高表达甲胎蛋白的晚期肝细胞癌靶向治疗进展
Advances in Targeted Therapy for Advanced Hepatocellular Carcinoma with High Alpha-Fetoprotein Expression
DOI: 10.12677/acm.2025.15102916, PDF, HTML, XML,    科研立项经费支持
作者: 李有尧*, 李智可, 陈志豪:暨南大学第二临床医学院,深圳市人民医院肝胆胰外科,广东 深圳;刘利平#:深圳市人民医院(南方科技大学第一附属医院,暨南大学第二临床医学院)肝胆胰外科,广东 深圳
关键词: 肝细胞癌甲胎蛋白靶向治疗免疫治疗联合治疗Hepatocellular Carcinoma Alpha-Fetoprotein Targeted Therapy Immunotherapy Combination Therapy
摘要: 肝细胞癌(HCC)伴血清甲胎蛋白(AFP)高表达(AFP ≥ 400 ng/mL)的患者亚群,代表了一个具有独特生物学特征、高度侵袭性和不良预后的高危群体。该亚群在临床上与更大的肿瘤负荷、更高的血管侵犯率及复发风险密切相关。其病理生理学基础涉及关键致癌信号通路的异常激活、上皮–间质转化(EMT)过程的驱动,以及免疫抑制性肿瘤微环境的形成。近年来,针对这一特定人群的靶向治疗及联合策略已取得重要进展,显著改变了治疗格局。本文旨在系统回顾针对高表达AFP晚期肝细胞癌的靶向治疗及其联合方案的演进与关键证据。未来的研究方向应致力于深入阐明AFP驱动HCC进展的分子机制,推动基于生物标志物的前瞻性临床试验,并整合多组学与人工智能技术,以实现真正意义上的个体化治疗,最终改善这一高危患者群体的生存结局。
Abstract: The patient subgroup with hepatocellular carcinoma (HCC) and high serum alpha-fetoprotein (AFP) levels (AFP ≥ 400 ng/mL) constitutes a distinct, high-risk population characterized by unique biological features, highly aggressive behavior, and a poor prognosis. Clinically, this subgroup is strongly associated with a greater tumor burden, a higher incidence of vascular invasion, and an increased risk of recurrence. The underlying pathophysiology involves the aberrant activation of key oncogenic signaling pathways, the induction of epithelial-mesenchymal transition (EMT), and the establishment of an immunosuppressive tumor microenvironment. In recent years, significant progress in targeted therapies and combination strategies for this specific patient population has substantially altered the therapeutic landscape. This review aims to systematically summarize the evolution of, and key evidence for, targeted therapies and their combination regimens in advanced, AFP-high HCC. Future research should focus on further elucidating the molecular mechanisms by which AFP drives HCC progression, advancing biomarker-driven prospective clinical trials, and integrating multi-omics with artificial intelligence. These efforts are crucial for realizing true personalized therapy and ultimately improving the survival outcomes for this high-risk patient population.
文章引用:李有尧, 李智可, 陈志豪, 刘利平. 高表达甲胎蛋白的晚期肝细胞癌靶向治疗进展[J]. 临床医学进展, 2025, 15(10): 1525-1533. https://doi.org/10.12677/acm.2025.15102916

1. 引言

肝细胞癌(HCC)是全球第六大常见癌症和第三大癌症相关死亡原因,其发病率在部分地区仍呈上升趋势[1]。流行病学研究显示,慢性乙型病毒性肝炎、慢性丙型病毒性肝炎、误食黄曲霉毒素、非酒精性脂肪性肝病以及乙醇成瘾等是导致HCC发生的主要危险因素[2]。由于起病隐匿,多数HCC患者在确诊时已属中晚期,丧失了手术、消融和肝移植等根治性治疗的机会,预后极差[3]。甲胎蛋白(AFP)作为一种由胎儿肝细胞和卵黄囊合成的糖蛋白,在成年人健康状态下血清浓度极低。然而,在约60%~80%的HCC患者中,其血清水平会显著升高,成为其诊断、疗效监测和预后评估的关键指标[4]。大量临床研究表明,血清AFP水平与HCC的预后密切相关。高表达AFP (≥400 ng/mL)通常被认为是一个强烈的负向预后标志,预示着肿瘤具有更强的侵袭性、更高的复发率和更短的总体生存期(OS) [5]-[9]。生物学研究揭示,高水平AFP并非被动标志物,而是可能作为主动因子,通过促进增殖、血管生成、上皮–间质转化(EMT)、代谢重编程、免疫逃逸及化疗耐药等机制驱动HCC进展[10]。这些独特的生物学特征解释了为何高表达AFP的HCC亚组对传统治疗(如肝切除、经动脉导管化疗栓塞术TACE)的响应不佳,并凸显了为其开发特异性、高效治疗策略的紧迫性。现有关于AFP的研究多集中于其预测预后、评估疗效及联合诊断的性能,而基于AFP水平分层的晚期HCC治疗报道较少。近年来,随着对HCC分子机制的深入研究,分子靶向及联合治疗取得显著进展,深刻改变了晚期HCC的治疗格局[11]。本文将聚焦于高表达AFP (AFP ≥ 400 ng/mL)这一高危HCC群体,回顾其靶向治疗及其联合治疗策略的演进与研究成果。

2. 高表达甲胎蛋白HCC患者的临床特征及预后

AFP作为经典的HCC生物标志物,尽管学术界在不断探寻新的标志物,但其地位至今仍不可替代[4] [12]。在HCC中,血清AFP水平的显著升高(≥400 ng/mL)其临床意义远超一个单纯的不良预后指标,它更关键地指向了一个独特的HCC亚群,该亚群呈现出高度侵袭性的临床病理学表型,而这正是其治疗困难与预后恶劣的根本原因。

高表达AFP的HCC往往呈现出更大的肿瘤负荷、更强的侵袭性和更差的预后。一项研究表明,血清AFP异常与HCC患者预后较差、肿瘤体积较大、淋巴结及远处转移密切相关[13]。另一项国内大规模回顾性研究证实,术前AFP ≥ 400 ng/mL的HCC患者,其肿瘤在病理学上更倾向于表现为更大的肿瘤负荷和更高的侵袭潜能,如肿瘤直径更大、多发结节、微血管侵犯(MVI)、卫星灶形成及肿瘤包膜不完整[14]。更为关键的是,AFP的预后价值具有独立性。该研究明确指出,AFP ≥ 400 ng/mL是接受根治性肝切除术后患者OS和肿瘤复发的独立危险因素,且这种风险呈剂量依赖关系:与AFP < 400 ng/mL的患者相比,AFP ≥ 1000 ng/mL的患者5年生存率骤降至45.7%,复发率则剧增至67.2%。此外,AFP ≥ 400 ng/mL还被证实是HCC侵犯门静脉系统、形成门静脉癌栓(PVTT)的重要预测因子,其肿瘤侵袭性极强,患者预后极差[6] [15] [16]。高AFP水平已被证明可以预测肝切除术后及肝移植后的肿瘤复发的风险[17] [18]。有研究指出,血清AFP水平,并非肿瘤负荷本身,是与肝移植术后生存最密切相关的肿瘤特征[19]。从分子机制层面看,高表达AFP与EMT、免疫微环境抑制及多条致癌信号通路(如PI3K/AKT/mTOR、Wnt/β-catenin)激活密切相关,共同促进了肿瘤侵袭,致使患者预后不良[20]-[22]。AFP ≥ 400 ng/mL的HCC患者具有“肿瘤负荷大、临床侵袭性强、预后差”的临床表型,这一亚群不仅是高危人群筛选和预后判断的重点,也是精准治疗探索的重要方向。

3. 一线治疗

在一线治疗领域,针对AFP ≥ 400 ng/mL的HCC晚期患者的策略已从单药靶向时代迈向高效联合治疗时代,其中靶向联合免疫治疗已确立为标准方案,而靶向联合介入治疗则为特定患者群体提供了重要选择。

3.1. 分子靶向单药治疗

靶向治疗通过与肿瘤生存、增殖和转移所必需的特定分子结合,精准阻断下游致癌信号传导,从而控制肿瘤生长[23]。尽管仑伐替尼在亚太、欧洲和北美地区20个国家III期研究中及多纳非尼在中国III期研究中证实其总体生存优于索拉非尼[24] [25],但两者研究并未对AFP ≥ 400 ng/mL亚组进行预设分析,限制了其在该高危人群中的精准应用。虽然有研究揭示AFP ≥ 400 ng/mL的HCC患者体内VEGF信号通路显著激活,为抗血管生成靶向药物的应用提供了理论基础[21],但目前尚缺乏前瞻性III期临床试验证据支持任何单药靶向药物成为此类患者的一线标准治疗。

3.2. 分子靶向药物联合免疫检查点抑制剂治疗

免疫检查点抑制剂(ICIs),如抗PD-1/PD-L1/CTLA-4抗体,通过阻断负向免疫调节通路,重新激活机体抗肿瘤免疫反应[26]。ICIs与靶向治疗的结合是晚期HCC一线治疗的突破,其科学基础在于靶向治疗(尤其是抗血管生成药)可改善肿瘤微环境,增强免疫细胞浸润与活性,从而增敏ICIs的疗效[27]

全球III期研究IMbrave150确立了阿替利珠单克隆抗体联合贝伐珠单克隆抗体(“T + A”方案)的一线标准治疗地位。在该研究的AFP ≥ 400 ng/mL亚组中,“T + A”方案相较于索拉非尼,显著提高了患者的1年总生存率(67.2% vs 54.6%),并延长了中位无进展生存期(mPFS,6.8个月 vs 4.3个月),且疗效稳健[28] [29]。该方案是首个成功的靶免联合III期试验,开启了肝癌治疗的靶免联合时代。随后,ORIENT-32研究在中国HBV相关HCC患者中验证了信迪利单克隆抗体联合贝伐珠单克隆抗体类似物(IBI305)的疗效,其AFP ≥ 400 ng/mL亚组同样观察到显著的生存获益[30]。CARES-310研究则证实,卡瑞利珠单克隆抗体联合阿帕替尼方案在AFP ≥ 400 ng/mL亚组中,可使死亡风险降低37%,疾病进展或死亡风险降低60%,为这类高危患者提供了又一个强有力的一线治疗选择[31]。然而,并非所有靶免联合方案均取得成功。LEAP-002研究中,仑伐替尼联合帕博利珠单克隆抗体虽在AFP > 400 ng/mL亚组显示OS获益趋势(HR 0.67),但在总人群中未能达到统计学显著性终点[32]。同样,COSMIC-312研究显示,卡博替尼联合阿替利珠单克隆抗体虽在该亚组中延长了OS和PFS,但伴随更常见的严重不良事件[33]。这些结果提示,在选择靶免方案时,需综合考量其在特定亚组的疗效数据与安全性特征。

3.3. 分子靶向药物联合介入治疗

介入治疗通过导管将化疗药物直接输注至肿瘤供血动脉,最大化瘤内药物浓度,降低全身毒副作用。经动脉导管化疗栓塞术(TACE)等介入治疗可诱导局部缺氧,上调VEGF水平,而TKI类药物能有效抑制此效应,二者联合具备协同增效的理论基础[34]

LAUNCH研究结果表明,对于不可切除HCC,TACE联合仑伐替尼组的mOS (17.8个月 vs 11.5个月)和mPFS (10.6个月 vs 6.4个月)均显著优于仑伐替尼单药组,且在AFP ≥ 400 ng/mL亚组分析中,联合治疗的优势依然显著[35]。对于伴门静脉癌栓(PVTT)的患者,有研究显示肝动脉灌注化疗术(HAIC)联合索拉非尼疗效优于索拉非尼单药,且在AFP ≥ 1000 ng/mL的极高危亚组中亦能带来生存获益[36]。但另一项荟萃分析指出,在该亚组中OS改善未达到统计学显著性[37],提示其应用仍需精准筛选获益人群。

4. 二线治疗及后续治疗探索

对于一线治疗失败的AFP ≥ 400 ng/mL的HCC患者,二线治疗策略的核心是基于生物标志物的精准选择。

4.1. 分子靶向单药治疗

AFP ≥ 400 ng/mL是指导二线靶向治疗的关键预测性生物标志物,其中雷莫芦单克隆抗体的地位尤为突出。REACH研究的探索性分析意外发现,在索拉非尼治疗失败后,基线AFP ≥ 400 ng/mL的亚组(n = 250)从雷莫芦单克隆抗体治疗中获得了显著的OS改善(7.8月 vs 4.2月;HR 0.67;P = 0.006) [38]。基于此发现,前瞻性的全球III期临床试验REACH-2专门入组AFP ≥ 400 ng/mL的晚期HCC患者,结果证实雷莫芦单克隆抗体相较于安慰剂显著改善了mOS (8.5个月 vs 7.3个月;HR 0.71;P = 0.0199)和mPFS (2.8个月 vs 1.6个月;HR 0.452;P < 0.0001),且安全性可控,主要不良事件为高血压和低钠血症[39]。REACH-2成为首个在生物标志物富集人群中取得成功的HCC III期试验。后续对REACH与REACH-2的合并分析进一步确认,雷莫芦单克隆抗体对亚洲和非亚洲、不同病因背景的AFP ≥ 400 ng/mL患者均有显著益处[40] [41],且REACH-2 China研究也证实了其在中国人群中的获益趋势与安全性[42]

其他靶向药物在该人群中也显示出疗效。RESORCE研究的亚组分析表明,基线AFP ≥ 400 ng/mL的高危人群能从瑞戈非尼治疗中获得显著的OS和PFS益处[43]。同样,CELESTIAL研究的亚组分析显示,卡博替尼在该水平上仍会改善患者生存[44]。一项网络荟萃分析指出,瑞戈非尼、卡博替尼和雷莫芦单克隆抗体相较于安慰剂均显示出PFS和OS获益,但活性药物间未显示优效性[45]。此外,AHELP研究显示,阿帕替尼在AFP ≥ 400 ng/mL亚组的疗效优势未达统计学显著性(HR 0.743),但在AFP ≥ 200 ng/mL的患者中则表现出更有利的效果(HR 0.730),提示其可能为特定人群提供生存获益[46]

4.2. 联合治疗探索

靶向、免疫与介入疗法构成了协同互补的联合模式。介入治疗所致的抗原释放可增敏后续免疫治疗,后者则激活全身性抗肿瘤免疫反应。一项荟萃分析评估了TKI + PD-1抑制剂联合TACE/HAIC的疗效[47],结果表明三联疗法组的OS、PFS和ORR均优于双药组,且安全性较好。在AFP > 400 ng/mL亚组分析中,三联疗法组的OS和PFS都能改善。然而,III期研究LEAP-012显示,与TACE联合安慰剂相比,TACE联合仑伐替尼 + 帕博利珠单克隆抗体虽改善了PFS,但在AFP > 400 ng/mL亚组中未达统计学显著性[48]。靶向联合免疫或联合介入的策略目前尚缺乏高级别循证医学证据支持,仍处于探索阶段。随着一线靶免联合方案的普及,未来二线治疗将面临更为复杂的临床场景,如对ICI或TKI耐药后的治疗选择。开发基于耐药机制的新型联合方案、探索跨线治疗的最优序贯模式,将是后续研究的重点方向。

5. 新兴疗法与未来挑战

尽管现有靶向及联合治疗策略已显著改善了高表达AFP的晚期HCC患者的预后,但仍面临原发性耐药、继发性耐药及治疗瓶颈等挑战。为此,科学家们正积极探索直接靶向AFP的创新疗法,深入解析高AFP的HCC亚群的耐药机制,并致力于构建多维度生物标志物体系,以期推动治疗模式向更高层次的精准化迈进。

5.1. 直接靶向AFP的创新细胞与抗体疗法

鉴于AFP在HCC细胞中特异性高表达而在正常成人组织中表达极低,其本身构成了理想的肿瘤相关抗原(TAA),为开发直接靶向的免疫疗法提供了绝佳靶点。

嵌合抗原受体T细胞(CAR-T)疗法:CAR-T技术通过基因工程改造患者自身T细胞,使其表达能够特异性识别肿瘤表面抗原的嵌合抗原受体[49]。针对HCC,科学研究人员已开发出靶向AFP衍生肽/MHC复合物(如AFP158-166/HLA-A*02:01)的CAR-T细胞。临床前研究证实,这类CAR-T细胞能在体外和动物模型中有效识别并杀伤AFP阳性的HCC细胞,展现出强大的抗肿瘤活性[50] [51]。尽管CAR-T疗法在实体瘤中仍面临肿瘤微环境抑制、T细胞浸润不足及靶点异质性等挑战,但靶向AFP的CAR-T疗法为难治性高AFP水平的HCC患者带来了新的希望,其早期临床试验正在积极探索中[52] [53]

T细胞衔接器(T-cell Engagers, TcEs),如双特异性抗体(Bispecific Antibodies, BsAbs),是一类能够同时结合肿瘤细胞表面抗原和T细胞表面标志物(如CD3)的工程化蛋白。通过将T细胞“衔接”至肿瘤细胞旁,TcEs可非特异性地激活T细胞,诱导其对肿瘤的细胞毒性攻击。目前,靶向AFP肽/MHC复合物与CD3的双特异性抗体已进入临床前开发阶段。相较于CAR-T疗法,TcEs作为“即用型”药物,具有生产便捷、成本较低、半衰期可控等优势,有望成为一种更易于临床推广的AFP靶向免疫策略[52] [54] [55]

5.2. 高表达AFP的HCC亚群的潜在耐药机制

高表达AFP的HCC的独特生物学特性决定了其复杂的耐药机制,涵盖了原发性耐药与获得性耐药。潜在的耐药机制可能包括:(1) 固有的免疫抑制微环境:如前所述,高AFP本身可能通过多种途径营造免疫抑制性肿瘤微环境(TME),包括招募调节性T细胞(Tregs)、髓源性抑制细胞(MDSCs),以及下调树突状细胞功能等[10] [22]。这种“冷”肿瘤的免疫表型可能是导致部分患者对ICIs原发性耐药的重要原因。(2) 信号通路代偿与旁路激活:在抗血管生成TKI治疗压力下,肿瘤细胞可能通过激活其他促血管生成通路(如FGF/FGFR、HGF/c-MET)或上调缺氧诱导因子(HIF-1α)来维持血管生成,导致获得性耐药。高表达AFP的HCC中高度活跃的PI3K/AKT/mTOR和Wnt/β-catenin通路,也可能在VEGF通路被阻断后成为关键的“逃逸”通路,驱动肿瘤持续增殖[56]-[58]。(3)克隆演化与表型可塑性:高表达AFP的HCC的高度侵袭性与其EMT过程密切相关[10]。治疗压力可能筛选出具有更强EMT特性的耐药亚克隆,这些细胞不仅对靶向药物不敏感,还具有更强的迁移和侵袭能力。

5.3. 未来挑战:从单一标志物到多维精准分层

尽管AFP ≥ 400 ng/mL能有效富集对特定疗法(如雷莫芦单克隆抗体)敏感的患者,但其固有的异质性要求我们发展更高精度的分层策略。未来的突破口在于整合多维度生物标志物。液体活检为此提供了关键工具,通过分析ctDNA中的基因突变(如TP53、CTNNB1)和拷贝数变异,可构建超越静态AFP水平的复合生物标志物模型,用于动态预测疗效并监测耐药[59]。在此基础上,多组学分析则能揭示高AFP群体内部更精细的分子亚型,为阐明疗效差异提供深层生物学依据。最终,将这些分子数据与人工智能驱动的影像组学相结合,有望构建强大的多模态预测模型。这类模型旨在治疗前就精准预测患者对特定靶免或介入联合方案的反应,从而指导真正个体化的临床决策。

6. 小结与展望

尽管晚期HCC的治疗策略在靶向和免疫领域不断演进,但其治疗仍具挑战性。目前治疗方法主要包括局部治疗(TACE、放疗)、全身治疗(靶向药物、ICIs、化疗)以及这些方式的组合[60]。对于AFP ≥ 400 ng/mL的高危HCC人群,虽多种靶向及联合治疗取得了一定成果,但如何更高效、精准、安全地治疗该人群,仍是未来探索的重要方向。

未来研究应致力于:(1) 深入阐明AFP驱动HCC恶性进展的分子机制,鉴定除VEGF外的其他潜在治疗靶点,为开发新型联合疗法奠定基础。(2) 通过以AFP水平分层设计更多前瞻性临床研究,探索更优的治疗方案,并评估AFP动态变化等复合生物标志物的预测价值。(3) 整合多组学分析和人工智能技术,构建整合临床、影像及分子特征的预后预测模型,推动真正意义上的个体化治疗,最终改善这一高危HCC群体的生存结局,并可能为HCC的整体治疗范式带来深远影响。

基金项目

广东省自然科学基金–面上项目(项目编号:2024A1515013254)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
[2] Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A. and Roberts, L.R. (2019) A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nature Reviews Gastroenterology & Hepatology, 16, 589-604. [Google Scholar] [CrossRef] [PubMed]
[3] Zhou, J., Sun, H., Wang, Z., Cong, W., Zeng, M., Zhou, W., et al. (2023) Guidelines for the Diagnosis and Treatment of Primary Liver Cancer (2022 Edition). Liver Cancer, 12, 405-444. [Google Scholar] [CrossRef] [PubMed]
[4] Galle, P.R., Foerster, F., Kudo, M., Chan, S.L., Llovet, J.M., Qin, S., et al. (2019) Biology and Significance of Alpha‐fetoprotein in Hepatocellular Carcinoma. Liver International, 39, 2214-2229. [Google Scholar] [CrossRef] [PubMed]
[5] Ridder, D.A., Weinmann, A., Schindeldecker, M., Urbansky, L.L., Berndt, K., Gerber, T.S., et al. (2021) Comprehensive Clinicopathologic Study of Alpha Fetoprotein‐Expression in a Large Cohort of Patients with Hepatocellular Carcinoma. International Journal of Cancer, 150, 1053-1066. [Google Scholar] [CrossRef] [PubMed]
[6] Jearth, V., Patil, P.S., Mehta, S., Sundaram, S., Seth, V., Goel, M., et al. (2022) Correlation of Clinicopathological Profile, Prognostic Factors, and Survival Outcomes with Baseline Alfa-Fetoprotein Levels in Patients with Hepatocellular Carcinoma: A Biomarker That Is Bruised but Not Broken. Journal of Clinical and Experimental Hepatology, 12, 841-852. [Google Scholar] [CrossRef] [PubMed]
[7] Donne, R. and Lujambio, A. (2023) The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology, 77, 1773-1796. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, H., Liu, R., Mo, H., Li, R., Lian, J., Liu, Q., et al. (2023) A Novel Nomogram Predicting the Early Recurrence of Hepatocellular Carcinoma Patients after R0 Resection. Frontiers in Oncology, 13, Article ID: 1133807. [Google Scholar] [CrossRef] [PubMed]
[9] Kanwal, F. and Singal, A.G. (2019) Surveillance for Hepatocellular Carcinoma: Current Best Practice and Future Direction. Gastroenterology, 157, 54-64. [Google Scholar] [CrossRef] [PubMed]
[10] Kim, H., Jang, M. and Kim, E. (2025) Exploring the Multifunctional Role of Alpha-Fetoprotein in Cancer Progression: Implications for Targeted Therapy in Hepatocellular Carcinoma and Beyond. International Journal of Molecular Sciences, 26, Article No. 4863. [Google Scholar] [CrossRef] [PubMed]
[11] Singh, A., Zahid, S., Noginskiy, I., Pak, T., Usta, S., Barsoum, M., et al. (2022) A Review of Current and Emerging Therapies for Advanced Hepatocellular Carcinoma. Current Oncology, 29, 6445-6462. [Google Scholar] [CrossRef] [PubMed]
[12] Guan, M., Ouyang, W., Wang, M., Liang, L., Li, N., Fu, T., et al. (2021) Biomarkers for Hepatocellular Carcinoma Based on Body Fluids and Feces. World Journal of Gastrointestinal Oncology, 13, 351-365. [Google Scholar] [CrossRef] [PubMed]
[13] Li, J., Cheng, X., Meng, Y. and Wang, M. (2025) Comparison of Clinical Characteristics and Outcomes in Patients with Hepatocellular Carcinoma Based on Serum Alpha-Fetoprotein Status. European Journal of Gastroenterology & Hepatology, 37, 619-626. [Google Scholar] [CrossRef] [PubMed]
[14] Yao, L., Fan, Z., Wang, M., Diao, Y., Chen, T., Zeng, Y., et al. (2023) Prognostic Value of Serum α‐Fetoprotein Level as an Important Characteristic of Tumor Biology for Patients Undergoing Liver Resection of Early-Stage Hepatocellular Carcinoma (BCLC Stage 0/A): A Large Multicenter Analysis. Annals of Surgical Oncology, 31, 1219-1231. [Google Scholar] [CrossRef] [PubMed]
[15] Jearth, V., Patil, P.S., Mehta, S., Goel, M., Patkar, S., Kulkarni, S., et al. (2022) A Study of the Clinical Profile, Predictors, Prognostic Features, and Survival of Patients with Hepatocellular Carcinoma Having Macroscopic Portal Vein Tumor Thrombosis. Indian Journal of Gastroenterology, 41, 533-543. [Google Scholar] [CrossRef] [PubMed]
[16] Yamamoto, Y. (2015) Post-hepatectomy Survival in Advanced Hepatocellular Carcinoma with Portal Vein Tumor Thrombosis. World Journal of Gastroenterology, 21, 246-253. [Google Scholar] [CrossRef] [PubMed]
[17] Mehta, N., Dodge, J.L., Roberts, J.P. and Yao, F.Y. (2018) Validation of the Prognostic Power of the RETREAT Score for Hepatocellular Carcinoma Recurrence Using the UNOS Database. American Journal of Transplantation, 18, 1206-1213. [Google Scholar] [CrossRef] [PubMed]
[18] Halazun, K.J., Rosenblatt, R.E., Mehta, N., Lai, Q., Hajifathalian, K., Gorgen, A., et al. (2021) Dynamic α-Fetoprotein Response and Outcomes after Liver Transplant for Hepatocellular Carcinoma. JAMA Surgery, 156, 559-567. [Google Scholar] [CrossRef] [PubMed]
[19] Berry, K. and Ioannou, G.N. (2013) Serum Alpha-Fetoprotein Level Independently Predicts Posttransplant Survival in Patients with Hepatocellular Carcinoma. Liver Transplantation, 19, 634-645. [Google Scholar] [CrossRef] [PubMed]
[20] Zhou, X., Li, J., Zheng, T., Chen, H., Cai, C., Ye, S., et al. (2022) Portal Vein Tumor Thrombosis in Hepatocellular Carcinoma: Molecular Mechanism and Therapy. Clinical & Experimental Metastasis, 40, 5-32. [Google Scholar] [CrossRef] [PubMed]
[21] Montal, R., Andreu-Oller, C., Bassaganyas, L., Esteban-Fabró, R., Moran, S., Montironi, C., et al. (2019) Molecular Portrait of High Alpha-Fetoprotein in Hepatocellular Carcinoma: Implications for Biomarker-Driven Clinical Trials. British Journal of Cancer, 121, 340-343. [Google Scholar] [CrossRef] [PubMed]
[22] Krajciova, J., Maluskova, J., Kollar, M., Spicak, J. and Martinek, J. (2017) The Long-Term Results of Radiofrequency Ablation (RFA) in Patients with Barrett S Esophagus Related Neoplasia. Annals of Oncology, 28, iii13. [Google Scholar] [CrossRef
[23] 陈志文, 王龙蓉, 王鲁. 肝细胞癌靶向治疗的现状和进展[J]. 中国临床药理学与治疗学, 2025, 30(2): 171-182.
[24] Qin, S., Bi, F., Gu, S., Bai, Y., Chen, Z., Wang, Z., et al. (2021) Donafenib versus Sorafenib in First-Line Treatment of Unresectable or Metastatic Hepatocellular Carcinoma: A Randomized, Open-Label, Parallel-Controlled Phase II-III Trial. Journal of Clinical Oncology, 39, 3002-3011. [Google Scholar] [CrossRef] [PubMed]
[25] Kudo, M., Finn, R.S., Qin, S., Han, K., Ikeda, K., Piscaglia, F., et al. (2018) Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. The Lancet, 391, 1163-1173. [Google Scholar] [CrossRef] [PubMed]
[26] Zhang, H., Dai, Z., Wu, W., Wang, Z., Zhang, N., Zhang, L., et al. (2021) Regulatory Mechanisms of Immune Checkpoints PD-L1 and CTLA-4 in Cancer. Journal of Experimental & Clinical Cancer Research, 40, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
[27] Llovet, J.M., Castet, F., Heikenwalder, M., Maini, M.K., Mazzaferro, V., Pinato, D.J., et al. (2021) Immunotherapies for Hepatocellular Carcinoma. Nature Reviews Clinical Oncology, 19, 151-172. [Google Scholar] [CrossRef] [PubMed]
[28] Finn, R.S., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2020) Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. New England Journal of Medicine, 382, 1894-1905. [Google Scholar] [CrossRef] [PubMed]
[29] Cheng, A., Qin, S., Ikeda, M., Galle, P.R., Ducreux, M., Kim, T., et al. (2022) Updated Efficacy and Safety Data from Imbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. Journal of Hepatology, 76, 862-873. [Google Scholar] [CrossRef] [PubMed]
[30] Ren, Z., Xu, J., Bai, Y., Xu, A., Cang, S., Du, C., et al. (2021) Sintilimab plus a Bevacizumab Biosimilar (IBI305) versus Sorafenib in Unresectable Hepatocellular Carcinoma (ORIENT-32): A Randomised, Open-Label, Phase 2-3 Study. The Lancet Oncology, 22, 977-990. [Google Scholar] [CrossRef] [PubMed]
[31] Qin, S., Chan, S.L., Gu, S., Bai, Y., Ren, Z., Lin, X., et al. (2023) Camrelizumab plus Rivoceranib versus Sorafenib as First-Line Therapy for Unresectable Hepatocellular Carcinoma (CARES-310): A Randomised, Open-Label, International Phase 3 Study. The Lancet, 402, 1133-1146. [Google Scholar] [CrossRef] [PubMed]
[32] Llovet, J.M., Kudo, M., Merle, P., Meyer, T., Qin, S., Ikeda, M., et al. (2023) Lenvatinib plus Pembrolizumab versus Lenvatinib plus Placebo for Advanced Hepatocellular Carcinoma (LEAP-002): A Randomised, Double-Blind, Phase 3 Trial. The Lancet Oncology, 24, 1399-1410. [Google Scholar] [CrossRef] [PubMed]
[33] Yau, T., Kaseb, A., Cheng, A., Qin, S., Zhu, A.X., Chan, S.L., et al. (2024) Cabozantinib plus Atezolizumab versus Sorafenib for Advanced Hepatocellular Carcinoma (COSMIC-312): Final Results of a Randomised Phase 3 Study. The Lancet Gastroenterology & Hepatology, 9, 310-322. [Google Scholar] [CrossRef] [PubMed]
[34] Qin, J., Huang, Y., Zhou, H. and Yi, S. (2022) Efficacy of Sorafenib Combined with Immunotherapy Following Transarterial Chemoembolization for Advanced Hepatocellular Carcinoma: A Propensity Score Analysis. Frontiers in Oncology, 12, Article ID: 807102. [Google Scholar] [CrossRef] [PubMed]
[35] Peng, Z., Fan, W., Zhu, B., Wang, G., Sun, J., Xiao, C., et al. (2023) Lenvatinib Combined with Transarterial Chemoembolization as First-Line Treatment for Advanced Hepatocellular Carcinoma: A Phase III, Randomized Clinical Trial (LAUNCH). Journal of Clinical Oncology, 41, 117-127. [Google Scholar] [CrossRef] [PubMed]
[36] He, M., Li, Q., Zou, R., Shen, J., Fang, W., Tan, G., et al. (2019) Sorafenib plus Hepatic Arterial Infusion of Oxaliplatin, Fluorouracil, and Leucovorin vs Sorafenib Alone for Hepatocellular Carcinoma with Portal Vein Invasion: A Randomized Clinical Trial. JAMA Oncology, 5, 953-960. [Google Scholar] [CrossRef] [PubMed]
[37] Long, Y., Song, X., Guan, Y., Lan, R., Huang, Z., Li, S., et al. (2023) Sorafenib plus Hepatic Arterial Infusion Chemotherapy versus Sorafenib Alone for Advanced Hepatocellular Carcinoma: A Systematic Review and Meta‐Analysis. Journal of Gastroenterology and Hepatology, 38, 486-495. [Google Scholar] [CrossRef] [PubMed]
[38] Zhu, A.X., Park, J.O., Ryoo, B., Yen, C., Poon, R., Pastorelli, D., et al. (2015) Ramucirumab versus Placebo as Second-Line Treatment in Patients with Advanced Hepatocellular Carcinoma Following First-Line Therapy with Sorafenib (REACH): A Randomised, Double-Blind, Multicentre, Phase 3 Trial. The Lancet Oncology, 16, 859-870. [Google Scholar] [CrossRef] [PubMed]
[39] Zhu, A.X., Kang, Y., Yen, C., Finn, R.S., Galle, P.R., Llovet, J.M., et al. (2019) Ramucirumab after Sorafenib in Patients with Advanced Hepatocellular Carcinoma and Increased α-Fetoprotein Concentrations (REACH-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 20, 282-296. [Google Scholar] [CrossRef] [PubMed]
[40] Yen, C., Kudo, M., Lim, H., Hsu, C., Vogel, A., Brandi, G., et al. (2020) Efficacy and Safety of Ramucirumab in Asian and Non-Asian Patients with Advanced Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein: Pooled Individual Data Analysis of Two Randomized Studies. Liver Cancer, 9, 440-454. [Google Scholar] [CrossRef] [PubMed]
[41] Galle, P.R., Kudo, M., Llovet, J.M., Finn, R.S., Karwal, M., Pezet, D., et al. (2021) Ramucirumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma: Impact of Liver Disease Aetiology. Liver International, 41, 2759-2767. [Google Scholar] [CrossRef] [PubMed]
[42] Shao, G., Bai, Y., Yuan, X., Chen, X., Gu, S., Gu, K., et al. (2022) Ramucirumab as Second-Line Treatment in Chinese Patients with Advanced Hepatocellular Carcinoma and Elevated Alpha-Fetoprotein after Sorafenib (REACH-2 China): A Randomised, Multicentre, Double-Blind Study. eClinicalMedicine, 54, Article ID: 101679. [Google Scholar] [CrossRef] [PubMed]
[43] Bruix, J., Qin, S., Merle, P., Granito, A., Huang, Y., Bodoky, G., et al. (2017) Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on Sorafenib Treatment (RESORCE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet, 389, 56-66. [Google Scholar] [CrossRef] [PubMed]
[44] Abou-Alfa, G.K., Meyer, T., Cheng, A., El-Khoueiry, A.B., Rimassa, L., Ryoo, B., et al. (2018) Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. New England Journal of Medicine, 379, 54-63. [Google Scholar] [CrossRef] [PubMed]
[45] Sonbol, M.B., Riaz, I.B., Naqvi, S.A.A., Almquist, D.R., Mina, S., Almasri, J., et al. (2020) Systemic Therapy and Sequencing Options in Advanced Hepatocellular Carcinoma: A Systematic Review and Network Meta-Analysis. JAMA Oncology, 6, e204930. [Google Scholar] [CrossRef] [PubMed]
[46] Qin, S., Li, Q., Gu, S., Chen, X., Lin, L., Wang, Z., et al. (2021) Apatinib as Second-Line or Later Therapy in Patients with Advanced Hepatocellular Carcinoma (AHELP): A Multicentre, Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet Gastroenterology & Hepatology, 6, 559-568. [Google Scholar] [CrossRef] [PubMed]
[47] Chen, Y., Jia, L., Li, Y., Cui, W., Wang, J., Zhang, C., et al. (2024) Efficacy and Safety of PD-1 Inhibitors plus Anti-Angiogenesis Tyrosine Kinase Inhibitors with or without Transarterial Chemo(embolization) for Unresectable Hepatocellular Carcinoma: A Meta-Analysis. Frontiers in Oncology, 14, Article ID: 1364345. [Google Scholar] [CrossRef] [PubMed]
[48] Kudo, M., Ren, Z., Guo, Y., Han, G., Lin, H., Zheng, J., et al. (2025) Transarterial Chemoembolisation Combined with Lenvatinib plus Pembrolizumab versus Dual Placebo for Unresectable, Non-Metastatic Hepatocellular Carcinoma (LEAP-012): A Multicentre, Randomised, Double-Blind, Phase 3 Study. The Lancet, 405, 203-215. [Google Scholar] [CrossRef] [PubMed]
[49] Li, J., Li, W., Huang, K., Zhang, Y., Kupfer, G. and Zhao, Q. (2018) Chimeric Antigen Receptor T Cell (CAR-T) Immunotherapy for Solid Tumors: Lessons Learned and Strategies for Moving Forward. Journal of Hematology & Oncology, 11, Article No. 22. [Google Scholar] [CrossRef] [PubMed]
[50] Liu, H., Xu, Y., Xiang, J., Long, L., Green, S., Yang, Z., et al. (2017) Targeting Alpha-Fetoprotein (AFP)-MHC Complex with CAR T-Cell Therapy for Liver Cancer. Clinical Cancer Research, 23, 478-488. [Google Scholar] [CrossRef] [PubMed]
[51] 王玮, 沙钧平, 丁锋, 王新明. 以甲胎蛋白-MHC复合物为靶向的CAR-T细胞治疗肝癌的疗效评估[J]. 肝脏, 2022, 27(11): 1175-1179.
[52] Zhou, Y., Wei, S., Xu, M., Wu, X., Dou, W., Li, H., et al. (2024) CAR-T Cell Therapy for Hepatocellular Carcinoma: Current Trends and Challenges. Frontiers in Immunology, 15, Article ID: 1489649. [Google Scholar] [CrossRef] [PubMed]
[53] 高锦莉, 蔡新培, 徐芹芹. CAR-T疗法联合治疗在实体肿瘤中的应用研究进展[J]. 重庆医学, 2025, 54(7): 1719-1723+28.
[54] Yang, Z., Cheng, C., Li, Z., Wang, H., Zhang, M., Xie, E., et al. (2025) Advancing Liver Cancer Treatment with Dual-Targeting CAR-T Therapy. Journal of Nanobiotechnology, 23, Article No. 462. [Google Scholar] [CrossRef] [PubMed]
[55] Dewaele, L. and Fernandes, R.A. (2024) Bispecific T-Cell Engagers for the Recruitment of T Cells in Solid Tumors: A Literature Review. Immunotherapy Advances, 5, ltae005. [Google Scholar] [CrossRef] [PubMed]
[56] Liu, P., Cheng, H., Santiago, S., Raeder, M., Zhang, F., Isabella, A., et al. (2011) Oncogenic PIK3CA-Driven Mammary Tumors Frequently Recur via PI3K Pathway-Dependent and PI3K Pathway-Independent Mechanisms. Nature Medicine, 17, 1116-1120. [Google Scholar] [CrossRef] [PubMed]
[57] Chen, C. (2015) Mechanisms of Hepatocellular Carcinoma and Challenges and Opportunities for Molecular Targeted Therapy. World Journal of Hepatology, 7, 1964-1970. [Google Scholar] [CrossRef] [PubMed]
[58] Wong, C.M., Fan, S.T. and Ng, I.O.L. (2001) β-Catenin Mutation and Overexpression in Hepatocellular Carcinoma: Clinicopathologic and Prognostic Significance. Cancer, 92, 136-145. [Google Scholar] [CrossRef
[59] Chan, Y., Zhang, C., Wu, J., Lu, P., Xu, L., Yuan, H., et al. (2024) Biomarkers for Diagnosis and Therapeutic Options in Hepatocellular Carcinoma. Molecular Cancer, 23, Article No. 189. [Google Scholar] [CrossRef] [PubMed]
[60] Wang, Q., Yu, J., Sun, X., Li, J., Cao, S., Han, Y., et al. (2024) Sequencing of Systemic Therapy in Unresectable Hepatocellular Carcinoma: A Systematic Review and Bayesian Network Meta-Analysis of Randomized Clinical Trials. Critical Reviews in Oncology/Hematology, 204, Article ID: 104522. [Google Scholar] [CrossRef] [PubMed]