[1]
|
Dwivedi, S. and Sikarwar, M.S. (2024) Diabetic Nephropathy: Pathogenesis, Mechanisms, and Therapeutic Strategies. Hormone and Metabolic Research, 57, 7-17. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Hou, G., Dong, Y., Jiang, Y., Zhao, W., Zhou, L., Cao, S., et al. (2025) Immune Inflammation and Metabolic Interactions in the Pathogenesis of Diabetic Nephropathy. Frontiers in Endocrinology, 16, Article 1602594. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Ma, L., Liu, D., Yu, Y., Li, Z. and Wang, Q. (2025) Immune-Mediated Renal Injury in Diabetic Kidney Disease: From Mechanisms to Therapy. Frontiers in Immunology, 16, Article 1587806. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Xiao, M., Pei, W., Li, S., Li, F., Xie, P., Luo, H., et al. (2024) Gypenoside L Inhibits Hepatocellular Carcinoma by Targeting the SREBP2-HMGCS1 Axis and Enhancing Immune Response. Bioorganic Chemistry, 150, Article ID: 107539. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Liu, H., Li, X., Xie, J., Lv, C., Lian, F., Zhang, S., et al. (2022) Gypenoside L and Gypenoside LI Inhibit Proliferation in Renal Cell Carcinoma via Regulation of the MAPK and Arachidonic Acid Metabolism Pathways. Frontiers in Pharmacology, 13, Article 820639. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Lee, Y.Z., Kow, A.S.F., Lee, Q.L., Lim, L.W.C., Yusof, R., Tham, C.L., et al. (2025) Antidiabetic Potentials of Gypenosides: A Review on the Preclinical Effects in Glucose and Insulin Modulation as Well as Diabetes-Related Complications. Naunyn-Schmiedeberg’s Archives of Pharmacology. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Zhang, P., Zhang, D., Zhou, W., Wang, L., Wang, B., Zhang, T., et al. (2023) Network Pharmacology: Towards the Artificial Intelligence-Based Precision Traditional Chinese Medicine. Briefings in Bioinformatics, 25, bbad518. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Pinzi, L. and Rastelli, G. (2019) Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20, Article 4331. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2024) PubChem 2025 update. Nucleic Acids Research, 53, D1516-D1525. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Daina, A., Michielin, O. and Zoete, V. (2019) Swisstargetprediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research, 47, W357-W364. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J. and Shoichet, B.K. (2007) Relating Protein Pharmacology by Ligand Chemistry. Nature Biotechnology, 25, 197-206. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Zhou, Y., Zhang, Y., Zhao, D., Yu, X., Shen, X., Zhou, Y., et al. (2023) TTD: Therapeutic Target Database Describing Target Druggability Information. Nucleic Acids Research, 52, D1465-D1477. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
UniProt Consortium (2025) UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Research, 53, D609-D617.
|
[14]
|
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., et al. (2023) SRplot: A Free Online Platform for Data Visualization and Graphing. PLOS ONE, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2022) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Sherman, B.T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H.C., et al. (2022) DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Research, 50, W216-W221. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Burley, S.K., Bhikadiya, C., Bi, C., et al. (2023) RCSB Protein Data Bank (RCSB.org): Delivery of Experimentally-Determined PDB Structures Alongside One Million Computed Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids Research, 51, D488-D508.
|
[19]
|
Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. and Cao, Y. (2022) CB-Dock2: Improved Protein-Ligand Blind Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting. Nucleic Acids Research, 50, W159-W164. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Hsin, K., Ghosh, S. and Kitano, H. (2013) Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLOS ONE, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Zhao, Y., Jiang, Y., Wang, F., Sun, L., Ding, M., Zhang, L., et al. (2024) High Glucose Promotes Macrophage Switching to the M1 Phenotype via the Downregulation of STAT-3 Mediated Autophagy. PLOS ONE, 19, e0314974. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Li, K. and Li, Q. (2021) LINC00323 Mediates the Role of M1 Macrophage Polarization in Diabetic Nephropathy through PI3K/AKT Signaling Pathway. Human Immunology, 82, 960-967. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021, Article ID: 1497449. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Pérez-Morales, R.E., del Pino, M.D., Valdivielso, J.M., Ortiz, A., Mora-Fernández, C. and Navarro-González, J.F. (2018) Inflammation in Diabetic Kidney Disease. Nephron, 143, 12-16. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Sanajou, D., Ghorbani Haghjo, A., Argani, H. and Aslani, S. (2018) AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. European Journal of Pharmacology, 833, 158-164. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Guan, Y., Davis, L., Breyer, M.D. and Hao, C. (2022) Cyclooxygenase-2 Contributes to Diabetic Nephropathy through Glomerular EP4 Receptor. Prostaglandins & Other Lipid Mediators, 159, Article ID: 106621. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Song, Y., Wang, X., Qin, S., Zhou, S., Li, J. and Gao, Y. (2018) Esculin Ameliorates Cognitive Impairment in Experimental Diabetic Nephropathy and Induces Anti-Oxidative Stress and Anti-Inflammatory Effects via the MAPK Pathway. Molecular Medicine Reports, 17, 7395-7402. [Google Scholar] [CrossRef] [PubMed]
|