[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Janjigian, Y.Y., Shitara, K., Moehler, M., Garrido, M., Salman, P., Shen, L., et al. (2021) First-Line Nivolumab plus Chemotherapy versus Chemotherapy Alone for Advanced Gastric, Gastro-Oesophageal Junction, and Oesophageal Adenocarcinoma (Checkmate 649): A Randomised, Open-Label, Phase 3 Trial. The Lancet, 398, 27-40. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Kim, S.T., Cristescu, R., Bass, A.J., Kim, K., Odegaard, J.I., Kim, K., et al. (2018) Comprehensive Molecular Characterization of Clinical Responses to PD-1 Inhibition in Metastatic Gastric Cancer. Nature Medicine, 24, 1449-1458. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R., et al. (2018) A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-Pd-1 or Anti-Pd-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. The Lancet Oncology, 19, 1180-1191. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Thorsson, V., Gibbs, D.L., Brown, S.D., Wolf, D., Bortone, D.S., Ou Yang, T., et al. (2018) The Immune Landscape of Cancer. Immunity, 48, 812-830. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Cristescu, R., Lee, J., Nebozhyn, M., Kim, K., Ting, J.C., Wong, S.S., et al. (2015) Molecular Analysis of Gastric Cancer Identifies Subtypes Associated with Distinct Clinical Outcomes. Nature Medicine, 21, 449-456. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Wang, W., Peng, Y., Feng, X., Zhao, Y., Seeruttun, S.R., Zhang, J., et al. (2021) Development and Validation of a Computed Tomography-Based Radiomics Signature to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced Gastric Cancer. JAMA Network Open, 4, e2121143. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Jiang, Y., Chen, C., Xie, J., Wang, W., Zha, X., Lv, W., et al. (2018) Radiomics Signature of Computed Tomography Imaging for Prediction of Survival and Chemotherapeutic Benefits in Gastric Cancer. EBioMedicine, 36, 171-182. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Giganti, F., Marra, P., Ambrosi, A., Salerno, A., Antunes, S., Chiari, D., et al. (2017) Pre-Treatment MDCT-Based Texture Analysis for Therapy Response Prediction in Gastric Cancer: Comparison with Tumour Regression Grade at Final Histology. European Journal of Radiology, 90, 129-137. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Chalmers, Z.R., Connelly, C.F., Fabrizio, D., et al. (2017) Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Medicine, 9, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Sun, J., Li, X., Wang, Q., Chen, P., Zhao, L. and Gao, Y. (2024) Proteomic Profiling and Biomarker Discovery for Predicting the Response to PD-1 Inhibitor Immunotherapy in Gastric Cancer Patients. Frontiers in Pharmacology, 15, Article 1349459. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Yu, X., Zhai, X., Wu, J., Feng, Q., Hu, C., Zhu, L., et al. (2024) Evolving Perspectives Regarding the Role of the PD-1/PD-L1 Pathway in Gastric Cancer Immunotherapy. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1870, Article 166881. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Cousin, S., Guégan, J.P., Shitara, K., Palmieri, L.J., Metges, J.P., Pernot, S., et al. (2024) Identification of Microenvironment Features Associated with Primary Resistance to Anti-PD-1/PD-L1 plus Antiangiogenesis in Gastric Cancer through Spatial Transcriptomics and Plasma Proteomics. Molecular Cancer, 23, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Chen, Z., Chen, Y., Sun, Y., Tang, L., Zhang, L., Hu, Y., et al. (2024) Predicting Gastric Cancer Response to Anti-HER2 Therapy or Anti-HER2 Combined Immunotherapy Based on Multi-Modal Data. Signal Transduction and Targeted Therapy, 9, Article No. 222. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Li, Y., Hu, X., Lin, R., Zhou, G., Zhao, L., Zhao, D., et al. (2022) Single-Cell Landscape Reveals Active Cell Subtypes and Their Interaction in the Tumor Microenvironment of Gastric Cancer. Theranostics, 12, 3818-3833. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Duarte, L.H., Peixoto, H.A., Cardoso, E.M., Esgalhado, A.J. and Arosa, F.A. (2024) IL-10 and TGF-β, but not IL-17A or IFN-γ, Potentiate the IL-15-Induced Proliferation of Human T Cells. International Journal of Molecular Sciences, 25, Article 9376. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Ding, J.T., Yang, K.P., Zhou, H.N., Huang, Y.F., Li, H. and Zong, Z. (2023) Landscapes and Mechanisms of CD8+ T Cell Exhaustion in Gastrointestinal Cancer. Frontiers in Immunology, 14, Article 1149622. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Li, C., Guo, H., Zhai, P., Yan, M., Liu, C., Wang, X., et al. (2024) Spatial and Single-Cell Transcriptomics Reveal a Cancer-Associated Fibroblast Subset in HNSCC That Restricts Infiltration and Antitumor Activity of CD8+ T Cells. Cancer Research, 84, 258-275. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Wu, J., Xiao, Y., Lu, W., Zhang, Z., Yang, H., Cui, X., et al. (2022) Correlation between Tumor Microenvironment and Immune Subtypes Based on CD8 T Cells Enhancing Personalized Therapy of Gastric Cancer. Journal of Oncology, 2022, 1-23. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Huang, H., Li, Z., Wang, D., Yang, Y., Jin, H. and Lu, Z. (2024) Machine Learning Models Based on Quantitative Dynamic Contrast-Enhanced MRI Parameters Assess the Expression Levels of CD3+, CD4+, and CD8+ Tumor-Infiltrating Lymphocytes in Advanced Gastric Carcinoma. Frontiers in Oncology, 14, Article 1365550. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Jiang, W., He, Y., He, W., Wu, G., Zhou, X., Sheng, Q., et al. (2021) Exhausted CD8+ T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Frontiers in Immunology, 11, Article 622509. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Miller, B.C., Sen, D.R., Al Abosy, R., Bi, K., Virkud, Y.V., LaFleur, M.W., et al. (2019) Subsets of Exhausted CD8+ T Cells Differentially Mediate Tumor Control and Respond to Checkpoint Blockade. Nature Immunology, 20, 326-336. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Elia, I., Rowe, J.H., Johnson, S., Joshi, S., Notarangelo, G., Kurmi, K., et al. (2022) Tumor Cells Dictate Anti-Tumor Immune Responses by Altering Pyruvate Utilization and Succinate Signaling in CD8+ T Cells. Cell Metabolism, 34, 1137-1150. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Fazeli, P., Kalani, M. and Hosseini, M. (2023) T Memory Stem Cell Characteristics in Autoimmune Diseases and Their Promising Therapeutic Values. Frontiers in Immunology, 14, Article 1204231. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Zhou, X., Yang, J., Lu, Y., Ma, Y., Meng, Y., Li, Q., et al. (2023) Relationships of Tumor Differentiation and Immune Infiltration in Gastric Cancers Revealed by Single-Cell RNA-Seq Analyses. Cellular and Molecular Life Sciences, 80, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Tien, F.M., Lu, H.H., Lin, S.Y. and Tsai, H.C. (2023) Epigenetic Remodeling of the Immune Landscape in Cancer: Therapeutic Hurdles and Opportunities. Journal of Biomedical Science, 30, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Cho, Y., Ahn, S. and Kim, K. (2025) PD-L1 as a Biomarker in Gastric Cancer Immunotherapy. Journal of Gastric Cancer, 25, 177-191. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Hou, W., Zhao, Y. and Zhu, H. (2023) Predictive Biomarkers for Immunotherapy in Gastric Cancer: Current Status and Emerging Prospects. International Journal of Molecular Sciences, 24, Article 15321. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Xie, T., Zhang, Z., Zhang, X., Qi, C., Shen, L. and Peng, Z. (2021) Appropriate PD-L1 Cutoff Value for Gastric Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Frontiers in Oncology, 11, Article 646355. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Robert, M.E., Rüschoff, J., Jasani, B., Graham, R.P., Badve, S.S., Rodriguez-Justo, M., et al. (2023) Erratum to: High Interobserver Variability among Pathologists Using Combined Positive Score to Evaluate PD-L1 Expression in Gastric and Esophageal Adenocarcinoma. Modern Pathology, 36, Article 100238. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Chong, X., Madeti, Y., Cai, J., Li, W., Cong, L., Lu, J., et al. (2024) Recent Developments in Immunotherapy for Gastrointestinal Tract Cancers. Journal of Hematology & Oncology, 17, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Kang, W., Qiu, X., Luo, Y., Luo, J., Liu, Y., Xi, J., et al. (2023) Application of Radiomics-Based Multiomics Combinations in the Tumor Microenvironment and Cancer Prognosis. Journal of Translational Medicine, 21, Article No. 598. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Huang, W., Jiang, Y., Xiong, W., Sun, Z., Chen, C., Yuan, Q., et al. (2022) Noninvasive Imaging of the Tumor Immune Microenvironment Correlates with Response to Immunotherapy in Gastric Cancer. Nature Communications, 13, Article No. 5095. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Li, R., Li, J., Wang, Y., Liu, X., Xu, W., Sun, R., et al. (2025) The Artificial Intelligence Revolution in Gastric Cancer Management: Clinical Applications. Cancer Cell International, 25, Article No. 111. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Bo, Z., Song, J., He, Q., Chen, B., Chen, Z., Xie, X., et al. (2024) Application of Artificial Intelligence Radiomics in the Diagnosis, Treatment, and Prognosis of Hepatocellular Carcinoma. Computers in Biology and Medicine, 173, Article 108337. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Qin, Y., Deng, Y., Jiang, H., Hu, N. and Song, B. (2021) Artificial Intelligence in the Imaging of Gastric Cancer: Current Applications and Future Direction. Frontiers in Oncology, 11, Article 631686. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Xie, W., Jiang, S., Xin, F., Jiang, Z., Pan, W., Zhou, X., et al. (2024) Prediction of CD8+ T Lymphocyte Infiltration Levels in Gastric Cancer from Contrast-Enhanced CT and Clinical Factors Using Machine Learning. Medical Physics, 51, 7108-7118. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Huang, W., Wang, X., Zhong, R., Li, Z., Zhou, K., Lyu, Q., et al. (2025) Multimodal Radiopathomics Signature for Prediction of Response to Immunotherapy-Based Combination Therapy in Gastric Cancer Using Interpretable Machine Learning. Cancer Letters, 631, Article 217930. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Ma, J., Yang, F., Yang, R., Li, Y. and Chen, Y. (2025) Interpretable Deep Learning for Gastric Cancer Detection: A Fusion of AI Architectures and Explainability Analysis. Frontiers in Immunology, 16, Article 1596085. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Huang, H., Li, Z., Xia, Y., Zhao, Z., Wang, D., Jin, H., et al. (2023) Association between Radiomics Features of DCE-MRI and CD8+ and CD4+ TILs in Advanced Gastric Cancer. Pathology and Oncology Research, 29, Article 1611001. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Tong, Y., Hu, C., Cen, X., Chen, H., Han, Z., Xu, Z., et al. (2024) A Computed Tomography-Based Radio-Clinical Model for the Prediction of Microvascular Invasion in Gastric Cancer. Molecular and Clinical Oncology, 21, Article No. 96. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Chang, L., Liu, J., Zhu, J., Guo, S., Wang, Y., Zhou, Z., et al. (2025) Advancing Precision Medicine: The Transformative Role of Artificial Intelligence in Immunogenomics, Radiomics, and Pathomics. Cancer Biology & Medicine, 22, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Lei, C., Sun, W., Wang, K., Weng, R., Kan, X. and Li, R. (2025) Artificial Intelligence-Assisted Diagnosis of Early Gastric Cancer: Present Practice and Future Prospects. Annals of Medicine, 57, Article 2461679.
|
[44]
|
Schouten, D., Nicoletti, G., Dille, B., Chia, C., Vendittelli, P., Schuurmans, M., et al. (2025) Navigating the Landscape of Multimodal AI in Medicine: A Scoping Review on Technical Challenges and Clinical Applications. Medical Image Analysis, 105, Article 103621. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Abgrall, G., Holder, A.L., Chelly Dagdia, Z., Zeitouni, K. and Monnet, X. (2024) Should AI Models Be Explainable to Clinicians? Critical Care, 28, Article No. 301. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Binzagr, F. (2024) Explainable AI-Driven Model for Gastrointestinal Cancer Classification. Frontiers in Medicine, 11, Article 1349373. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Wang, J., Dai, J., Cheng, Y., Wang, X., Deng, R. and Zhu, H. (2025) Advances in the Use of Radiomics and Pathomics for Predicting the Efficacy of Neoadjuvant Therapy in Tumors. Translational Oncology, 58, Article 102435. [Google Scholar] [CrossRef] [PubMed]
|