基于网络药理学和分子对接研究绞股蓝皂苷L通过巨噬细胞极化治疗糖尿病肾病的机制
Investigating the Mechanism of Gypenoside L against Diabetic Nephropathy via Macrophage Polarization Using Network Pharmacology and Molecular Docking
DOI: 10.12677/tcm.2025.1410602, PDF, HTML, XML,    科研立项经费支持
作者: 袁 晓, 张 弘:浙江中医药大学附属第一医院,浙江 杭州;庄雯怡:浙江中医药大学基础医学院,浙江 杭州;朱飞叶*:浙江中医药大学中医药科学院,浙江 杭州
关键词: 绞股蓝皂苷L糖尿病肾病网络药理学分子对接巨噬细胞极化Gypenoside L Diabetic Nephropathy Network Pharmacology Molecular Docking Macrophage Polarization
摘要: 目的:基于网络药理学与分子对接技术,探讨绞股蓝皂苷L (Gypenoside L, GP-L)通过调控巨噬细胞极化治疗糖尿病肾病(Diabetic Nephropathy, DN)的潜在分子机制。方法:通过PubChem数据库获取GP-L的分子结构,利用SwissTargetPrediction、SEA和TTD数据库预测其作用靶点。从GeneCards和TTD数据库筛选DN及巨噬细胞极化相关靶点。取三者交集获得共同作用靶点,借助STRING数据库和Cytoscape软件构建蛋白质–蛋白质相互作用(PPI)网络并筛选核心靶点。通过DAVID数据库进行基因本体(GO)功能富集和京都基因与基因组百科全书(KEGG)通路分析。最后,采用分子对接技术验证GP-L与核心靶点之间的结合能力。结果:共筛选出31个GP-L作用于DN及巨噬细胞极化的共同靶点。PPI网络拓扑分析确定STAT3、AKT1、IL2、PTGS2、JUN等为关键核心靶点。GO与KEGG富集分析表明,这些靶点显著富集于炎症反应、细胞趋化性、PI3K-Akt信号通路、趋化因子信号通路、AGE-RAGE信号通路等生物过程与通路。分子对接结果显示,GP-L与STAT3、AKT1等大多数核心靶点具有强烈的结合活性。结论:本研究揭示了GP-L可能通过多靶点、多通路调控巨噬细胞极化,从而抑制炎症反应、改善肾脏损伤,为阐明其治疗糖尿病肾病的分子机制提供了理论依据。
Abstract: Objective: To investigate the potential molecular mechanism of Gypenoside L (GP-L) in treating diabetic nephropathy (DN) by regulating macrophage polarization based on network pharmacology and molecular docking technology. Methods: The molecular structure of GP-L was obtained from the PubChem database, and its potential targets were predicted using the SwissTargetPrediction, SEA, and TTD databases. Disease targets related to DN and macrophage polarization were screened from the GeneCards and TTD databases. The common targets among GP-L, DN, and macrophage polarization were identified and used to construct a protein-protein interaction (PPI) network via the STRING database and Cytoscape software, from which core targets were screened. Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the DAVID database. Finally, molecular docking was employed to validate the binding affinity between GP-L and the core targets. Results: A total of 31 common targets of GP-L, DN, and macrophage polarization were identified. Topological analysis of the PPI network determined STAT3, AKT1, IL2, PTGS2, and JUN as key core targets. GO and KEGG enrichment analyses indicated that these targets were significantly involved in biological processes and pathways such as inflammatory response, cell chemotaxis, PI3K-Akt signaling pathway, chemokine signaling pathway, and AGE-RAGE signaling pathway. Molecular docking results demonstrated that GP-L had strong binding activity with most core targets, including STAT3 and AKT1. Conclusion: This study reveals that GP-L may regulate macrophage polarization through multiple targets and pathways, thereby inhibiting inflammatory response and improving renal injury. The findings provide a theoretical basis for elucidating the molecular mechanism of GP-L in treating DN.
文章引用:袁晓, 庄雯怡, 张弘, 朱飞叶. 基于网络药理学和分子对接研究绞股蓝皂苷L通过巨噬细胞极化治疗糖尿病肾病的机制[J]. 中医学, 2025, 14(10): 4146-4155. https://doi.org/10.12677/tcm.2025.1410602

1. 引言

糖尿病肾病(diabetic nephropathy, DN)是糖尿病最严重的微血管并发症之一,也是导致终末期肾病的主要原因[1]。目前,DN的发病机制尚未完全阐明,但慢性炎症和免疫失调在其进展中扮演关键角色[2]。巨噬细胞极化(M1/M2表型转换)是调控肾脏炎症反应和纤维化进程的核心环节,其中M1型巨噬细胞促进炎症损伤,而M2型巨噬细胞则参与组织修复[3]。因此,靶向巨噬细胞极化可能成为DN治疗的新策略。

绞股蓝皂苷L (Gypenoside L, GP-L)是从传统中药绞股蓝中提取的重要活性成分,具有抗炎、抗氧化和免疫调节等药理作用[4] [5]。前期研究表明,绞股蓝总皂苷可改善糖尿病模型中的肾脏损伤[6],但其提取物GP-L的具体作用机制,尤其是对巨噬细胞极化的调控作用,仍缺乏系统性研究。网络药理学作为一种整合多学科的研究方法,能够系统分析药物成分–靶点–通路的复杂网络关系,为揭示中药多成分、多靶点的作用机制提供有力工具[7]。分子对接技术则可进一步验证活性成分与关键靶点的结合能力,为机制研究提供分子层面的证据[8]

本研究拟结合网络药理学和分子对接技术,系统探索GP-L通过调控巨噬细胞极化改善DN的作用机制,旨在为DN的药物治疗提供新的理论依据。

2. 材料与方法

2.1. GP-L的靶点预测

从PubChem数据库(https://pubchem.ncbi.nlm.nih.gov/) [9]中获取GP-L的标准化SMILES分子式。将该分子结构信息分别输入以下三个在线预测平台:(1) SwissTargetPrediction (http://swissTargetPrediction.ch/),(2) SEA (https://sea.bkslab.org/),及(3) TTD (http://db.idrblab.net/ttd/),用于系统预测其潜在作用靶点[10]-[12]。所有预测结果经整合后,通过UniProt数据库(https://www.uniprot.org/)进行标准化基因命名转换[13],确保靶点命名的统一性和准确性。

2.2. DN和巨噬细胞极化相关靶点筛选

在GeneCards数据库(https://www.genecards.org/)和TTD数据库中[14],以“diabetic nephropathy”作为检索词进行系统查询DN的治疗靶点。随后,将两个数据库的检索结果进行合并,去除重复靶点,最终获得与DN发病机制相关的潜在作用靶点集合。在GeneCards数据库中输入“macrophage polarization”,检索巨噬细胞极化相关靶点。

2.3. 蛋白质–蛋白质相互作用(Protein-Protein Interaction, PPI)网络构建与关键靶点筛选

通过微生信在线分析平台(https://www.bioinformatics.com)的Venn分析工具[15],将GP-L预测靶点与DN及巨噬细胞极化相关靶点数据集进行系统比对,获得三者的交集靶点,这些靶点代表GP-L可能通过调控巨噬细胞极化改善DN的关键作用靶点。将前期获得的候选靶点集导入STRING数据库(https://string-db.org/),设置物种参数为“Homo sapiens”,相互作用置信度阈值设为0.40,保留其他默认参数进行网络构建[16]。利用Cytoscape 3.8.2生物网络分析软件对互作数据进行可视化处理,并运用其cytoHubba功能模块进行网络拓扑学分析,基于节点中心性算法识别网络中起关键调控作用的核心靶点。

2.4. 基因功能注释与通路富集分析

采用DAVID数据库(https://https://davidbioinformatics.nih.gov/)进行基因本体论(GO)功能富集分析及京都基因与基因组百科全书(KEGG)通路分析[17]。首先将筛选获得的潜在作用靶点数据集导入分析系统,物种限定为Homo Sapiens。基于统计学显著性阈值P < 0.05,筛选获得显著富集的GO功能注释条目,包括生物过程(BP)、分子功能(MF)和细胞组分(CC)分析,同时识别可能参与调控的KEGG信号通路,从而系统揭示GP-L治疗糖尿病肾病的潜在分子机制。

2.5. 分子对接

从PubChem化学信息平台获取GP-L的标准SDF结构文件。通过RCSB Protein Data Bank (https://www.rcsb.org/)下载筛选获得的10个关键靶点的三维晶体结构(PDB格式文件) [18]。运用CB-DOCK2在线对接平台(https://cadd.labshare.cn/cb-dock2/php/index.php)完成分子对接模拟,分析GP-L与核心靶点的结合特性[19]

3. 结果

3.1. GP-L治疗DN与巨噬细胞极化相关靶点的筛选

从PubChem数据库获取GP-L的SMILES分子式,并将其输入SwissTargetPrediction、SEA和TTD数据库,获取GP-L的作用靶点,去重后,共获得143个靶点。在GeneCards数据库和TTD数据库中输入“diabetic nephropathy”,去重后共获得DN的治疗靶点1844个。在GeneCards数据库中输入“Macrophage polarization”,获得822个巨噬细胞极化相关的靶点。将GP-L靶点、DN相关靶点和巨噬细胞极化靶点进行交集,绘制成韦恩图,共获得31个共同靶点(图1表1)。

Figure 1. Venn diagram

1. 韦恩图

Table 1. Targets related to macrophage polarization in GP-L treatment of DN

1. GP-L治疗DN的与巨噬细胞极化相关的靶点

NO.

Target

NO.

Target

1

IL2

17

FLT3

2

VEGFA

18

ITGB1

3

FGF2

19

SERPINE1

4

STAT3

20

AKT1

5

HSP90AA1

21

PTGS2

6

LGALS3

22

KDR

7

NR3C1

23

PRKCD

8

MMP2

24

TF

9

MMP3

25

CCR5

10

MMP12

26

PARP1

11

TLR9

27

CCR1

12

VDR

28

CCR2

13

JUN

29

CCL5

14

CASP1

30

CCL20

15

FLT1

31

CCL11

16

KIT

3.2. 构建交集靶点的PPI网络

将上述交集靶点输入STRING数据库,进行可视化并构建PPI网络,经拓扑分析发现网络包含30个节点和231条边(图2)。采用cytoHubba软件获得核心靶点,按照degree值排名前十的靶点分别是STAT3、AKT1、IL2、PTGS2、JUN、CCL5、FGF2、CCR2、MMP2和KDR (表2图3)。

Figure 2. PPI diagram

2. PPI图

Figure 3. 10 core targets

3. 10个核心靶点

Table 2. Top 10 core targets ranked by Degree value

2. Degree值排名前10的核心靶点

Target

Score

STAT3

26

AKT1

24

IL2

23

PTGS2

23

JUN

22

CCL5

22

FGF2

21

CCR2

20

MMP2

18

KDR

18

3.3. GO功能富集分析和KEGG通路富集分析

GO功能富集分析共筛选得到233个条目,其中BP 160个,CC 20个,MF 53个。BP包括对细胞迁移的正调控、炎症反应、细胞趋化性、正调控血管生成、磷脂酰肌醇3-激酶/蛋白激酶B信号转导的正向调控等;CC包括胞外区域、细胞外空间、受体复合物、质膜外侧和质膜等;MF包括相同蛋白质结合、蛋白质同源二聚体、跨膜受体蛋白酪氨酸激酶活性、生长因子结合、和组蛋白H3Y41激酶活性等。每一个功能的前10个条目见图4。KEGG分析发现GP-L治疗DN涉及的通路有53条,包括趋化因子信号通路、AGE-RAGE信号通路、PI3K-Akt信号通路、IL-17信号通路、HIF-1信号通路、TNF信号通路、MAPK信号通路等(图5)。

3.4. GP-L与关键靶点的分子对接

将上述10个核心靶点与GP-L分子对接,结果表明GP-L与STAT3、AKT1、IL2、PTGS2、JUN、CCL5、CCR2、MMP2和KDR的结合能小于−7.0 kcal/mol,结合活性强烈。GP-L与FGF2的结合能小于−5.0 kcal/mol,具有较好的结合潜力[20]。具体的结合功能见表3,最优对接模式图见图6。由此可见,这10个蛋白可能是GP-L通过巨噬细胞极化治疗DN的重要靶点。

Figure 4. GO functional enrichment

4. GO功能富集

Figure 5. Enrichment analysis of KEGG signaling pathways

5. KEGG信号通路富集分析

Table 3. Molecular docking of GP-L with 10 key targets

3. GP-L与10个关键靶点的分子对接

Target

Center (x, y, z)

Docking size (x, y, z)

Vina score (kcal/mol)

STAT3 (6njs)

2, 26, 29

29, 29, 29

−7.9

AKT1 (2uzr)

11, −7, 15

29, 29, 29

−7.0

IL2 (3qb1)

31, 19, 41

29, 29, 29

−9.1

PTGS2 (5f19)

31, 42, 38

29, 29, 29

−9.5

JUN (4y46)

11, −16, −31

29, 35, 29

−25.2

CCL5 (5coy)

0, 25, −9

29, 29, 29

−7.5

FGF2 (8hu7)

18, −16, 17

29, 29, 29

−6.7

CCR2 (5t1a)

6, 21, 155

29, 29, 29

−9.5

MMP2 (7xjo)

59, −48, 26

29, 29, 29

−8.6

KDR (5ew3)

20, 7, 14

29, 29, 29

−8.7

Figure 6. Diagram of optimal docking of GP-L with core targets

6. GP-L与核心靶点最优对接示意图

4. 讨论

DN作为一种复杂的微血管并发症,其治疗策略的探索始终是研究热点。本研究基于网络药理学与分子对接方法,系统揭示了GP-L可能通过调控巨噬细胞极化过程干预DN的多靶点、多通路作用机制。

研究结果表明,GP-L作用于STAT3、AKT1、IL2、PTGS2、JUN等核心靶点,其中STAT3和AKT1在PPI网络中处于核心地位。已有研究证实,STAT3是巨噬细胞极化的关键调控因子,其激活可直接启动促炎基因IL-6、TNF-α等的转录,推动M1型极化并加剧肾脏炎症[21];而AKT1作为PI3K-Akt信号通路的核心蛋白,不仅参与糖脂代谢调控,还能通过影响NF-κB等转录因子调节M2型极化[22]。GP-L与这两个靶点表现出较强的结合活性(结合能均低于−7.0 kcal/mol),提示其可能通过直接调控STAT3和AKT1,进而影响下游炎症因子的表达和巨噬细胞表型转换。

GO分析发现,筛选出的31个共同靶点显著富集于炎症反应、细胞迁移、血管生成及PI3K-Akt信号调控等生物过程,这与DN中免疫细胞浸润、微血管异常及组织纤维化的病理特征高度吻合[23]

KEGG通路分析揭示GP-L可能通过多重信号通路协同发挥治疗作用。其中,趋化因子信号通路(如CCL5、CCR2)和IL-17信号通路是炎症细胞招募与活化的重要途径[24],AGE-RAGE通路则与高糖环境下氧化应激和晚期糖基化终末产物积累密切相关[25]。GP-L对这些通路的调控可能减少M1型巨噬细胞的聚集与活化,同时促进M2型巨噬细胞介导的组织修复与抗炎反应。此外,PI3K-Akt通路作为连接代谢与免疫调节的枢纽,其被富集进一步支持了GP-L在改善胰岛素抵抗及免疫微环境中的潜在价值[2]

分子对接结果从结构层面验证了GP-L与核心靶点之间的良好结合能力。除FGF2外,其余9个靶点与GP-L的结合能均低于−7 kcal/mol,表明其具有较高的靶向亲和力和调控潜力。尤其与PTGS2和JUN的强结合提示GP-L可能在抑制前列腺素合成和氧化应激反应中发挥直接作用,这两者在DN炎症模型中均被证实具有促炎和促纤维化功能[26] [27]

本研究仍存在一定局限性。首先,所有结论均基于生物信息学预测,存在潜在的偏倚性。其次,STAT3、AKT1等核心靶点在巨噬细胞极化中的作用受细胞微环境、时空表达等的影响,而当前的分子模拟分析难以完全阐明其复杂性。最后,目前的结论尚未通过体内外实验进行验证。后续研究需利用DN模型,进一步明确GP-L对巨噬细胞极化表型及肾功能指标的影响,并在基因或蛋白水平验证上述靶点与通路的调控关系。

综上所述,本研究初步阐明GP-L可能通过多靶点、多通路调控巨噬细胞极化过程,从而减轻DN中的炎症反应与组织损伤。这一发现不仅为GP-L的临床应用提供了理论依据,也为开发以免疫微环境调控为方向的DN治疗策略提供了新思路。

基金项目

浙江省卫生健康科技计划项目(No. 2022KY923);浙江省中青年临床名中医培养项目(No. 浙中医药[2021] 22号)。

NOTES

*通讯作者。

参考文献

[1] Dwivedi, S. and Sikarwar, M.S. (2024) Diabetic Nephropathy: Pathogenesis, Mechanisms, and Therapeutic Strategies. Hormone and Metabolic Research, 57, 7-17. [Google Scholar] [CrossRef] [PubMed]
[2] Hou, G., Dong, Y., Jiang, Y., Zhao, W., Zhou, L., Cao, S., et al. (2025) Immune Inflammation and Metabolic Interactions in the Pathogenesis of Diabetic Nephropathy. Frontiers in Endocrinology, 16, Article 1602594. [Google Scholar] [CrossRef] [PubMed]
[3] Ma, L., Liu, D., Yu, Y., Li, Z. and Wang, Q. (2025) Immune-Mediated Renal Injury in Diabetic Kidney Disease: From Mechanisms to Therapy. Frontiers in Immunology, 16, Article 1587806. [Google Scholar] [CrossRef] [PubMed]
[4] Xiao, M., Pei, W., Li, S., Li, F., Xie, P., Luo, H., et al. (2024) Gypenoside L Inhibits Hepatocellular Carcinoma by Targeting the SREBP2-HMGCS1 Axis and Enhancing Immune Response. Bioorganic Chemistry, 150, Article ID: 107539. [Google Scholar] [CrossRef] [PubMed]
[5] Liu, H., Li, X., Xie, J., Lv, C., Lian, F., Zhang, S., et al. (2022) Gypenoside L and Gypenoside LI Inhibit Proliferation in Renal Cell Carcinoma via Regulation of the MAPK and Arachidonic Acid Metabolism Pathways. Frontiers in Pharmacology, 13, Article 820639. [Google Scholar] [CrossRef] [PubMed]
[6] Lee, Y.Z., Kow, A.S.F., Lee, Q.L., Lim, L.W.C., Yusof, R., Tham, C.L., et al. (2025) Antidiabetic Potentials of Gypenosides: A Review on the Preclinical Effects in Glucose and Insulin Modulation as Well as Diabetes-Related Complications. Naunyn-Schmiedebergs Archives of Pharmacology. [Google Scholar] [CrossRef] [PubMed]
[7] Zhang, P., Zhang, D., Zhou, W., Wang, L., Wang, B., Zhang, T., et al. (2023) Network Pharmacology: Towards the Artificial Intelligence-Based Precision Traditional Chinese Medicine. Briefings in Bioinformatics, 25, bbad518. [Google Scholar] [CrossRef] [PubMed]
[8] Pinzi, L. and Rastelli, G. (2019) Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20, Article 4331. [Google Scholar] [CrossRef] [PubMed]
[9] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., et al. (2024) PubChem 2025 update. Nucleic Acids Research, 53, D1516-D1525. [Google Scholar] [CrossRef] [PubMed]
[10] Daina, A., Michielin, O. and Zoete, V. (2019) Swisstargetprediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules. Nucleic Acids Research, 47, W357-W364. [Google Scholar] [CrossRef] [PubMed]
[11] Keiser, M.J., Roth, B.L., Armbruster, B.N., Ernsberger, P., Irwin, J.J. and Shoichet, B.K. (2007) Relating Protein Pharmacology by Ligand Chemistry. Nature Biotechnology, 25, 197-206. [Google Scholar] [CrossRef] [PubMed]
[12] Zhou, Y., Zhang, Y., Zhao, D., Yu, X., Shen, X., Zhou, Y., et al. (2023) TTD: Therapeutic Target Database Describing Target Druggability Information. Nucleic Acids Research, 52, D1465-D1477. [Google Scholar] [CrossRef] [PubMed]
[13] UniProt Consortium (2025) UniProt: The Universal Protein Knowledgebase in 2025. Nucleic Acids Research, 53, D609-D617.
[14] Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., et al. (2016) The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics, 54, 1.30.1-1.30.33. [Google Scholar] [CrossRef] [PubMed]
[15] Tang, D., Chen, M., Huang, X., Zhang, G., Zeng, L., Zhang, G., et al. (2023) SRplot: A Free Online Platform for Data Visualization and Graphing. PLOS ONE, 18, e0294236. [Google Scholar] [CrossRef] [PubMed]
[16] Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2022) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646. [Google Scholar] [CrossRef] [PubMed]
[17] Sherman, B.T., Hao, M., Qiu, J., Jiao, X., Baseler, M.W., Lane, H.C., et al. (2022) DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Research, 50, W216-W221. [Google Scholar] [CrossRef] [PubMed]
[18] Burley, S.K., Bhikadiya, C., Bi, C., et al. (2023) RCSB Protein Data Bank (RCSB.org): Delivery of Experimentally-Determined PDB Structures Alongside One Million Computed Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids Research, 51, D488-D508.
[19] Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. and Cao, Y. (2022) CB-Dock2: Improved Protein-Ligand Blind Docking by Integrating Cavity Detection, Docking and Homologous Template Fitting. Nucleic Acids Research, 50, W159-W164. [Google Scholar] [CrossRef] [PubMed]
[20] Hsin, K., Ghosh, S. and Kitano, H. (2013) Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLOS ONE, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
[21] Zhao, Y., Jiang, Y., Wang, F., Sun, L., Ding, M., Zhang, L., et al. (2024) High Glucose Promotes Macrophage Switching to the M1 Phenotype via the Downregulation of STAT-3 Mediated Autophagy. PLOS ONE, 19, e0314974. [Google Scholar] [CrossRef] [PubMed]
[22] Li, K. and Li, Q. (2021) LINC00323 Mediates the Role of M1 Macrophage Polarization in Diabetic Nephropathy through PI3K/AKT Signaling Pathway. Human Immunology, 82, 960-967. [Google Scholar] [CrossRef] [PubMed]
[23] Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021, Article ID: 1497449. [Google Scholar] [CrossRef] [PubMed]
[24] Pérez-Morales, R.E., del Pino, M.D., Valdivielso, J.M., Ortiz, A., Mora-Fernández, C. and Navarro-González, J.F. (2018) Inflammation in Diabetic Kidney Disease. Nephron, 143, 12-16. [Google Scholar] [CrossRef] [PubMed]
[25] Sanajou, D., Ghorbani Haghjo, A., Argani, H. and Aslani, S. (2018) AGE-RAGE Axis Blockade in Diabetic Nephropathy: Current Status and Future Directions. European Journal of Pharmacology, 833, 158-164. [Google Scholar] [CrossRef] [PubMed]
[26] Guan, Y., Davis, L., Breyer, M.D. and Hao, C. (2022) Cyclooxygenase-2 Contributes to Diabetic Nephropathy through Glomerular EP4 Receptor. Prostaglandins & Other Lipid Mediators, 159, Article ID: 106621. [Google Scholar] [CrossRef] [PubMed]
[27] Song, Y., Wang, X., Qin, S., Zhou, S., Li, J. and Gao, Y. (2018) Esculin Ameliorates Cognitive Impairment in Experimental Diabetic Nephropathy and Induces Anti-Oxidative Stress and Anti-Inflammatory Effects via the MAPK Pathway. Molecular Medicine Reports, 17, 7395-7402. [Google Scholar] [CrossRef] [PubMed]