[1]
|
Lahey, J.M., Tunç, M., Kearney, J., Modlinski, B., Koo, H., Johnson, R.N., et al. (2002) Laboratory Evaluation of Hypercoagulable States in Patients with Central Retinal Vein Occlusion Who Are Less than 56 Years of Age. Ophthalmology, 109, 126-131. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Noma, H., Yasuda, K. and Shimura, M. (2020) Cytokines and Pathogenesis of Central Retinal Vein Occlusion. Journal of Clinical Medicine, 9, Article 3457. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Avrutsky, M.I., Ortiz, C.C., Johnson, K.V., Potenski, A.M., Chen, C.W., Lawson, J.M., et al. (2020) Endothelial Activation of Caspase-9 Promotes Neurovascular Injury in Retinal Vein Occlusion. Nature Communications, 11, Article No. 3173. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Lendzioszek, M., Bryl, A., Poppe, E., Zorena, K. and Mrugacz, M. (2024) Retinal Vein Occlusion-Background Knowledge and Foreground Knowledge Prospects—A Review. Journal of Clinical Medicine, 13, Article 3950. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Tang, Y., Cheng, Y., Wang, S., Wang, Y., Liu, P. and Wu, H. (2022) Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Frontiers in Medicine, 9, Article 910600. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Romano, F., Lamanna, F., Gabrielle, P.H., Teo, K.Y.C., Battaglia Parodi, M., Iacono, P., et al. (2023) Update on Retinal Vein Occlusion. Asia-Pacific Journal of Ophthalmology, 12, 196-210. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Deng, J., Yao, H., Wang, T., Deng, J., Liu, D. and Li, X. (2014) The Development of Blood-Retinal Barrier during the Interaction of Astrocytes with Vascular Wall Cells. Neural Regeneration Research, 9, 1047-1054. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
褚梦琪, 毛剑波, 朱莎, 陈亦棋, 吴素兰, 张赟, 等. 后Tenon囊下注射曲安奈德治疗缺血型视网膜静脉阻塞黄斑水肿短期疗效观察[J]. 中华眼底病杂志, 2016, 32(5): 522-526.
|
[9]
|
Ozsaygili, C., Duru, Z., Cicek, A., Ulusoy, D.M., Demirtas, A.A. and Duru, N. (2020) The Effect of Age on Aflibercept (Eylea) Response in Diabetic Macular Edema. Retina, 40, 1038-1043. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Iglicki, M., González, D.P., Loewenstein, A. and Zur, D. (2022) Next-Generation Anti-VEGF Agents for Diabetic Macular Oedema. Eye (London, England), 36, 273-277.
|
[11]
|
Ruiz-Medrano, J., Rodríguez-Leor, R., Almazán, E., Lugo, F., Casado-Lopez, E., Arias, L., et al. (2021) Results of Dexamethasone Intravitreal Implant (Ozurdex) in Diabetic Macular Edema Patients: Early versus Late Switch. European Journal of Ophthalmology, 31, 1135-1145. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Aribas, Y.K., Hondur, A.M. and Tezel, T.H. (2020) Choroidal Vascularity Index and Choriocapillary Changes in Retinal Vein Occlusions. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 2389-2397. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Okamoto, M., Yamashita, M., Sakamoto, T. and Ogata, N. (2018) Choroidal Blood Flow and Thickness as Predictors for Response to Anti-Vascular Endothelial Growth Factor Therapy in Macular Edema Secondary to Branch Retinal Vein Occlusion. Retina, 38, 550-558. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Suzuki, M., Nagai, N., Minami, S., Kurihara, T., Kamoshita, M., Sonobe, H., et al. (2020) Predicting Recurrences of Macular Edema Due to Branch Retinal Vein Occlusion during Anti-Vascular Endothelial Growth Factor Therapy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 49-56. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
莫宾, 周海英, 焦璇, 张风. 糖尿病黄斑水肿OCT中高反射灶与视力预后的关系[J]. 眼科, 2017, 26(3): 174-178.
|
[16]
|
邓玉梦, 黄珍, 叶娅, 闫明, 宋艳萍. 强反射点与视网膜分支静脉阻塞和中央静脉阻塞患者血脂水平和炎症指标的相关性[J]. 中华眼底病杂志, 2021, 37(2): 115-121.
|
[17]
|
Takano, Y., Noma, H., Yasuda, K., Yamaguchi, T., Goto, H. and Shimura, M. (2021) Retinal Blood Flow as a Predictor of Recurrence of Macular Edema after Intravitreal Ranibizumab Injection in Central Retinal Vein Occlusion. Ophthalmic Research, 64, 1013-1019. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Jusic, A., Junuzovic, I., Hujdurovic, A., Zhang, L., Vausort, M. and Devaux, Y. (2023) A Machine Learning Model Based on MicroRNAs for the Diagnosis of Essential Hypertension. Non-Coding RNA, 9, Article 64. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Ørskov, M., Vorum, H., Bjerregaard Larsen, T., Vestergaard, N., Lip, G.Y.H., Bek, T., et al. (2022) A Review of Risk Factors for Retinal Vein Occlusions. Expert Review of Cardiovascular Therapy, 20, 761-772. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Rim, T.H., Kim, D.W., Han, J.S. and Chung, E.J. (2015) Retinal Vein Occlusion and the Risk of Stroke Development: A 9-Year Nationwide Population-Based Study. Ophthalmology, 122, 1187-1194. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Rim, T.H., Oh, J., Lee, C.S., Lee, S.C., Kang, S. and Kim, S.S. (2016) Evaluation of the Association between Retinal Vein Occlusion and the Risk of Atrial Fibrillation Development: A 12-Year, Retrospective Nationwide Cohort Study. Scientific Reports, 6, Article No. 34708. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Chen, Y.Y., Sheu, S.J., Hu, H.Y., Chu, D. and Chou, P. (2017) Association between Retinal Vein Occlusion and an Increased Risk of Acute Myocardial Infarction: A Nationwide Population-Based Follow-Up Study. PLOS ONE, 12, e0184016. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Hayreh, S.S., Zimmerman, B., McCarthy, M.J. and Podhajsky, P. (2001) Systemic Diseases Associated with Various Types of Retinal Vein Occlusion. American Journal of Ophthalmology, 131, 61-77. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Jonas, J.B., Xu, L., Wei, W.B., Pan, Z., Yang, H., Holbach, L., et al. (2016) Retinal Thickness and Axial Length. Investigative Opthalmology & Visual Science, 57, 1791-1797. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
McIntosh, R.L., Rogers, S.L., Lim, L., Cheung, N., Wang, J.J., Mitchell, P., et al. (2010) Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology, 117, 1113-1123.e15. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Everett, L.A. and Paulus, Y.M. (2021) Laser Therapy in the Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Current Diabetes Reports, 21, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Schmidl, D., Garhofer, G. and Schmetterer, L. (2011) The Complex Interaction between Ocular Perfusion Pressure and Ocular Blood Flow-Relevance for Glaucoma. Experimental Eye Research, 93, 141-155. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Funk, M., Kriechbaum, K., Prager, F., Benesch, T., Georgopoulos, M., Zlabinger, G.J., et al. (2009) Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investigative Opthalmology & Visual Science, 50, 1025-1032. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Yoshimura, T., Sonoda, K., Sugahara, M., Mochizuki, Y., Enaida, H., Oshima, Y., et al. (2009) Comprehensive Analysis of Inflammatory Immune Mediators in Vitreoretinal Diseases. PLOS ONE, 4, e8158. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Chen, Y.L., Chang, Y.J. and Jiang, M.J. (1999) Monocyte Chemotactic Protein-1 Gene and Protein Expression in Atherogenesis of Hypercholesterolemic Rabbits. Atherosclerosis, 143, 115-123. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Chen, P., Shibata, M., Zidovetzki, R., Fisher, M., Zlokovic, B.V. and Hofman, F.M. (2001) Endothelin-1 and Monocyte Chemoattractant Protein-1 Modulation in Ischemia and Human Brain-Derived Endothelial Cell Cultures. Journal of Neuroimmunology, 116, 62-73. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Lee, P.C., Ho, I.C. and Lee, T.C. (2005) Oxidative Stress Mediates Sodium Arsenite-Induced Expression of Heme Oxygenase-1, Monocyte Chemoattractant Protein-1, and Interleukin-6 in Vascular Smooth Muscle Cells. Toxicological Sciences, 85, 541-550. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Stamatovic, S.M., Keep, R.F., Kunkel, S.L. and Andjelkovic, A.V. (2003) Potential Role of MCP-1 in Endothelial Cell Tight Junction ‘Opening’: Signaling via Rho and Rho Kinase. Journal of Cell Science, 116, 4615-4628. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Lee, Y.R., Liu, M.T., Lei, H.Y., Liu, C.C., Wu, J.M., Tung, Y.C., et al. (2006) MCP-1, a Highly Expressed Chemokine in Dengue Haemorrhagic Fever/Dengue Shock Syndrome Patients, May Cause Permeability Change, Possibly through Reduced Tight Junctions of Vascular Endothelium Cells. Journal of General Virology, 87, 3623-3630. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Elner, S.G., Elner, V.M., Pavilack, M.A., et al. (1992) Modulation and Function of Intercellular Adhesion Molecule-1 (CD54) on Human Retinal Pigment Epithelial Cells. Laboratory Investigation, 66, 200-211.
|
[36]
|
Nishiwaki, A., Ueda, T., Ugawa, S., Shimada, S. and Ogura, Y. (2003) Upregulation of P-Selectin and Intercellular Adhesion Molecule-1 after Retinal Ischemia-Reperfusion Injury. Investigative Opthalmology & Visual Science, 44, 4931-4935. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Hirose, F., Kiryu, J., Miyamoto, K., Nishijima, K., Miyahara, S., Katsuta, H., et al. (2004) In Vivo Evaluation of Retinal Injury after Transient Ischemia in Hypertensive Rats. Hypertension, 43, 1098-1102. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Miyamoto, K., Khosrof, S., Bursell, S., Rohan, R., Murata, T., Clermont, A.C., et al. (1999) Prevention of Leukostasis and Vascular Leakage in Streptozotocin-Induced Diabetic Retinopathy via Intercellular Adhesion Molecule-1 Inhibition. Proceedings of the National Academy of Sciences, 96, 10836-10841. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Tsujikawa, A., Ogura, Y., Hiroshiba, N., Miyamoto, K., Kiryu, J. and Honda, Y. (1998) In Vivo Evaluation of Leukocyte Dynamics in Retinal Ischemia Reperfusion Injury. Investigative Ophthalmology & Visual Science, 39, 793-800.
|
[40]
|
Maruo, N., Morita, I., Shirao, M. and Murota, S. (1992) IL-6 Increases Endothelial Permeability in Vitro. Endocrinology, 131, 710-714. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Yan, S.F., Tritto, I., Pinsky, D., Liao, H., Huang, J., Fuller, G., et al. (1995) Induction of Interleukin 6 (IL-6) by Hypoxia in Vascular Cells. Central Role of the Binding Site for Nuclear Factor-IL-6. Journal of Biological Chemistry, 270, 11463-11471. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Ali, M.H., Schlidt, S.A., Chandel, N.S., Hynes, K.L., Schumacker, P.T. and Gewertz, B.L. (1999) Endothelial Permeability and IL-6 Production during Hypoxia: Role of ROS in Signal Transduction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277, L1057-L1065. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Pearlstein, D.P., Ali, M.H., Mungai, P.T., Hynes, K.L., Gewertz, B.L. and Schumacker, P.T. (2002) Role of Mitochondrial Oxidant Generation in Endothelial Cell Responses to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 566-573. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Shono, T., Ono, M., Izumi, H., Jimi, S., Matsushima, K., Okamoto, T., et al. (1996) Involvement of the Transcription Factor NF-κB in Tubular Morphogenesis of Human Microvascular Endothelial Cells by Oxidative Stress. Molecular and Cellular Biology, 16, 4231-4239. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Taub, D.D., Anver, M., Oppenheim, J.J., Longo, D.L. and Murphy, W.J. (1996) T Lymphocyte Recruitment by Interleukin-8 (IL-8). Il-8-Induced Degranulation of Neutrophils Releases Potent Chemoattractants for Human T Lymphocytes Both in Vitro and in Vivo. Journal of Clinical Investigation, 97, 1931-1941. [Google Scholar] [CrossRef] [PubMed]
|