nephrology, 20, Article No. 223. [Google Scholar] [CrossRef] [PubMed]
[12] Liu, F., Li, Y., Wang, F., Jiang, Y. and Jiang, Y. (2012) Shenfushu Granule and Atropine Attenuate Microvasculature Loss in Rat Models with 5/6 Nephrectomy. Renal Failure, 34, 600-609. [Google Scholar] [CrossRef] [PubMed]
[13] Pohanka, M., Pikula, J., Kuca, K., et al. (2011) Biochemical Insight into Soman Intoxication and Treatment with Atropine, HI-6, Trimedoxime, and K203 in a Rat Model. Bratislavské Lekárske Listy, 112, 539-544.
[14] Ebert, T., Neytchev, O., Witasp, A., Kublickiene, K., Stenvinkel, P. and Shiels, P.G. (2021) Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxidants & Redox Signaling, 35, 1426-1448. [Google Scholar] [CrossRef] [PubMed]
[15] Ibrahim, S.R.M., Mohamed, G.A., Khedr, A.I.M., et al. (2017) Anti-Oxidant and Anti-Inflammatory Cyclic Diarylheptanoids from Alnus japonica Stem Bark. Iranian Journal of Pharmaceutical Research, 16, 83-91.
[16] Ting, Y., Ko, H., Wang, H., Peng, C., Chang, H., Hsieh, P., et al. (2014) Biological Evaluation of Secondary Metabolites from the Roots of Myrica Adenophora. Phytochemistry, 103, 89-98. [Google Scholar] [CrossRef] [PubMed]
[17] Bhargava, S. and Rathore, D. (2017) Synthetic Routes and Biological Activities of Benzofuran and Its Derivatives: A Review. Letters in Organic Chemistry, 14, 381-402. [Google Scholar] [CrossRef
[18] Jiang, Z., Gao, W. and Huang, L. (2019) Tanshinones, Critical Pharmacological Components in Salvia Miltiorrhiza. Frontiers in Pharmacology, 10, Article 202. [Google Scholar] [CrossRef] [PubMed]
[19] Wang, Y., Liu, L., Qu, Z., Wang, D., Huang, W., Kong, L., et al. (2022) Tanshinone Ameliorates Glucocorticoid-Induced Bone Loss via Activation of AKT1 Signaling Pathway. Frontiers in Cell and Developmental Biology, 10, Article 878433. [Google Scholar] [CrossRef] [PubMed]
[20] Wang, J., Ma, R., Wang, Y., Zhang, S., Wang, J., Zheng, J., et al. (2023) rhMYDGF Alleviates I/R-Induced Kidney Injury by Inhibiting Inflammation and Apoptosis via the Akt Pathway. Transplantation, 107, 1729-1739. [Google Scholar] [CrossRef] [PubMed]
[21] Liu, Y., Gong, S., Li, K., Wu, G., Zheng, X., Zheng, J., et al. (2022) Coptisine Protects against Hyperuricemic Nephropathy through Alleviating Inflammation, Oxidative Stress and Mitochondrial Apoptosis via PI3K/Akt Signaling Pathway. Biomedicine & Pharmacotherapy, 156, Article ID: 113941. [Google Scholar] [CrossRef] [PubMed]
[22] Lin, H.Y., Chen, Y., Chen, Y., Ta, A.P., Lee, H., MacGregor, G.R., et al. (2021) Tubular Mitochondrial AKT1 Is Activated during Ischemia Reperfusion Injury and Has a Critical Role in Predisposition to Chronic Kidney Disease. Kidney International, 99, 870-884. [Google Scholar] [CrossRef] [PubMed]
[23] Kim, I.Y., Song, S.H., Seong, E.Y., Lee, D.W., Bae, S.S. and Lee, S.B. (2023) Akt1 Is Involved in Renal Fibrosis and Tubular Apoptosis in a Murine Model of Acute Kidney Injury-to-Chronic Kidney Disease Transition. Experimental Cell Research, 424, Article ID: 113509. [Google Scholar] [CrossRef] [PubMed]
[24] Liu, Y., Tavana, O. and Gu, W. (2019) P53 Modifications: Exquisite Decorations of the Powerful Guardian. Journal of Molecular Cell Biology, 11, 564-577. [Google Scholar] [CrossRef] [PubMed]
[25] Qi, R., Wang, J., Jiang, Y., Qiu, Y., Xu, M., Rong, R., et al. (2021) Snai1-Induced Partial Epithelial-Mesenchymal Transition Orchestrates p53-p21-Mediated G2/M Arrest in the Progression of Renal Fibrosis via NF-κB-Mediated Inflammation. Cell Death & Disease, 12, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
[26] Ye, Z., Xia, Y., Li, L., Li, B., Chen, L., Yu, W., et al. (2023) P53 Deacetylation Alleviates Calcium Oxalate Deposition-Induced Renal Fibrosis by Inhibiting Ferroptosis. Biomedicine & Pharmacotherapy, 164, Article ID: 114925. [Google Scholar] [CrossRef] [PubMed]
[27] Ying, Y., Kim, J., Westphal, S.N., Long, K.E. and Padanilam, B.J. (2014) Targeted Deletion of p53 in the Proximal Tubule Prevents Ischemic Renal Injury. Journal of the American Society of Nephrology, 25, 2707-2716. [Google Scholar] [CrossRef] [PubMed]
[28] Fu, S., Hu, X., Ma, Z., Wei, Q., Xiang, X., Li, S., et al. (2022) P53 in Proximal Tubules Mediates Chronic Kidney Problems after Cisplatin Treatment. Cells, 11, Article 712. [Google Scholar] [CrossRef] [PubMed]
[29] Liu, X., Liu, Z., Wang, C., Miao, J., Zhou, S., Ren, Q., et al. (2023) Kidney Tubular Epithelial Cells Control Interstitial Fibroblast Fate by Releasing TNFAIP8-Encapsulated Exosomes. Cell Death & Disease, 14, Article No. 672. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, Y., Zhang, H., Chen, Q., Jiao, F., Shi, C., Pei, M., et al. (2020) TNF‐α/HMGB1 Inflammation Signalling Pathway Regulates Pyroptosis during Liver Failure and Acute Kidney Injury. Cell Proliferation, 53, e12829. [Google Scholar] [CrossRef] [PubMed]
[31] Egli-Spichtig, D., Imenez Silva, P.H., Glaudemans, B., Gehring, N., Bettoni, C., Zhang, M.Y.H., et al. (2019) Tumor Necrosis Factor Stimulates Fibroblast Growth Factor 23 Levels in Chronic Kidney Disease and Non-Renal Inflammation. Kidney International, 96, 890-905. [Google Scholar] [CrossRef] [PubMed]
[32] Guo, X., Zhu, Y., Sun, Y. and Li, X. (2022) IL-6 Accelerates Renal Fibrosis after Acute Kidney Injury via DNMT1-Dependent FOXO3a Methylation and Activation of Wnt/β-Catenin Pathway. International Immunopharmacology, 109, Article ID: 108746. [Google Scholar] [CrossRef] [PubMed]
[33] Ridker, P.M. and Rane, M. (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research, 128, 1728-1746. [Google Scholar] [CrossRef] [PubMed]
[34] Ding, H., Jiang, M., Chan, A.M., Xia, Y., Ma, R.C.W., Yao, X., et al. (2024) Targeting the Tyrosine Kinase SRC in Endothelium Attenuates Inflammation and Atherogenesis Induced by Disturbed Flow. British Journal of Pharmacology, 182, 4861-4875. [Google Scholar] [CrossRef] [PubMed]
[35] Li, L., Guo, X., Shi, X., Li, C., Wu, W., Yan, C., et al. (2017) Ionic CD3-Lck Interaction Regulates the Initiation of T-Cell Receptor Signaling. Proceedings of the National Academy of Sciences of the United States of America, 114, E5891-E5899. [Google Scholar] [CrossRef] [PubMed]
[36] George, R.P., Mehta, A.K., Perez, S.D., Winterberg, P., Cheeseman, J., Johnson, B., et al. (2016) Premature T Cell Senescence in Pediatric CKD. Journal of the American Society of Nephrology, 28, 359-367. [Google Scholar] [CrossRef] [PubMed]
[37] Hartzell, S., Bin, S., Cantarelli, C., Haverly, M., Manrique, J., Angeletti, A., et al. (2020) Kidney Failure Associates with T Cell Exhaustion and Imbalanced Follicular Helper T Cells. Frontiers in Immunology, 11, Article 583702. [Google Scholar] [CrossRef] [PubMed]
[38] Tang, Y., He, H., Hu, P. and Xu, X. (2020) T Lymphocytes in IgA Nephropathy (Review). Experimental and Therapeutic Medicine, 20, 186-194. [Google Scholar] [CrossRef] [PubMed]
[39] Zhao, Q., Dai, H., Liu, X., Jiang, H., Liu, W., Feng, Z., et al. (2021) Helper T Cells in Idiopathic Membranous Nephropathy. Frontiers in Immunology, 12, Article 665629. [Google Scholar] [CrossRef] [PubMed]
[40] Masenga, S.K., Desta, S., Hatcher, M., Kirabo, A. and Lee, D.L. (2025) How PPAR-α Mediated Inflammation May Affect the Pathophysiology of Chronic Kidney Disease. Current Research in Physiology, 8, Article ID: 100133. [Google Scholar] [CrossRef] [PubMed]
[41] Cosimato, C., Agoritsas, T. and Mavrakanas, T.A. (2021) Mineralocorticoid Receptor Antagonists in Patients with Chronic Kidney Disease. Pharmacology & Therapeutics, 219, Article ID: 107701. [Google Scholar] [CrossRef] [PubMed]
[42] Cao, W., Yang, Z., Liu, X., Ren, S., Su, H., Yang, B., et al. (2023) A Kidney-Brain Neural Circuit Drives Progressive Kidney Damage and Heart Failure. Signal Transduction and Targeted Therapy, 8, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
[43] Pladevall-Vila, M., Ziemiecki, R., Johannes, C.B., Khan, A.M., Mines, D., Ebert, N., et al. (2025) Clinical Profile and Treatment Patterns in Individuals with Type 2 Diabetes and Chronic Kidney Disease Who Initiate a GLP-1 Receptor Agonist: A Multinational Cohort Study. Diabetes Therapy, 16, 931-954. [Google Scholar] [CrossRef] [PubMed]
[44] Liu, J., Miao, H., Deng, D., Vaziri, N.D., Li, P. and Zhao, Y. (2020) Gut Microbiota-Derived Tryptophan Metabolism Mediates Renal Fibrosis by Aryl Hydrocarbon Receptor Signaling Activation. Cellular and Molecular Life Sciences, 78, 909-922. [Google Scholar] [CrossRef] [PubMed]