[1]
|
Cecconi, M., Hofer, C., Teboul, J., Pettila, V., Wilkman, E., Molnar, Z., et al. (2015) Fluid Challenges in Intensive Care: The FENICE Study: A Global Inception Cohort Study. Intensive Care Medicine, 41, 1529-1537. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Dellinger, R.P., Levy, M.M., Carlet, J.M., Bion, J., Parker, M.M., Jaeschke, R., et al. (2008) Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2008. Critical Care Medicine, 36, 296-327. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Stevenson, L.W. (1989) The Limited Reliability of Physical Signs for Estimating Hemodynamics in Chronic Heart Failure. JAMA: The Journal of the American Medical Association, 261, 884-888. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Kapoor, P., Kakani, M., Chowdhury, U., Choudhury, M., Lakshmy, R. and Kiran, U. (2008) Early Goal-Directed Therapy in Moderate to High-Risk Cardiac Surgery Patients. Annals of Cardiac Anaesthesia, 11, 27-34. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Williams, J.B., Peterson, E.D., Wojdyla, D., Harskamp, R., Southerland, K.W., Ferguson, T.B., et al. (2014) Central Venous Pressure after Coronary Artery Bypass Surgery: Does It Predict Postoperative Mortality or Renal Failure? Journal of Critical Care, 29, 1006-1010. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Kusminsky, R.E. (2007) Complications of Central Venous Catheterization. Journal of the American College of Surgeons, 204, 681-696. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Sprung, C.L., Pozen, R.G., Rozanski, J.J., Pinero, J.R., Eisler, B.R. and Castellanos, A. (1982) Advanced Ventricular Arrhythmias during Bedside Pulmonary Artery Catheterization. The American Journal of Medicine, 72, 203-208. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Harvey, S., Harrison, D.A., Singer, M., Ashcroft, J., Jones, C.M., Elbourne, D., et al. (2005) Assessment of the Clinical Effectiveness of Pulmonary Artery Catheters in Management of Patients in Intensive Care (Pac-Man): A Randomised Controlled Trial. The Lancet, 366, 472-477. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Akmal, A., Hasan, M. and Mariam, A. (2007) The Incidence of Complications of Central Venous Catheters at an Intensive Care Unit. Annals of Thoracic Medicine, 2, 61-63. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Amar, D., Melendez, J.A., Zhang, H., Dobres, C., Leung, D.H.Y. and Padilla, R.E. (2001) Correlation of Peripheral Venous Pressure and Central Venous Pressure in Surgical Patients. Journal of Cardiothoracic and Vascular Anesthesia, 15, 40-43. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Thalhammer, C., Aschwanden, M., Odermatt, A., Baumann, U.A., Imfeld, S., Bilecen, D., et al. (2007) Noninvasive Central Venous Pressure Measurement by Controlled Compression Sonography at the Forearm. Journal of the American College of Cardiology, 50, 1584-1589. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Ommen, S.R., Nishimura, R.A., Hurrell, D.G. and Klarich, K.W. (2000) Assessment of Right Atrial Pressure with 2-Dimensional and Doppler Echocardiography: A Simultaneous Catheterization and Echocardiographic Study. Mayo Clinic Proceedings, 75, 24-29. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Kircher, B.J., Himelman, R.B. and Schiller, N.B. (1990) Noninvasive Estimation of Right Atrial Pressure from the Inspiratory Collapse of the Inferior Vena Cava. The American Journal of Cardiology, 66, 493-496. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Muller, L., Bobbia, X., Toumi, M., Louart, G., Molinari, N., Ragonnet, B., et al. (2012) Respiratory Variations of Inferior Vena Cava Diameter to Predict Fluid Responsiveness in Spontaneously Breathing Patients with Acute Circulatory Failure: Need for a Cautious Use. Critical Care, 16, R188. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Natori, H., Tamaki, S. and Kira, S. (1979) Ultrasonographic Evaluation of Ventilatory Effect on Inferior Vena Caval Configuration. American Review of Respiratory Disease, 120, 421-427.
|
[16]
|
Nagdev, A.D., Merchant, R.C., Tirado-Gonzalez, A., Sisson, C.A. and Murphy, M.C. (2010) Emergency Department Bedside Ultrasonographic Measurement of the Caval Index for Noninvasive Determination of Low Central Venous Pressure. Annals of Emergency Medicine, 55, 290-295. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Stawicki, S.P.A., Adkins, E.J., Eiferman, D.S., Evans, D.C., Ali, N.A., Njoku, C., et al. (2014) Prospective Evaluation of Intravascular Volume Status in Critically Ill Patients: Does Inferior Vena Cava Collapsibility Correlate with Central Venous Pressure? Journal of Trauma and Acute Care Surgery, 76, 956-964. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Rajacich, N., Burchard, K.W., Hasan, F.M. and Singh, A.K. (1989) Central Venous Pressure and Pulmonary Capillary Wedge Pressure as Estimates of Left Atrial Pressure: Effects of Positive End-Expiratory Pressure and Catheter Tip Malposition. Critical Care Medicine, 17, 7-11. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Magder, S. (2006) Central Venous Pressure Monitoring. Current Opinion in Critical Care, 12, 219-227. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
De Lorenzo, R.A., Morris, M.J., Williams, J.B., Haley, T.F., Straight, T.M., Holbrook-Emmons, V.L., et al. (2012) Does a Simple Bedside Sonographic Measurement of the Inferior Vena Cava Correlate to Central Venous Pressure? The Journal of Emergency Medicine, 42, 429-436. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Ciozda, W., Kedan, I., Kehl, D.W., Zimmer, R., Khandwalla, R. and Kimchi, A. (2015) The Efficacy of Sonographic Measurement of Inferior Vena Cava Diameter as an Estimate of Central Venous Pressure. Cardiovascular Ultrasound, 14, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Rudski, L.G., Lai, W.W., Afilalo, J., Hua, L., Handschumacher, M.D., Chandrasekaran, K., et al. (2010) Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography. Journal of the American Society of Echocardiography, 23, 685-713. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Wachsberg, R.H., Sebastiano, L.L.S. and Levine, C.D. (1998) Narrowing of the Upper Abdominal Inferior Vena Cava in Patients with Elevated Intraabdominal Pressure. Abdominal Imaging, 23, 99-102. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Nakao, S., Come, P.C., McKay, R.G. and Ransil, B.J. (1987) Effects of Positional Changes on Inferior Vena Caval Size and Dynamics and Correlations with Right-Sided Cardiac Pressure. The American Journal of Cardiology, 59, 125-132. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Taniguchi, T., Ohtani, T., Nakatani, S., Hayashi, K., Yamaguchi, O., Komuro, I., et al. (2015) Impact of Body Size on Inferior Vena Cava Parameters for Estimating Right Atrial Pressure: A Need for Standardization? Journal of the American Society of Echocardiography, 28, 1420-1427. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Simonson, J.S. and Schiller, N.B. (1988) Sonospirometry: A New Method for Noninvasive Estimation of Mean Right Atrial Pressure Based on Two-Dimensional Echographic Measurements of the Inferior Vena Cava during Measured Inspiration. Journal of the American College of Cardiology, 11, 557-564. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Brennan, J.M., Blair, J.E., Goonewardena, S., Ronan, A., Shah, D., Vasaiwala, S., et al. (2007) Reappraisal of the Use of Inferior Vena Cava for Estimating Right Atrial Pressure. Journal of the American Society of Echocardiography, 20, 857-861. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Goldhammer, E., Mesnick, N., Abinader, E.G. and Sagiv, M. (1999) Dilated Inferior Vena Cava: A Common Echocardiographic Finding in Highly Trained Elite Athletes. Journal of the American Society of Echocardiography, 12, 988-993. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Styczynski, G., Jaltuszewska, M., Kosiorowska, N., et al. (2009) Dilated Inferior Vena Cava in Young Adults with Vasovagal Syncope. Archives of Internal Medicine, 169, 1633-1638. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Lipton, B. (2000) Estimation of Central Venous Pressure by Ultrasound of the Internal Jugular Vein. The American Journal of Emergency Medicine, 18, 432-434. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Siva, B., Hunt, A. and Boudville, N. (2012) The Sensitivity and Specificity of Ultrasound Estimation of Central Venous Pressure Using the Internal Jugular Vein. Journal of Critical Care, 27, 315.e7-315.e11. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Kumar, A., Kumar, S., Kumar, A., Bharti, A.K. and Hussain, M. (2024) Correlation of Internal Jugular Vein and Inferior Vena Cava Collapsibility Index with Direct Central Venous Pressure Measurement in Critically-Ill Patients: An Observational Study. Indian Journal of Critical Care Medicine, 28, 595-600. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Hilbert, T., Ellerkmann, R.K., Klaschik, S., Putensen, C. and Thudium, M. (2016) The Use of Internal Jugular Vein Ultrasonography to Anticipate Low or High Central Venous Pressure during Mechanical Ventilation. The Journal of Emergency Medicine, 50, 581-587. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Chawang, H.J., Kaeley, N., Bhardwaj, B.B., Chauhan, U., Baid, H., Asokan, R., et al. (2022) Ultrasound-Guided Estimation of Internal Jugular Vein Collapsibility Index in Patients with Shock in Emergency Department. Turkish Journal of Emergency Medicine, 22, 206-212. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Hossein‐Nejad, H., Mohammadinejad, P. and Ahmadi, F. (2016) Internal Jugular Vein/Common Carotid Artery Cross‐sectional Area Ratio and Central Venous Pressure. Journal of Clinical Ultrasound, 44, 312-318. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Bano, S., Qadeer, A., Akhtar, A., Attaur-Rehman, M., Munawar, K., Hussain, S.W., et al. (2018) Measurement of Internal Jugular Vein and Common Carotid Artery Diameter Ratio by Ultrasound to Estimate Central Venous Pressure. Cureus, 10, e2277. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Bailey, J.K., McCall, J., Smith, S. and Kagan, R.J. (2012) Correlation of Internal Jugular Vein/Common Carotid Artery Ratio to Central Venous Pressure: A Pilot Study in Pediatric Burn Patients. Journal of Burn Care & Research, 33, 89-92. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Jaffe, A., Goryachev, I., Sodini, C. and Anthony, B.W. (2023) Central Venous Pressure Estimation with Force-Coupled Ultrasound of the Internal Jugular Vein. Scientific Reports, 13, Article No. 1500. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Kenny, J.S., Barjaktarevic, I., Mackenzie, D.C., Elfarnawany, M., Yang, Z., Eibl, A.M., et al. (2022) Carotid Artery Velocity Time Integral and Corrected Flow Time Measured by a Wearable Doppler Ultrasound Detect Stroke Volume Rise from Simulated Hemorrhage to Transfusion. BMC Research Notes, 15, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Melendez, J.A., Arslan, V., Fischer, M.E., Wuest, D., Jarnagin, W.R., Fong, Y., et al. (1998) Perioperative Outcomes of Major Hepatic Resections under Low Central Venous Pressure Anesthesia: Blood Loss, Blood Transfusion, and the Risk of Postoperative Renal Dysfunction. Journal of the American College of Surgeons, 187, 620-625. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Dunki-Jacobs, E.M., Philips, P., Scoggins, C.R., McMasters, K.M. and Martin, R.C.G. (2014) Stroke Volume Variation in Hepatic Resection: A Replacement for Standard Central Venous Pressure Monitoring. Annals of Surgical Oncology, 21, 473-478. [Google Scholar] [CrossRef] [PubMed]
|