多模态组学在晚期胃癌免疫微环境研究中的应用
Application of Multimodal Omics in Studying the Immune Microenvironment of Advanced Gastric Cancer
DOI: 10.12677/acm.2025.15102913, PDF, HTML, XML,    科研立项经费支持
作者: 张 颖, 翁圣涛:绍兴文理学院医学院,浙江 绍兴;卢增新*:绍兴市人民医院(绍兴文理学院附属第一医院)放射科,浙江 绍兴
关键词: 胃癌免疫微环境多模态组学CD8⁺ T细胞Gastric Cancer Immune Microenvironment Multimodal Omics CD8⁺ T Cells
摘要: 胃癌是全球高发且高致死率的消化系统恶性肿瘤,晚期患者预后普遍不佳。随着免疫检查点抑制剂(ICIs)的临床应用,部分患者获益显著,但免疫微环境的高度异质性使疗效预测仍具挑战。近年来,多模态组学整合影像组学、基因组学、转录组学及蛋白质组学等多维度数据,为揭示胃癌免疫微环境的复杂性提供了新工具。CD8⁺ T细胞作为核心效应群体,其数量、空间分布和功能状态与免疫治疗响应密切相关。通过单细胞测序和空间转录组学,可解析其异质性及耗竭机制,为靶向干预提供依据。同时,PD-L1、MSI-H和TMB等分子标志物在免疫治疗预测中具有价值,但受限于检测一致性和时空异质性。人工智能与机器学习的应用,使影像与分子特征的融合分析成为可能,提高了预测模型的精度与可解释性。尽管仍存在标准化不足、样本量有限及临床转化障碍,多模态组学结合AI技术将在个体化免疫治疗中发挥重要作用,为改善晚期胃癌患者预后提供新方向。
Abstract: Gastric cancer is a common and highly lethal malignancy of the digestive system worldwide, with poor prognosis in advanced patients. With the clinical application of immune checkpoint inhibitors (ICIs), some patients have shown significant benefit, but the high heterogeneity of the immune microenvironment still makes efficacy prediction challenging. In recent years, multimodal omics integrating radiomics, genomics, transcriptomics, and proteomics has provided new tools to reveal the complexity of the gastric cancer immune microenvironment. CD8⁺ T cells, as key effector populations, are closely related to immunotherapy response through their quantity, spatial distribution, and functional status. Single-cell sequencing and spatial transcriptomics can resolve their heterogeneity and exhaustion mechanisms, providing a basis for targeted interventions. At the same time, molecular biomarkers such as PD-L1, MSI-H, and TMB have predictive value in immunotherapy, but are limited by inconsistency in detection and spatiotemporal heterogeneity. The application of artificial intelligence and machine learning makes it possible to integrate imaging and molecular features, improving the accuracy and interpretability of predictive models. Although limitations remain, such as lack of standardization, limited sample sizes, and barriers to clinical translation, multimodal omics combined with AI technology will play an important role in individualized immunotherapy and provide new directions for improving the prognosis of patients with advanced gastric cancer.
文章引用:张颖, 翁圣涛, 卢增新. 多模态组学在晚期胃癌免疫微环境研究中的应用[J]. 临床医学进展, 2025, 15(10): 1504-1512. https://doi.org/10.12677/acm.2025.15102913

1. 介绍

胃癌是全球范围内发病率和死亡率均居于前列的消化系统恶性肿瘤,尤其晚期胃癌患者预后普遍较差[1]。近年来,随着免疫治疗在多种实体瘤中取得显著进展,免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)逐渐成为晚期胃癌治疗的重要策略之一[2]。然而,临床实践表明,仅部分患者能够从免疫治疗中长期获益,反映出肿瘤免疫微环境存在高度异质性,且个体差异显著影响治疗反应[3]。因此,精准识别可能从免疫治疗中获益的人群,已成为当前临床与研究的关键挑战。近年来,多模态组学方法的快速发展为解析肿瘤微环境的复杂性提供了全新视角和有力工具。通过整合影像组学、基因组学、转录组学及蛋白质组学等多维度数据,研究者能够更全面、多层次地刻画肿瘤的组织学特征、免疫细胞浸润状态及其空间分布关系,从而为个体化治疗和精准医学的实施提供理论依据与技术支撑[4]

在众多免疫相关细胞中,CD8⁺ T细胞作为核心的细胞毒性效应T细胞,在抗肿瘤免疫应答中起着至关重要的作用。其数量、空间分布、克隆性与功能状态,与患者对免疫治疗的应答强度及预后密切相关[5]。值得注意的是,胃癌具有高度异质性,根据TCGA分型可分为EB病毒阳性(EBV+)、微卫星不稳定(MSI)、基因组稳定(GS)和染色体不稳定(CIN)四种亚型。不同亚型的免疫微环境特征迥异,例如MSI-H和EBV+亚型通常表现出更高的CD8⁺ T细胞浸润和免疫激活信号,这可能是其对ICIs应答率更高的深层原因[6]。因此,多模态研究需充分考虑胃癌分子分型的特异性,以实现更精准的预测。因此,开展以CD8⁺ T细胞为核心的多模态组学研究,不仅有助于深入理解胃癌免疫微环境的调控机制,也为开发新的生物标志物和优化免疫治疗策略提供了重要方向。

随着人工智能与高通量测序技术的迅猛发展,胃癌研究正逐步从单一组学模式转向多模态数据整合分析。影像组学作为放射学与人工智能交叉的前沿领域,能够从常规CT、MRI及新型光子计数CT等影像中提取大量高维定量特征,并构建预测模型[7]。这些影像特征不仅反映肿瘤的形态结构,还可间接揭示其内部异质性和免疫微环境状态。例如,有研究利用影像组学特征预测胃癌患者生存期,结果显示其预测性能显著优于传统临床指标[8]。进一步地,纹理分析等影像组学方法可用于评估肿瘤异质性,为理解肿瘤生物学行为及治疗反应提供重要依据[9]

在分子层面,基因组学与转录组学通过检测基因突变、拷贝数变异、信号通路活性等,系统揭示胃癌的分子分型及免疫相关特征[6]。例如,高度微卫星不稳定(MSI-H)和高肿瘤突变负荷(TMB)等分子亚型被证实与免疫治疗响应密切相关[10]。这些发现不仅有助于筛选潜在获益人群,也为靶向药物开发和联合治疗策略提供了分子基础。蛋白质组学则从功能层面补充了基因和转录水平无法捕捉的动态信息,尤其是在免疫调节相关蛋白的表达与修饰方面[11]。例如,PD-L1、CTLA-4等免疫检查点蛋白在胃癌组织中的表达水平与患者预后及治疗响应显著相关[12]。此外,蛋白质组学还可揭示肿瘤细胞与免疫细胞之间的相互作用机制,为理解免疫逃逸提供新视角。通过整合上述多模态组学数据,研究者能够构建更全面的预测模型,从而提高免疫治疗敏感人群的识别准确性,并实时监测治疗反应及耐药演变[13]。例如,有研究整合影像组学、基因组与蛋白质组特征构建预测模型,其预测ICIs治疗反应的AUC值显著高于任何单一指标[14]。这类多模态整合策略为推进晚期胃癌的个体化治疗与精准医学实践提供了有力工具。

2. CD8⁺ T细胞相关研究进展

在胃癌免疫治疗研究中,CD8⁺ T细胞作为核心的效应性T细胞群体,其在抗肿瘤免疫应答中的作用日益受到重视。CD8⁺ T细胞能够通过T细胞受体(TCR)识别并特异性杀伤表达肿瘤相关抗原的癌细胞,其肿瘤组织中的浸润密度已被多项研究证实与患者预后呈显著正相关[15]。然而,CD8⁺ T细胞的功能状态受到肿瘤微环境(TME)中多种抑制性因素的精密调控。例如,免疫抑制性细胞因子(如IL-10和TGF-β)、肿瘤相关成纤维细胞(CAFs)、调节性T细胞(Tregs)以及髓系来源的抑制细胞(MDSCs)等,均可通过不同机制削弱CD8⁺ T细胞的细胞毒性[16]。特别是IL-10和TGF-β不仅抑制其活化和增殖,还可诱导CD8⁺ T细胞功能耗竭,从而显著降低抗肿瘤免疫效果[17]。此外,CAFs和Tregs通过分泌腺苷、表达PD-L1等免疫抑制分子,进一步干扰CD8⁺ T细胞的浸润与杀伤功能[18]。近年来的研究强调,除CD8⁺ T细胞数量外,其空间分布和功能状态对免疫治疗响应具有决定性影响。根据免疫细胞分布模式,胃癌可被分为“免疫炎症型”(inflamed)、“免疫排斥型”(excluded)和“免疫荒漠型”(desert)三种亚型。在免疫炎症型肿瘤中,CD8⁺ T细胞广泛浸润于肿瘤核心及侵袭边缘,形成所谓的“免疫热点”,该类患者通常对免疫检查点抑制剂(ICIs)表现出较好的治疗响应;相反,在免疫排斥型肿瘤中,虽然肿瘤周边存在T细胞,但其无法有效浸润至肿瘤实质内部;而在免疫荒漠型中,T细胞完全缺失,这两类表型均导致免疫治疗疗效不佳[19]。这种空间分布在胃癌不同分子亚型中具有规律性:EBV+和MSI-H胃癌多表现为“免疫炎症型”,而GS型(弥漫型)胃癌则常见“免疫排斥”或“免疫荒漠”表型,其机制可能与GS型胃癌中CLDN18-ARHGAP融合所导致的细胞连接异常和物理屏障形成有关[6]。多模态分析应结合分子分型对空间分布进行解读。影像组学技术的兴起为无创评估CD8⁺ T细胞空间分布提供了新途径。例如,有研究基于CT和MRI影像提取纹理特征,并采用机器学习算法构建预测模型,能够准确量化肿瘤内及边缘的CD8⁺ T细胞浸润水平[20]。这类模型不仅具备临床转化潜力,用于筛选潜在应答人群,还可实现治疗过程中免疫微环境的动态监测与疗效评估[4]。此外,CD8⁺ T细胞的功能状态同样是影响免疫治疗结局的关键因素。耗竭型CD8⁺ T细胞[21]虽然可能在肿瘤中大量存在,但由于持续抗原刺激及抑制性受体(如PD-1、TIM-3、LAG-3)的高表达,其效应功能严重受损。研究表明,耗竭T细胞并非均质群体,其内部存在动态分化路径,包括前体耗竭和终末耗竭等不同亚群,其中前体耗竭细胞仍具有一定增殖能力和可逆性,是免疫治疗的主要响应者[22]。值得注意的是,CD8⁺ T细胞功能的发挥还受到代谢重编程的深刻影响。肿瘤微环境常呈现缺氧、酸性和营养耗竭的特点,迫使CD8⁺ T细胞调整其代谢途径以维持生存,但这往往以功能受损为代价。例如,高水平乳酸可抑制CD8⁺ T细胞的细胞毒性和细胞因子产生,而葡萄糖竞争则进一步限制其能量供应[23]

另一方面,研究表明CD8⁺ T细胞记忆亚群的形成与维持对长期免疫监视和复发预防至关重要。干细胞样记忆T细胞(Tstem)具有自我更新和多向分化潜能,被认为是维持抗肿瘤免疫持久性的关键细胞类型[24]。通过联合使用ICIs和某些细胞因子(如IL-7和IL-15),可以促进Tstem细胞的生成,从而提高免疫治疗的长期疗效。单细胞测序技术的应用极大地深化了我们对CD8⁺ T细胞异质性的理解。研究表明,肿瘤浸润CD8⁺ T细胞存在显著的功能和转录状态多样性,包括效应细胞、记忆细胞、耗竭细胞和调节样细胞等多种亚型[25]。通过识别这些亚型特有的表面标志物,可以开发更精准的免疫治疗策略。表观遗传调控也被认为是影响CD8⁺ T细胞功能持久性的关键机制。组蛋白修饰和DNA甲基化等表观遗传变化可以稳定地调控基因表达,决定CD8⁺ T细胞的分化命运。抑制某些表观遗传酶(如DNMT和EZH2)可以逆转T细胞耗竭,增强抗肿瘤免疫[26]。通过多模态组学方法(如单细胞转录组与TCR测序结合),可系统解析CD8⁺ T细胞的功能亚群、克隆演化及状态转换轨迹,从而更精准地评估患者免疫治疗应答潜力,并为联合干预策略提供理论基础。这些研究进展共同推动了个体化免疫治疗策略的发展,为改善晚期胃癌患者预后提供了新的希望。

3. 其他免疫治疗相关蛋白的预测研究

除CD8⁺ T细胞外,PD-L1、CTLA-4、LAG-3等免疫检查点蛋白在胃癌免疫治疗应答预测及疗效评估中同样具有重要价值。目前,PD-L1蛋白的表达水平已成为临床筛选免疫检查点抑制剂(ICIs)适用患者的主要生物标志物之一[27]。然而,由于其检测手段(如IHC染色抗体、评分系统)尚未统一、表达存在明显的空间异质性及时间动态变化,PD-L1作为单一预测指标的可靠性仍显不足[28]。例如,多项研究显示,不同机构采用的PD-L1检测抗体(如22C3、SP142、SP263)和判读阈值(如CPS ≥ 1 vs. CPS ≥ 10)存在较大差异,显著影响结果一致性及患者分层准确性[29]。此外,PD-L1在瘤内和瘤间分布不均,活检样本往往难以全面反映整体表达状态,限制了其预测效能[30]。除免疫检查点分子外,肿瘤突变负荷(TMB)、微卫星不稳定性(MSI-H)和EB病毒(EBV)感染状态等分子特征也被证实与免疫治疗响应密切相关。MSI-H与高TBM表型的胃癌通常携带更多基因突变产生的新抗原,从而更易被免疫系统识别并激发强烈T细胞应答,因而对ICIs显示出更高的客观缓解率[31]。这些分子标志物在胃癌中的预测价值同样具有亚型特异性。绝大多数EBV+胃癌表现出PD-L1高表达,且伴有较高的TMB和免疫细胞浸润,使其成为ICIs的优势人群;而CIN亚型虽然占胃癌多数,但其异质性最强,PD-L1表达和TMB变化范围大,更需要多模态模型进行综合判断[27] [31]。近年来,蛋白质组学技术的进步使得我们能够系统描绘胃癌免疫微环境中关键蛋白的表达谱,例如包括PD-1通路成员、细胞毒性因子及干扰素信号相关分子等。通过整合转录组数据与影像组学特征,研究者能够构建更加稳健且解释性强的预测模型[32]。例如,一项前瞻性研究融合PD-L1 IHC评分、CT影像组学标签和临床分期等信息,构建了胃癌免疫治疗应答预测综合模型,其AUC显著高于任何单一指标[33]。这类多模态整合策略不仅提升了预测准确性,也有助于识别新的免疫调控靶点和信号通路,为开发新型联合治疗策略——如ICI联合化疗、靶向治疗或表观遗传药物——提供了坚实的理论依据[34]

4. 机器学习与人工智能在免疫组学中的作用

机器学习与人工智能(AI)技术的迅速发展,为多模态组学数据的整合与深度解析提供了前所未有的分析工具与建模能力。通过运用深度学习等先进算法,研究者能够从海量的影像、基因组、转录组、蛋白质组等多源数据中自动挖掘具有生物学意义的关键特征,并构建高精度预测模型[35]。以卷积神经网络(CNN)为代表的深度学习模型在影像组学中表现尤为突出,可实现对医学影像的自动特征提取与分类,显著减少人工操作带来的主观偏差,并提高模型的泛化性能[36]。在胃癌免疫治疗研究中,AI技术不仅能够预测肿瘤微环境中CD8⁺ T细胞的浸润水平,还可整合多维度数据识别可能对免疫检查点抑制剂治疗敏感的患者亚群[37]。AI方法在处理高维、非线性及异构数据方面具有独特优势,能够有效捕捉不同模态数据之间复杂的相互作用,从而提供更全面的生物标志物信息和更准确的预后判断[38]

随着可解释性人工智能(Explainable AI, XAI)的兴起,AI模型不仅能够输出预测结果,还能揭示影响这些预测的关键特征,极大地增强了模型在生物医学研究中的透明度和可信度[39]。例如,一项研究应用梯度加权类激活映射(Grad-CAM)等可解释性技术,识别出与CD8⁺ T细胞空间分布密切相关的影像组学特征,为理解免疫微环境的结构调控提供了新见解[40]。在多模态数据整合方面,AI还提供了多种融合策略以优化分析效能。早期融合(early fusion)将原始或底层特征进行拼接,适用于模态间高度相关的数据,但可能存在信息冗余或噪声放大的风险;晚期融合(late fusion)则分别处理不同模态数据,再集成各自预测结果,虽可保留模态特异性,但模型间交互信息较难充分利用;中间融合(intermediate fusion)通过共享表示学习在模型中间层整合多源信息,较好地平衡了计算效率与信息完整性,已成为多模态学习的主流策略之一[41]

展望未来,基于AI的多模态组学分析模型不仅有望应用于临床实时预测和个体化治疗决策支持,还将逐步推动胃癌免疫治疗向精准化、动态化和系统化方向发展[42]。这些智能算法平台的构建与临床转化,将是实现真正意义上的精准免疫治疗的关键步骤。

5. 临床转化的现实路径与障碍

尽管多模态AI模型前景广阔,但其从实验室走向临床广泛应用仍面临一条充满挑战的转化路径。该路径通常始于多中心、标准化数据的采集与共建,这是所有模型训练的基石。然而,此环节却面临巨大障碍:多模态数据的获取成本高昂(包括影像、基因测序、病理检测等费用);不同中心设备、协议差异导致的数据异质性;以及涉及患者隐私的数据脱敏与安全传输问题,这些都显著增加了时间与经济成本[43] [44]

在模型开发与验证阶段,高性能计算资源(如GPU服务器)的投入和复杂的算法优化需要跨学科团队(临床、生物信息、AI工程)的紧密协作,沟通成本高。随后,模型需经过严格的回顾性和前瞻性临床验证,以证明其稳健性和泛化能力,这一过程周期长、投入大。最终,作为一个旨在辅助临床决策的医疗AI产品,其上市必须经过国家药品监督管理局(NMPA)等监管机构的审批,通常需申请三类医疗器械认证。该流程要求提供完整的技术文件、生产质量体系证明以及大规模的临床试验数据,证明其安全性和有效性,这构成了最高的技术性和法规性壁垒。

此外,如何将复杂的模型输出转化为临床医生易于理解和信任的辅助诊断报告,是决定其能否被采纳的关键。理想的AI报告应摒弃复杂的算法细节,而是以简洁明了的可视化形式呈现核心信息,例如:① 患者免疫治疗获益概率的百分制评分;② 关键决策依据的归因图(如高权重特征在影像上的定位标注、重要基因突变列表);③ 基于分子分型和免疫分型的患者分层建议及推荐治疗方案。这种高度集成化、可视化和可解释的报告,才能无缝嵌入现有工作流,真正为临床赋能[39] [45] [46]

6. 未来研究展望

尽管多模态组学与人工智能在免疫治疗相关蛋白预测中展现出广阔前景,但其临床转化仍存在本文第5节所述的多方面障碍。未来研究首先应致力于推动大规模、多中心、前瞻性的胃癌多模态数据库建设,并制定全球统一的数据采集与特征提取标准(如遵循IBSI),以解决可重复性与泛化性难题[43] [47]。其次,多模态数据的整合方法仍需优化。影像组学、转录组学、蛋白质组学及免疫表型之间存在显著异质性,如何通过深度学习和跨模态表示学习实现信息的高效融合,是后续研究的重点。同时,模型的可解释性亟待加强,只有明确其生物学意义与决策依据,才能获得临床医生的信任并推动实际应用。例如,探索如何利用XAI技术揭示不同胃癌亚型(如CIN与GS)中影响ICIs应答的独特影像组学或分子特征,将极大增强模型的可信度和临床价值[39]

此外,免疫微环境具有显著的动态性。结合空间转录组学和单细胞测序等前沿技术,探索CD8⁺ T细胞及免疫检查点分子的时空演化,将有助于更深入理解免疫治疗应答与耐药机制,并推动新型联合治疗策略的发展。

在临床转化层面,预测模型的实用价值需通过与现有诊疗流程的深度融合来实现,例如嵌入电子病历和影像归档系统,形成自动化的辅助决策工具。唯有在真实世界环境中验证其临床效益与成本效益,才能推动其广泛应用。总体而言,晚期胃癌免疫治疗相关蛋白的无创预测仍处于快速发展阶段。随着多模态组学和人工智能方法的不断完善,其在未来有望实现更加精准的个体化免疫治疗,最终改善患者预后。

基金项目

浙江省卫生科技计划总体项目(2022KY1296);绍兴市科学研究发展计划项目(2023SKY035, 2024SKY013)。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
[2] Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40. [Google Scholar] [CrossRef] [PubMed]
[3] Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458. [Google Scholar] [CrossRef] [PubMed]
[4] Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R., et al. (2018) A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-Pd-1 or Anti-Pd-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. The Lancet Oncology, 19, 1180-1191. [Google Scholar] [CrossRef] [PubMed]
[5] Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T., et al. (2018) The Immune Landscape of Cancer. Immunity, 48, 812-830. [Google Scholar] [CrossRef] [PubMed]
[6] Cristescu, R., Lee, J., Nebozhyn, M., Kim, K., Ting, J.C., Wong, S.S., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456. [Google Scholar] [CrossRef] [PubMed]
[7] Wang, W., Peng, Y., Feng, X., Zhao, Y., Seeruttun, S.R., Zhang, J., et al. (2021) Development and Validation of a Computed Tomography-Based Radiomics Signature to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer. JAMA Network Open, 4, e2121143. [Google Scholar] [CrossRef] [PubMed]
[8] Jiang, Y., Chen, C., Xie, J., Wang, W., Zha, X., Lv, W., et al. (2018) Radiomics Signature of Computed Tomography Imaging for Prediction of Survival and Chemotherapeutic Benefits in Gastric Cancer. EBioMedicine, 36, 171-182. [Google Scholar] [CrossRef] [PubMed]
[9] Giganti, F., Marra, P., Ambrosi, A., Salerno, A., Antunes, S., Chiari, D., et al. (2017) Pre-Treatment MDCT-Based Texture Analysis for Therapy Response Prediction in Gastric Cancer: Comparison with Tumour Regression Grade at Final Histology. European Journal of Radiology, 90, 129-137. [Google Scholar] [CrossRef] [PubMed]
[10] Chalmers, Z.R., Connelly, C.F., Fabrizio, D., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
[11] Sun, J., Li, X., Wang, Q., Chen, P., Zhao, L. and Gao, Y. (2024) Proteomic Profiling and Biomarker Discovery for Predicting the Response to PD-1 Inhibitor Immunotherapy in Gastric Cancer Patients. Frontiers in Pharmacology, 15, Article 1349459. [Google Scholar] [CrossRef] [PubMed]
[12] Yu, X., Zhai, X., Wu, J., Feng, Q., Hu, C., Zhu, L., et al. (2024) Evolving Perspectives Regarding the Role of the PD-1/PD-L1 Pathway in Gastric Cancer Immunotherapy. Biochimica et Biophysica ActaMolecular Basis of Disease, 1870, Article 166881. [Google Scholar] [CrossRef] [PubMed]
[13] Cousin, S., Guégan, J.P., Shitara, K., Palmieri, L.J., Metges, J.P., Pernot, S., et al. (2024) Identification of Microenvironment Features Associated with Primary Resistance to Anti-PD-1/PD-L1 plus Antiangiogenesis in Gastric Cancer through Spatial Transcriptomics and Plasma Proteomics. Molecular Cancer, 23, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
[14] Chen, Z., Chen, Y., Sun, Y., Tang, L., Zhang, L., Hu, Y., et al. (2024) Predicting Gastric Cancer Response to Anti-HER2 Therapy or Anti-HER2 Combined Immunotherapy Based on Multi-Modal Data. Signal Transduction and Targeted Therapy, 9, Article No. 222. [Google Scholar] [CrossRef] [PubMed]
[15] Li, Y., Hu, X., Lin, R., Zhou, G., Zhao, L., Zhao, D., et al. (2022) Single-Cell Landscape Reveals Active Cell Subtypes and Their Interaction in the Tumor Microenvironment of Gastric Cancer. Theranostics, 12, 3818-3833. [Google Scholar] [CrossRef] [PubMed]
[16] Duarte, L.H., Peixoto, H.A., Cardoso, E.M., Esgalhado, A.J. and Arosa, F.A. (2024) IL-10 and TGF-β, but not IL-17A or IFN-γ, Potentiate the IL-15-Induced Proliferation of Human T Cells. International Journal of Molecular Sciences, 25, Article 9376. [Google Scholar] [CrossRef] [PubMed]
[17] Ding, J.T., Yang, K.P., Zhou, H.N., Huang, Y.F., Li, H. and Zong, Z. (2023) Landscapes and Mechanisms of CD8+ T Cell Exhaustion in Gastrointestinal Cancer. Frontiers in Immunology, 14, Article 1149622. [Google Scholar] [CrossRef] [PubMed]
[18] Li, C., Guo, H., Zhai, P., Yan, M., Liu, C., Wang, X., et al. (2024) Spatial and Single-Cell Transcriptomics Reveal a Cancer-Associated Fibroblast Subset in HNSCC That Restricts Infiltration and Antitumor Activity of CD8+ T Cells. Cancer Research, 84, 258-275. [Google Scholar] [CrossRef] [PubMed]
[19] Wu, J., Xiao, Y., Lu, W., Zhang, Z., Yang, H., Cui, X., et al. (2022) Correlation between Tumor Microenvironment and Immune Subtypes Based on CD8 T Cells Enhancing Personalized Therapy of Gastric Cancer. Journal of Oncology, 2022, 1-23. [Google Scholar] [CrossRef] [PubMed]
[20] Huang, H., Li, Z., Wang, D., Yang, Y., Jin, H. and Lu, Z. (2024) Machine Learning Models Based on Quantitative Dynamic Contrast-Enhanced MRI Parameters Assess the Expression Levels of CD3+, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes in Advanced Gastric Carcinoma. Frontiers in Oncology, 14, Article 1365550. [Google Scholar] [CrossRef] [PubMed]
[21] Jiang, W., He, Y., He, W., Wu, G., Zhou, X., Sheng, Q., et al. (2021) Exhausted CD8+ T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Frontiers in Immunology, 11, Article 622509. [Google Scholar] [CrossRef] [PubMed]
[22] Miller, B.C., Sen, D.R., Al Abosy, R., Bi, K., Virkud, Y.V., LaFleur, M.W., et al. (2019) Subsets of Exhausted CD8+ T Cells Differentially Mediate Tumor Control and Respond to Checkpoint Blockade. Nature Immunology, 20, 326-336. [Google Scholar] [CrossRef] [PubMed]
[23] Elia, I., Rowe, J.H., Johnson, S., Joshi, S., Notarangelo, G., Kurmi, K., et al. (2022) Tumor Cells Dictate Anti-Tumor Immune Responses by Altering Pyruvate Utilization and Succinate Signaling in CD8+ T Cells. Cell Metabolism, 34, 1137-1150. [Google Scholar] [CrossRef] [PubMed]
[24] Fazeli, P., Kalani, M. and Hosseini, M. (2023) T Memory Stem Cell Characteristics in Autoimmune Diseases and Their Promising Therapeutic Values. Frontiers in Immunology, 14, Article 1204231. [Google Scholar] [CrossRef] [PubMed]
[25] Zhou, X., Yang, J., Lu, Y., Ma, Y., Meng, Y., Li, Q., et al. (2023) Relationships of Tumor Differentiation and Immune Infiltration in Gastric Cancers Revealed by Single-Cell RNA-Seq Analyses. Cellular and Molecular Life Sciences, 80, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
[26] Tien, F.M., Lu, H.H., Lin, S.Y. and Tsai, H.C. (2023) Epigenetic Remodeling of the Immune Landscape in Cancer: Therapeutic Hurdles and Opportunities. Journal of Biomedical Science, 30, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
[27] Cho, Y., Ahn, S. and Kim, K. (2025) PD-L1 as a Biomarker in Gastric Cancer Immunotherapy. Journal of Gastric Cancer, 25, 177-191. [Google Scholar] [CrossRef] [PubMed]
[28] Hou, W., Zhao, Y. and Zhu, H. (2023) Predictive Biomarkers for Immunotherapy in Gastric Cancer: Current Status and Emerging Prospects. International Journal of Molecular Sciences, 24, Article 15321. [Google Scholar] [CrossRef] [PubMed]
[29] Xie, T., Zhang, Z., Zhang, X., Qi, C., Shen, L. and Peng, Z. (2021) Appropriate PD-L1 Cutoff Value for Gastric Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 11, Article 646355. [Google Scholar] [CrossRef] [PubMed]
[30] Robert, M.E., Rüschoff, J., Jasani, B., Graham, R.P., Badve, S.S., Rodriguez-Justo, M., et al. (2023) Erratum to: High Interobserver Variability among Pathologists Using Combined Positive Score to Evaluate PD-L1 Expression in Gastric and Esophageal Adenocarcinoma. Modern Pathology, 36, Article 100238. [Google Scholar] [CrossRef] [PubMed]
[31] Chong, X., Madeti, Y., Cai, J., Li, W., Cong, L., Lu, J., et al. (2024) Recent Developments in Immunotherapy for Gastrointestinal Tract Cancers. Journal of Hematology & Oncology, 17, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
[32] Kang, W., Qiu, X., Luo, Y., Luo, J., Liu, Y., Xi, J., et al. (2023) Application of Radiomics-Based Multiomics Combinations in the Tumor Microenvironment and Cancer Prognosis. Journal of Translational Medicine, 21, Article No. 598. [Google Scholar] [CrossRef] [PubMed]
[33] Huang, W., Jiang, Y., Xiong, W., Sun, Z., Chen, C., Yuan, Q., et al. (2022) Noninvasive Imaging of the Tumor Immune Microenvironment Correlates with Response to Immunotherapy in Gastric Cancer. Nature Communications, 13, Article No. 5095. [Google Scholar] [CrossRef] [PubMed]
[34] Li, R., Li, J., Wang, Y., Liu, X., Xu, W., Sun, R., et al. (2025) The Artificial Intelligence Revolution in Gastric Cancer Management: Clinical Applications. Cancer Cell International, 25, Article No. 111. [Google Scholar] [CrossRef] [PubMed]
[35] Bo, Z., Song, J., He, Q., Chen, B., Chen, Z., Xie, X., et al. (2024) Application of Artificial Intelligence Radiomics in the Diagnosis, Treatment, and Prognosis of Hepatocellular Carcinoma. Computers in Biology and Medicine, 173, Article 108337. [Google Scholar] [CrossRef] [PubMed]
[36] Qin, Y., Deng, Y., Jiang, H., Hu, N. and Song, B. (2021) Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction. Frontiers in Oncology, 11, Article 631686. [Google Scholar] [CrossRef] [PubMed]
[37] Xie, W., Jiang, S., Xin, F., Jiang, Z., Pan, W., Zhou, X., et al. (2024) Prediction of CD8+ T Lymphocyte Infiltration Levels in Gastric Cancer from Contrast-Enhanced CT and Clinical Factors Using Machine Learning. Medical Physics, 51, 7108-7118. [Google Scholar] [CrossRef] [PubMed]
[38] Huang, W., Wang, X., Zhong, R., Li, Z., Zhou, K., Lyu, Q., et al. (2025) Multimodal Radiopathomics Signature for Prediction of Response to Immunotherapy-Based Combination Therapy in Gastric Cancer Using Interpretable Machine Learning. Cancer Letters, 631, Article 217930. [Google Scholar] [CrossRef] [PubMed]
[39] Ma, J., Yang, F., Yang, R., Li, Y. and Chen, Y. (2025) Interpretable Deep Learning for Gastric Cancer Detection: A Fusion of AI Architectures and Explainability Analysis. Frontiers in Immunology, 16, Article 1596085. [Google Scholar] [CrossRef] [PubMed]
[40] Huang, H., Li, Z., Xia, Y., Zhao, Z., Wang, D., Jin, H., et al. (2023) Association between Radiomics Features of DCE-MRI and CD8+ and CD4+ TILs in Advanced Gastric Cancer. Pathology and Oncology Research, 29, Article 1611001. [Google Scholar] [CrossRef] [PubMed]
[41] Tong, Y., Hu, C., Cen, X., Chen, H., Han, Z., Xu, Z., et al. (2024) A Computed Tomography-Based Radio-Clinical Model for the Prediction of Microvascular Invasion in Gastric Cancer. Molecular and Clinical Oncology, 21, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
[42] Chang, L., Liu, J., Zhu, J., Guo, S., Wang, Y., Zhou, Z., et al. (2025) Advancing Precision Medicine: The Transformative Role of Artificial Intelligence in Immunogenomics, Radiomics, and Pathomics. Cancer Biology & Medicine, 22, 1-15. [Google Scholar] [CrossRef] [PubMed]
[43] Lei, C., Sun, W., Wang, K., Weng, R., Kan, X. and Li, R. (2025) Artificial Intelligence-Assisted Diagnosis of Early Gastric Cancer: Present Practice and Future Prospects. Annals of Medicine, 57, Article 2461679.
[44] Schouten, D., Nicoletti, G., Dille, B., Chia, C., Vendittelli, P., Schuurmans, M., et al. (2025) Navigating the Landscape of Multimodal AI in Medicine: A Scoping Review on Technical Challenges and Clinical Applications. Medical Image Analysis, 105, Article 103621. [Google Scholar] [CrossRef] [PubMed]
[45] Abgrall, G., Holder, A.L., Chelly Dagdia, Z., Zeitouni, K. and Monnet, X. (2024) Should AI Models Be Explainable to Clinicians? Critical Care, 28, Article No. 301. [Google Scholar] [CrossRef] [PubMed]
[46] Binzagr, F. (2024) Explainable AI-Driven Model for Gastrointestinal Cancer Classification. Frontiers in Medicine, 11, Article 1349373. [Google Scholar] [CrossRef] [PubMed]
[47] Wang, J., Dai, J., Cheng, Y., Wang, X., Deng, R. and Zhu, H. (2025) Advances in the Use of Radiomics and Pathomics for Predicting the Efficacy of Neoadjuvant Therapy in Tumors. Translational Oncology, 58, Article 102435. [Google Scholar] [CrossRef] [PubMed]