草绿色链球菌相关感染性心内膜炎的临床研究
Clinical Research on Streptococcus viridans-Related Infective Endocarditis
DOI: 10.12677/acm.2025.15102907, PDF, HTML, XML,    科研立项经费支持
作者: 范文杰:绍兴文理学院医学院,浙江 绍兴;李明晖*:绍兴文理学院附属第一医院(绍兴市人民医院)感染科,浙江 绍兴
关键词: 草绿色链球菌感染性心内膜炎抗生素诊断Streptococcus viridans Infective Endocarditis Antibiotics Diagnosis
摘要: 草绿色链球菌属于机会致病菌,通常情况下是人体口腔、上呼吸道和胃肠道的常驻菌群。然而,当黏膜屏障损伤、免疫功能缺陷或行侵入性操作时,该菌群可能会转变为致病菌,引发感染性心内膜炎这一严重疾病。本文旨在对草绿色链球菌病原学、导致感染性心内膜炎的发病机制及疾病的临床表现、诊断、治疗、预防进行分析,为后续转化研究提供新的理论指导,以提升临床认知,优化诊疗策略。
Abstract: Streptococcus viridans group (SVG) are opportunistic pathogens that normally reside as commensal flora in the human oral cavity, upper respiratory tract, and gastrointestinal tract. However, when the mucosal barrier is disrupted, immune function is compromised, or invasive procedures are performed, these bacteria can become pathogenic and cause serious diseases such as infective endocarditis. This article aims to analyze the pathogen characteristics of SVG, the pathogenesis of infective endocarditis, as well as the clinical manifestations, diagnosis, treatment, and prevention of the disease, in order to provide new theoretical guidance for future translational research, enhance clinical understanding, and optimize diagnostic and therapeutic strategies.
文章引用:范文杰, 李明晖. 草绿色链球菌相关感染性心内膜炎的临床研究[J]. 临床医学进展, 2025, 15(10): 1452-1458. https://doi.org/10.12677/acm.2025.15102907

1. 引言

草绿色链球菌群(Streptococcus viridans Group, SVG)属于链球菌属,为革兰阳性α-溶血兼性厌氧球菌,通常作为口腔、上呼吸道和胃肠道的常驻菌群与宿主共生[1]。但在黏膜屏障因拔牙、导管置入或其他侵入性操作受损时,细菌可进入血液引发菌血症。正常情况下,宿主的免疫系统可迅速清除细菌,但在心脏结构异常、慢性肝肾疾病、恶性肿瘤或免疫抑制个体中,持续感染的风险显著增加[2]。SVG感染类型包括口腔或呼吸道局部炎症、菌血症、化脓性脑膜炎、肺炎、腹膜炎、泌尿生殖系统感染及感染性心内膜炎(Infective Endocarditis, IE)等,其中IE是最为严重的感染之一[3]

IE是由SVG等病原微生物引起的心内膜感染,常累及自体或人工心脏瓣膜,甚至深部心肌组织[4]。值得注意的是,由于心脏结构异常(如先天性心脏病、风湿性心脏瓣膜病、人工瓣膜置换术后等)为SVG定植提供了关键病理基础,使得病原体更容易在受损瓣膜内皮表面黏附聚集,促使IE的发生。因此,在具有此类高风险因素的人群中SVG感染比例通常较高[5]。本文就SVG相关IE的发病机制、临床表现、治疗、诊断、预防等方面进行综述。

2. 发病机制及临床表现

SVG感染多表现为亚急性病程,进展相对缓慢。SVG进入血液循环后,借助其表面的FimA蛋白、纤维素结合蛋白等结构黏附于受损心内膜或心脏瓣膜,通过与细胞外基质蛋白和纤维素结合促进定植。随后,SVG通过分泌胞外多糖和蛋白质形成生物膜,增强其在瓣膜等表面的附着能力。生物膜在瓣膜损伤和功能障碍中起关键作用,可帮助病原菌抵抗宿主免疫及抗生素的作用[6]。研究显示,生物膜中完成定植后的细菌可通过分泌外源性酶和毒素破坏心脏瓣膜的细胞外基质,导致瓣膜机械强度下降和退行性变[7]

IE的发生不仅涉及生物膜的形成,还与宿主的自身免疫反应密切相关。SVG定植并形成生物膜后可激活宿主免疫系统,试图清除这些外来病原体,但往往会引发过度免疫反应,导致瓣膜损伤和炎症等病理变化[8]。同时,血液中的纤维蛋白和血小板等成分可以在损伤的内皮沉积,形成赘生物。赘生物增大后可影响瓣膜功能,引起瓣膜的关闭不全或狭窄,甚至脱落导致其他部位的栓塞或感染,严重影响患者预后[9] [10]

临床表现方面,患者通常可出现发热、乏力、贫血、心脏杂音改变、脾大和皮肤出血点等。重症者因瓣膜功能不全可表现夜间阵发性呼吸困难、端坐呼吸、发绀等心力衰竭症状。发热是IE的常见初发症状,几乎所有患者早期均有不同程度发热[11]。IE的临床表现多样且缺乏特异性,许多患者仅表现出非特异性症状或体征,常无典型心脏杂音、脾大或皮肤出血点,易导致诊断延误[12]。此外,在临床上还发现了IE的一些特征性皮肤表现如Janeway病变、Osler结节和结膜出血等,也有助于早期诊断[13]。栓塞是IE的另一严重并发症,约30.2%的患者在治疗期间发生了血栓栓塞事件,可能引起中风、肢体缺血、肾脏损害等后果,不仅影响生存率和预后,还可能造成长期功能障碍,增加医疗负担[14]

3. 实验室检查方法

3.1. 微生物学检查

对疑似SVG感染患者,血培养是确诊的“金标准”[15]。为提高检出率,通常建议在患者发热初期或寒战前等不同时间点采集血液标本,且至少完成两到三次培养,每次间隔约1小时。然而,血培养的结果易受多种因素影响,如采血时机、采血量和患者是否已接受抗生素治疗等。研究显示,临床上约30%~50%的IE病例血培养呈阴性,其中抗生素的早期应用是重要原因之一。因此,尽管血培养具有重要的诊断价值,但其作为“金标准”的可靠性正受到质疑,单一依赖该检查可能存在延误诊断的风险[16]

近年来,基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)技术因其高效、准确和经济的属性,成为细菌鉴定的新兴工具。研究显示,MALDI-TOF对SVG亚种的鉴定准确率可达96.2% [17]。该技术通过将细菌蛋白质分子离子化。随后,这些离子在真空中被加速,按质量电荷比(m/z)分离并生成特征性质谱图。通过将生成的结果与数据库比对可实现快速且准确的菌种鉴定[18] [19]

分子生物学检测如16S rRNA基因PCR技术也是检测SVG感染的重要手段,尤其适用于血培养阴性病例。该技术通过扩增病原体特定16S rRNA序列可提供准确的遗传信息。研究报道,16S rDNA PCR在心脏瓣膜样本中的检出率为88.2%,显著高于传统培养的32.6%。对于因早期使用抗生素导致血培养阴性的病例,分子检测仍可实现61.1%的病原体识别率[20]

3.2. 影像学检查

超声心动图是诊断IE的首选影像学方法,可准确识别心脏结构异常、瓣膜病变及血流动力学变化。经胸超声心动图(Transthoracic Echocardiography, TTE)操作无创、简便,但对赘生物的检出敏感性不高,约为50%~75%,尤其在人工瓣膜术后、肥胖或合并肺气肿的患者中图像质量常受限。因此,若临床高度怀疑IE而TTE结果呈阴性或无法明确诊断时,推荐进一步行经食道超声心动图(Transesophageal Echocardiography, TEE)检查。TEE可更贴近心脏瓣膜观察,敏感性提高至90%以上。不过,超声检查仍存在一定局限,如对微小赘生物或既往有瓣膜钙化、增厚的患者,仍有漏诊可能。对于基础影像诊断仍不明确的病例,正电子发射断层扫描(Positron Emission Tomography, PET)凭借其高敏感性可进一步识别心脏内活跃感染灶,提供炎症活动度的信息。这些影像技术共同为IE的诊断及临床管理提供了全面的保障[21] [22]

4. 治疗

4.1. 抗生素治疗

在SVG感染的治疗中,抗生素的选择应该以病原体为主体,血培养和抗生素敏感性为导向。因此在给予抗生素之前,必须要对患者进行至少两次血培养加药敏试验,从而有针对性的运用相对敏感的抗生素进行治疗[23]。常用的抗生素方案包括青霉素、头孢曲松、万古霉素以及复合抗生素。青霉素被认为是治疗SVG感染的首选药物,通常用于轻至中度感染的患者,且大多数情况下青霉素对没有显著耐药性的SVG表现出良好的敏感性[24]。然而,随着抗生素的滥用,耐药性问题逐渐凸显,尤其是β-内酰胺类抗生素。在针对2019年中国南部50所教学医院的血液样本的数据研究中,SVG对青霉素的耐药率达到了6.9%,而对头孢类抗生素的耐药率则超25% [25]。尽管如此,SVG对万古霉素和利奈唑胺的敏感性极高,几乎接近100%,使其成为耐药菌株可靠的替代治疗方案。喹诺酮类、四环素类抗生素也显示出对SVG良好的抗菌活性,但也需警惕部分菌株的耐药性问题。对于耐药菌株或严重感染,可考虑采用联合治疗方案,例如青霉素与氨基糖苷类、头孢菌素与万古霉素或达托霉素等,从而在加强杀菌作用的同时降低耐药风险[26]。需要注意的是,由于联合使用抗生素可能会增加对肝肾功能的影响,联合方案通常仅适用于特定高危患者(如合并多种并发症、存在瓣周脓肿等)。而对于大多数自体瓣膜感染性心内膜炎、且对青霉素敏感的患者,是否所有病例都有必要承担额外的毒性风险进行联合治疗,目前仍存在争议[27]

针对IE自体瓣膜的病人治疗疗程通常为4周,因链球菌生物膜上持续繁殖能力有限,人工瓣膜患者的治疗方案与自体瓣膜患者相似,只是抗菌治疗的总时长必须延长至6周[23]。IE一般在治疗1周后开始出现体温的下降,若体温长期不退,则应考虑是否替换治疗方案。需要注意的是,药物热、吸收热、血管栓塞、其它并发的感染等也会导致体温的上升,应当予以鉴别[28]

4.2. 手术治疗

在某些情况下,如持续性菌血症、瓣膜功能受损(如重度狭窄或关闭不全)、心脏衰竭、以及赘生物体积过大时等,需考虑手术治疗[29]。手术类型主要包括瓣膜置换术和心脏瓣膜修复术,手术往往需要在心衰及感染得到控制后进行,以减少术后并发症的风险。及时手术可清除感染灶,恢复心脏瓣膜的正常功能,降低病死率和并发症发生率[30]

5. 预防

SVG为机会致病菌,预防与治疗同等重要。对人工瓣膜、既往IE史、先天性心脏病等高危患者,在进行侵入性操作前应预防性使用抗生素,如牙科操作前1小时单次口服阿莫西林(2 g),青霉素过敏者可选用阿奇霉素(500 mg) [31]。口腔黏膜是SVG入侵的主要途径,保持良好的口腔卫生(定期刷牙、使用抗菌漱口水、专业洁牙)可减少致病菌数量。每半年至一年进行一次口腔检查,及时处理龋齿和牙龈炎等问题,也能显著降低感染风险[32]。化疗患者因频繁使用抗生素和免疫抑制治疗,更易感染耐药SVG菌株,此类患者需更严格的预防性抗生素应用,并可在医生指导下进行免疫调节[33]

6. 未来研究方向

6.1. 新型诊断技术

鉴于16S rRNA PCR、MALDI-TOF在血培养阴性IE中的高检出率,未来研究应致力于建立更加标准化的操作流程以减少检测过程中的污染,并探索新型诊断技术,如宏基因组学下一代测序技术(metagenomic Next-Generation Sequencing mNGS)以实现更全面的病原体识别。mNGS无需预设目标,即可对临床样本(如血液、脓液等)进行无偏倚的病原体检测。该技术通过提取样本中的总核酸进行高通量测序,能一次性识别SVG感染,并同步检测是否存在病毒、真菌及其他细菌的混合感染。对于兼性厌氧的SVG而言,传统培养法阳性率低,且易受抗生素使用影响;而mNGS基于核酸检测,不依赖培养条件,从而显著提高了检出率[34]

6.2. 治疗新策略

抗生素耐药性一直是阻碍治疗的障碍之一。在这种背景下,研究者们开始探索新型抗生素和疫苗的研发。新型抗生素的研究中,达帕霉素和达喹啉等新一代抗生素显示出对SVG的良好活性,特别是在治疗耐药菌株时表现出色。然而,尽管新型抗生素在体外试验中显示了良好的抗菌活性,临床应用仍需谨慎,以避免耐药的产生[35]。同时,针对SVG特异性抗原的疫苗研发也在推进中。通过免疫接种可降低高风险患者SVG相关IE的发病率。然而,由于SVG免疫逃逸机制复杂且血清型多样,疫苗研究进展缓慢。目前已有针对其表面抗原的候选疫苗在动物模型中诱导良好免疫反应,未来有望为临床预防提供新策略[36]

7. 总结与展望

SVG所致的IE是一种机制复杂、表现多样的疾病,其致病机制、临床特征及治疗策略目前仍在不断演进。该病的发病机制与宿主免疫、细菌黏附及生物膜形成密切相关,这些发现为深入理解SVG相关IE提供了新方向。临床诊断方面,该病的传统临床诊断主要依赖血培养和超声心动图,但灵敏度和特异性有限。新兴技术如mNGS有望提高病原体检出率。抗生素仍是目前治疗SVG相关IE的主要治疗手段,但由于目前耐药问题日益显著,开发新型抗生素、优化联合用药及推广抗生素的合理使用迫在眉睫。综上所述,尽管对SVG与IE已有了初步认识,但仍需进一步探索。随着新型诊断和治疗策略的涌现,未来有望在诊断率、疗效和预后方面取得更大突破,为患者带来更多获益。

基金项目

五味消毒饮热奄序贯芒硝外敷治疗哺乳期乳腺炎临床观察及综合医院中多学科协作干预价值探索(No. 2024ZL1129)。

NOTES

*通讯作者。

参考文献

[1] Menon, T. (2016) Understanding the Viridians Group Streptococci: Are We There Yet? Indian Journal of Medical Microbiology, 34, 421-426. [Google Scholar] [CrossRef] [PubMed]
[2] Ren, J., Sun, P., Wang, M., Zhou, W. and Liu, Z. (2024) Insights into the Role of Streptococcus Oralis as an Opportunistic Pathogen in Infectious Diseases. Frontiers in Cellular and Infection Microbiology, 14, Article 1480961. [Google Scholar] [CrossRef] [PubMed]
[3] Arjun, R., Niyas, V.K.M., Hussain, F., et al. (2024) Clinical and Microbiological Profile of Viridans Group Streptococcal Bacteraemia; Experience from South India. Le infezioni in medicina, 32, 37-44.
[4] Barnett, R. (2016) Infective Endocarditis. The Lancet, 388, 1148. [Google Scholar] [CrossRef] [PubMed]
[5] Seo, H., Hyun, J., Kim, H., Park, S., Chung, H., Bae, S., et al. (2023) Risk and Outcome of Infective Endocarditis in Streptococcal Bloodstream Infections According to Streptococcal Species. Microbiology Spectrum, 11, e01049-23. [Google Scholar] [CrossRef] [PubMed]
[6] Martini, A.M., Moricz, B.S., Ripperger, A.K., Tran, P.M., Sharp, M.E., Forsythe, A.N., et al. (2020) Association of Novel Streptococcus Sanguinis Virulence Factors with Pathogenesis in a Native Valve Infective Endocarditis Model. Frontiers in Microbiology, 11, Article 10. [Google Scholar] [CrossRef] [PubMed]
[7] Leoney, A., Karthigeyan, S., Asharaf, A. and Felix, A.W. (2020) Detection and Categorization of Biofilm-Forming Staphylococcus Aureus, Viridans Streptococcus, Klebsiella Pneumoniae, and Escherichia Coli Isolated from Complete Denture Patients and Visualization Using Scanning Electron Microscopy. Journal of International Society of Preventive and Community Dentistry, 10, 627-633. [Google Scholar] [CrossRef] [PubMed]
[8] Hu, W., Wang, X. and Su, G. (2021) Infective Endocarditis Complicated by Embolic Events: Pathogenesis and Predictors. Clinical Cardiology, 44, 307-315. [Google Scholar] [CrossRef] [PubMed]
[9] Anandan, V., Bao, L., Zhu, Z., et al. (2024) A Novel Infective Endocarditis Virulence Factor Related to Multiple Functions for Bacterial Survival in Blood Was Discovered in Streptococcus sanguinis.
[10] Ruhayel, S.D., Foley, D.A., Hamilton, K., Ferguson, P., Kotecha, R.S., Bowen, A.C., et al. (2021) Viridans Group Streptococci in Pediatric Leukemia and Stem Cell Transplant: Review of a Risk-Stratified Guideline for Empiric Vancomycin in Febrile Neutropenia. Pediatric Infectious Disease Journal, 40, 832-834. [Google Scholar] [CrossRef] [PubMed]
[11] Wang, A., Gaca, J.G. and Chu, V.H. (2018) Management Considerations in Infective Endocarditis. Journal of the American Medical Association, 320, 72-83. [Google Scholar] [CrossRef] [PubMed]
[12] Dale, S., Tayyem, Z. and Maceyko, S. (2024) Endocarditis: A Review of Recent Literature. Current Emergency and Hospital Medicine Reports, 12, 67-73. [Google Scholar] [CrossRef
[13] Gogos, C., Moschovidis, V., Adamopoulos, C., Trigoni, A., Styliadis, I. and Sachpekidis, V. (2021) A Case Series of Skin Manifestations of Infective Endocarditis in Contemporary Era: Just Another Book Finding or a Useful Clinical Sign? European Heart JournalCase Reports, 5, ytab345. [Google Scholar] [CrossRef] [PubMed]
[14] Hu, W., Su, G., Zhu, W., Zhou, E. and Shuai, X. (2022) Systematic Immune-Inflammation Index Predicts Embolic Events in Infective Endocarditis. International Heart Journal, 63, 510-516. [Google Scholar] [CrossRef] [PubMed]
[15] Huang, S., Chen, J., Chu, T., Luo, L., Liu, Q., Feng, K., et al. (2024) Pathogenic Spectrum of Infective Endocarditis and Analysis of Prognostic Risk Factors Following Surgical Treatment in a Tertiary Hospital in China. BMC Infectious Diseases, 24, Article No. 1440. [Google Scholar] [CrossRef] [PubMed]
[16] Kamde, S.P. and Anjankar, A. (2022) Pathogenesis, Diagnosis, Antimicrobial Therapy, and Management of Infective Endocarditis, and Its Complications. Cureus, 14, e29182. [Google Scholar] [CrossRef] [PubMed]
[17] Osa, M., Belo, M.C., Dela Merced, Z., Villanueva, A.M.G., Mauhay, J., Celis, A., et al. (2021) Performance of MALDI-TOF Mass Spectrometry in the Philippines. Tropical Medicine and Infectious Disease, 6, Article 112. [Google Scholar] [CrossRef] [PubMed]
[18] Li, D., Yi, J., Han, G. and Qiao, L. (2022) MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Measurement Science Au, 2, 385-404. [Google Scholar] [CrossRef] [PubMed]
[19] Patel, R. (2019) A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification. Journal of Fungi, 5, Article 4. [Google Scholar] [CrossRef] [PubMed]
[20] Ziegler, R., Arnold, H., Bertram, R., Geißdörfer, W., Pauschinger, M., Fischlein, T., et al. (2023) Microbiologic Diagnostics and Pathogen Spectrum in Infective Endocarditis of Surgically Treated Patients: A Five-Year, Retrospective, Monocentric Study. Infection, 51, 1523-1530. [Google Scholar] [CrossRef] [PubMed]
[21] Vinod, P., Khayata, M., Haouzi, A. and Xu, B. (2025) Role of Multimodality Imaging in Infective Endocarditis: A Comparison of the Major Society Guidelines in the United States and Europe. Trends in Cardiovascular Medicine, 35, 10-21. [Google Scholar] [CrossRef] [PubMed]
[22] Bhatti, A., Sagar, V. and McFaul, K. (2023) Streptococcus gordonii Infective Endocarditis Complicated by Brain Abscess in a Patient with a Congenital Bicuspid Aortic Valve: A Case Report. European Heart JournalCase Reports, 7, ytab590. [Google Scholar] [CrossRef] [PubMed]
[23] Habib, G., Lancellotti, P., Antunes, M.J., et al. (2016) 2015 ESC Guidelines for the Management of Infective Endocarditis. The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC)]. Giornale italiano di cardiologia, 17, 277-319.
[24] Cardoso, J., Ferreira, D., Assis, R., Monteiro, J., Coelho, I., Real, A., et al. (2021) Streptococcus Oralis Meningitis. European Journal of Case Reports in Internal Medicine, 8, Article 2349. [Google Scholar] [CrossRef] [PubMed]
[25] Zhuo, C.Y., Guo, Y.Y., Liu, N.J., et al. (2020) Epidemiological Analysis of Pathogens Causing Bloodstream Infections in Department of Hematology in Guangdong Province. Chinese Journal of Hematology, 41, 996-1001.
[26] Jagadeesan, N., Karur, K., Nandini, M.P., Manjunath, C.N., Prapulla Kumari, N. and Praveen Kumar, H.D. (2024) Antimicrobial Susceptibility of Viridians Group of Streptococci Isolated from Infective Endocarditis Patients from 2018 to 2023. Indian Journal of Medical Microbiology, 49, Article 100576. [Google Scholar] [CrossRef] [PubMed]
[27] Adema, J.L., Ahiskali, A., Fida, M., Mediwala Hornback, K., Stevens, R.W. and Rivera, C.G. (2023) Heartbreaking Decisions: The Dogma and Uncertainties of Antimicrobial Therapy in Infective Endocarditis. Pathogens, 12, Article 703. [Google Scholar] [CrossRef] [PubMed]
[28] Imazio, M. (2024) The 2023 New European Guidelines on Infective Endocarditis: Main Novelties and Implications for Clinical Practice. Journal of Cardiovascular Medicine, 25, 718-726. [Google Scholar] [CrossRef] [PubMed]
[29] Arjomandi Rad, A., Zubarevich, A., Osswald, A., Vardanyan, R., Magouliotis, D.E., Ansaripour, A., et al. (2024) The Surgical Treatment of Infective Endocarditis: A Comprehensive Review. Diagnostics, 14, Article 464. [Google Scholar] [CrossRef] [PubMed]
[30] Nuthalapati, U., Bathinapattla, M.R., Cardoso, R.P., Jesi, N.J., Singh, K., Moradi, I., et al. (2024) Mitral Valve Repair and Replacement in Infectious Endocarditis: A Systematic Review and Meta-Analysis of Clinical Outcome. The Egyptian Heart Journal, 76, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
[31] Le Moing, V., Bonnet, É., Cattoir, V., Chirouze, C., Deconinck, L., Duval, X., et al. (2024) Antibiotic Therapy and Prophylaxis of Infective Endocarditis—A SPILF-AEPEI Position Statement on the ESC 2023 Guidelines. Infectious Diseases Now, 55, Article 105011. [Google Scholar] [CrossRef] [PubMed]
[32] Tunkel, A.R. and Sepkowitz, K.A. (2002) Infections Caused by Viridans Streptococci in Patients with Neutropenia. Clinical Infectious Diseases, 34, 1524-1529. [Google Scholar] [CrossRef] [PubMed]
[33] Yang, M., Lu, X., Xin, L., Luo, J., Diao, S., Jia, Z., et al. (2023) Comparative Effectiveness and Safety of Antibiotic Prophylaxis during Induction Chemotherapy in Children with Acute Leukaemia: A Systematic Review and Meta-Analysis. Journal of Hospital Infection, 136, 20-29. [Google Scholar] [CrossRef] [PubMed]
[34] Liu, C., Song, X., Liu, J., Zong, L., Xu, T., Han, X., et al. (2025) Consistency between Metagenomic Next-Generation Sequencing versus Traditional Microbiological Tests for Infective Disease: Systemic Review and Meta-Analysis. Critical Care, 29, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
[35] Matsuo, T., Mori, N., Sakurai, A., Kanie, T., Mikami, Y., Uehara, Y., et al. (2021) Effectiveness of Daptomycin against Infective Endocarditis Caused by Highly Penicillin-Resistant Viridans Group Streptococci. IDCases, 24, e01113. [Google Scholar] [CrossRef] [PubMed]
[36] Rashed, M., Fakhri, G., Zareef, R., Abdul Halim, N., Ahmed, M., Dbaibo, G., et al. (2023) Pathogenesis and Distribution of Infective Endocarditis in the Pediatric Population: A 20-Year Experience in a Tertiary Care Center in a Developing Country. Frontiers in Cardiovascular Medicine, 10, Article 1182468. [Google Scholar] [CrossRef] [PubMed]