关于视网膜静脉阻塞继发黄斑水肿相关性分析
Correlation Analysis of Macular Edema Secondary to Retinal Vein Occlusion
DOI: 10.12677/acm.2025.15102919, PDF, HTML, XML,   
作者: 申淇仪, 郭 靖:吉首大学临床学院,湖南 吉首;史 萍*:吉首大学第四临床学院,湖南 怀化
关键词: 视网膜静脉阻塞黄斑水肿发病及预后综述Retinal Vein Occlusion Macular Edema Onset and Prognosis Review
摘要: 阻塞是眼科疾病中造成视网膜血管损害的主要原因之一,通常根据特定静脉闭塞的位置将RVO分为三个主要亚组,即中央静脉阻塞,半中心静脉阻塞和分支静脉阻塞。视网膜静脉阻塞由于血栓形成的堵塞而引起的,可使视网膜中央静脉、半中央或分支静脉受到累及。邻近的视网膜动脉粥样硬化所导致的压迫,是RVO最常见的病因。其它可能是由于血管炎等外在的压迫或静脉壁病所致。有研究对亚洲裔和西班牙裔人视野扩瞳眼底照相检查进行研究汇总分析,表明与白人群相比,亚洲裔和西班牙裔人群患分支视网膜静脉阻塞(Branch retinal vein occlusion, BRVO)的风险更高,而不同种族在中央视网膜静脉阻塞(Central retinal vein occlusion, CRVO)发病率方面未见显著差异。BRVO的主要危险因素包括全身性动脉高血压、动脉硬化和糖尿病,包括血栓形成。局部解剖变异可能在所有类型静脉闭塞的形成中发挥作用,但BRVO最常见的是由于动静脉交叉部位增厚的小动脉压迫静脉。相反,CRVO由于病灶累及视神经头内而发病机制更加复杂。中枢性RVO更可能与青光眼、睡眠呼吸暂停相关,而与血栓形成的相关性并不常见,尤其是在年轻患者中。本文旨在了解RVO-ME的发病机制和预后相关因素,有助于临床早期识别高危病人,制定个体化的治疗方案,设置合理的预后预期,加强病人的教育和随访管理,最终目的是使病人的视力功能得到最大程度的挽救和提高。
Abstract: Obstruction is one of the main causes of retinal vascular damage in ophthalmic diseases. RVO is usually classified into three main subgroups based on the location of specific vein occlusion, namely central retinal vein occlusion, hemi-central retinal vein occlusion, and branch retinal vein occlusion. RVO is caused by thrombosis and can affect the central retinal vein, hemi-central vein, or branch vein. The most common cause of RVO is compression due to atherosclerosis of adjacent retinal arteries. Other possible causes include external compression or venous wall disease such as vasculitis. A study that summarized and analyzed the results of dilated fundus photography in Asian and Hispanic individuals showed that the risk of branch retinal vein occlusion (BRVO) was higher in Asian and Hispanic populations compared to the white population, while there was no significant difference in the incidence of central retinal vein occlusion (CRVO) among different races. The main risk factors for BRVO include systemic arterial hypertension, arteriosclerosis, and diabetes, including thrombosis. Local anatomical variations may play a role in the formation of all types of vein occlusion, but BRVO is most commonly caused by compression of the vein by thickened small arteries at the arteriovenous crossing. In contrast, the pathogenesis of CRVO is more complex due to the involvement of the optic disc. Central RVO is more likely to be associated with glaucoma and sleep apnea, and the association with thrombosis is less common, especially in younger patients. The purpose of this article is to understand the pathogenesis and prognostic factors of RVO-ME, which will help in the early identification of high-risk patients in clinical practice, the formulation of individualized treatment plans, the setting of reasonable prognosis expectations, and the strengthening of patient education and follow-up management. The ultimate goal is to maximize the preservation and improvement of patients’ visual function.
文章引用:申淇仪, 史萍, 郭靖. 关于视网膜静脉阻塞继发黄斑水肿相关性分析[J]. 临床医学进展, 2025, 15(10): 1549-1556. https://doi.org/10.12677/acm.2025.15102919

1. 发病机制与相关因素

筛板后方的动静脉交汇处,视网膜中央静脉和动脉有一个共同的鞘,会使静脉受到压迫,使血管壁变得狭窄,这时动脉壁就会变厚。动脉粥样硬化使动脉壁增厚,导致血管壁狭窄,这也是血管壁狭窄最常见的原因。还有一些包括系统性炎性疾病、视网膜血管炎、视神经炎或葡萄膜炎[1] [2]、感染性或免疫介导。由于子分泌量增加,血管淤积和渗出刺激炎症会出现局灶性静脉炎和视盘肿胀,同时由于氧化应激反应的缺血和缺氧增加,炎症标志物[3] [4]的分泌也会受到刺激。研究表明,减少炎症因子的分泌可以减轻视盘水肿并在一定程度上提高视力,这说明炎症参与了RVO的发生,而此类RVO通常见于年轻群体[5]。对于病因不明的,一般通常采用Virchow三联征(血管壁损伤、血液淤滞和高凝血症)解释[6]。通俗来说视网膜静脉阻塞患者有因血流中断引起的多种并发症而导致视力丧失的风险,血视网膜屏障破坏造成的损伤包括视网膜内出血、视网膜水肿、视网膜渗出的现象,黄斑缺血、视神经病变、玻璃体出血,甚至牵引性视网膜脱离。缺血性视网膜静脉梗阻后,可引起视网膜缺氧,并伴有血管内皮生长因子(VEGF)的上调和释放,引起静脉引流受损。随着黄斑水肿的发展,VEGF增加血管通透性,造成血–视网膜屏障的破坏,使VEGF增高。由于黄斑水肿而引起血管通透性的增加,造成视网膜血管屏障的损伤,使视网膜的血管屏障被破坏。由于视网膜静脉梗阻是由于黄斑水肿,静脉缺血缺氧引起的,视网膜色素上皮损伤,从而引起微血管渗漏,累及黄斑区即引起水肿[7],可使皮肤血管屏障受损,使皮肤色素上皮受损。视网膜静脉梗阻可能是局灶性内皮细胞增生的原因。另一种假设认为,静脉动脉的纤维组织在动脉和静脉之间有扩张的纤维组织的作用,使静脉的管腔受到撞击和扭曲,血管内皮细胞的破坏,内皮细胞数量随之减少[8],视网膜静脉阻塞的病理改变之一便是机体缺血缺氧状态的代偿所产生的机体缺氧状态。

2. 影响发病及严重程度的相关因素

2.1. 年龄和病程

大量临床数据显示,造成黄斑水肿久治不愈的重要原因之一就是高龄。研究显示,随着患者年龄的增加,黄斑水肿的复发几率升高[9]。分析原因,可能是视网膜动静脉交叉处的高龄患者比其他人群静脉狭窄,导致高龄RVO患者视网膜出现循环功能障碍,最终导致黄斑水肿复发几率大大上升。而且,RVO继发黄斑性水肿的反复发作也与病程的长短有着紧密的联系。黄斑水肿的病程是从病人出现临床症状开始,一直到玻璃注射药物的第一次使用为止。治疗黄斑水肿,玻璃体注射药物的时间点是必不可少的,但在这个时间点的选择上,医学界还存在很大的争议。部分研究考虑到视网膜分支静脉阻塞(BRVO)有一些黄斑病变继发的情况,这类病人的视力可以自行恢复,无需任何治疗,所以建议在最初治疗前持续观察2~3个月的病情。有报导指出玻璃内注射抗VEGF药物,至少在黄斑病变症状出现后2个月内,对降低黄斑水肿复发率有正面效果[10]。但也有研究显示,早期的抗VEGF疗法可以抑制黄斑水肿的复发,并且黄斑水肿复发的机率也会随着病程的延长而提高[11]。上述研究结果表明,通过大样本的临床试验,还需要进一步深入的探索和研究,才能在初次行玻璃体内注射药物治疗黄斑水肿的时机选择。

2.2. 形体结构

有数项研究表明脉络膜在RVO出现时存在变化。有研究显示,在BRVO (视网膜分支静脉阻塞)眼的未阻塞半侧视网膜中,评估脉络膜血管腔面积与基质面积比值的脉络膜血管指数呈现升高趋势。此外,在BRVO和CRVO (视网膜中央静脉阻塞)中,黄斑水肿(ME)的存在可能与脉络膜血管指数升高相关[12] [13]。在脉络膜层面,BRVO后会出现脉络膜毛细血管层血流密度的下降。随着基线时黄斑中心凹视网膜厚度的增加,黄斑水肿复发的几率随之增加,有报道指出,黄斑水肿在实际治疗过程中,其黄斑中心凹的视网膜厚度会降低,但有些患者在停止治疗后,视网膜黄斑中心凹的厚度会逐渐增厚,且如果,患者在进行规范治疗前,黄斑中心凹的厚度已经超出正常水平很多,那么他的复发几率也会随之上升。视网膜内层结构紊乱(disorganization of retinal inner layers, DRIL)与复发率也有紧密的关系。有研究表明,像出现DRIL的患者伴有黄斑部水肿时,在其完成规范治疗后,其复发的风险也比正常的患者要高很多,所以,DRIL也被大家所接受作为RVO继发黄斑水肿的预后标志[14],通常认为,伴随DRIL的黄斑水肿患者,由于紊乱区域血液流通受阻,长期得不到很好的营养供应,导致一直处于缺氧状态,使得组织释放VEGF,区域内浓度升高,最终引起黄斑水肿的复发。近几年研究显示,由于视网膜炎症反应之间的密切联系[15] [16],高反射灶可能与视网膜炎性反应有密切的联系。高反射灶与黄斑水肿患者在视网膜炎症小胶质细胞中存在密切的联系[17],如果高反射灶的数量增加,最终导致炎症反应抗VEGF注射或地塞米松植入治疗反应[18]的预测指标、抗VEGF治疗无效患者高反射灶的数量明显多于治疗有效者。上述研究发现:高反射病人在接受上述治疗无效的病人中,有明显多于有效治疗者;而在地塞米松植入治疗有效的病人中,高反射病人的数量要比没有治疗成功的病人高,说明高反射的病人有相关性,与炎症反应有一定的关联性。目前仍有较大的争议,还需要通过大样本的临床研究来论证,因为高反射灶能否真实地反映黄斑水肿的复发。

2.3. 全身基础状况

多年来研究报道了RVO与心血管疾病之间存在密切关联。许多学者发现RVO患者中高血压的患病率显著较高[19] [20],且在RVO发生后,患者发生脑卒中、心房颤动和急性心肌梗死的风险也会增加[21] [22]。近期一项已发表研究的meta分析表明,48%的RVO病例可归因于高血压,20%归因于高脂血症,5%归因于糖尿病。值得注意的是,Hayreh等曾报道,分支静脉阻塞(BRVO)患者的高血压患病率高于中央静脉阻塞(CRVO)和半侧中央静脉阻塞(hemi-CRVO)患者[23]。他们提出,视网膜动脉的动脉粥样硬化变化可能在BRVO的发生中起作用,而与CRVO无关,但该研究未对收缩压(SBP)和舒张压(DBP)进行详细分析[24]。然而在Bum的研究报告中,尽管BRVO患者的DBP显著高于CRVO患者(高出7 mmHg),但两组的高血压患病率相近。基于这一结果,我们可以推测,无论是BRVO还是CRVO,由基础高血压引起的动脉粥样硬化变化均可能导致邻近静脉管腔狭窄;并且舒张期动脉高压对动静脉交叉处的影响可能大于CRVO发生的筛板部位。然而,高血压在CRVO发病机制中的作用仍有待进一步阐明。

2.4. 眼轴

轴向长度短导致眼球较小,可导致视神经头和视网膜神经纤维层内解剖性拥挤。这种拥挤增加了视网膜内动静脉交叉的可能性,即动脉和静脉路径相交的地方[25]。在这些交叉点,动脉搏动或全身性高血压或动脉硬化引起的结构改变会对视网膜静脉施加额外的机械压力,增加静脉压迫和随后闭塞的风险——这是BRVO发病机制中的关键事件[26]。轴向长度短也可能影响视网膜血流动力学,导致视网膜脉管系统内剪切应力的改变。较小球体的结构限制可能影响血液通过视网膜血管的层流,可能导致动静脉交叉点的湍流。湍流可以通过促进内皮功能障碍和血管受压部位血栓形成因子的积累来增加内皮活化和血栓形成的易感性[27]。湍流可以通过促进血管受压部位内皮功能障碍和促血栓形成因子的积累来增加内皮活化和血栓形成的易感性[28]。流行病学研究支持轴向长度短与BRVO风险增加之间的关联。比较BRVO患者和对照组的眼部生物特征参数的研究一致地确定证实较短的轴向长度是BRVO的重要危险因素[29]。这些发现强调了在视网膜静脉闭塞的风险评估中考虑眼部解剖因素的重要性。认识到轴长短BRVO的危险因素具有重要的临床意义。眼科医生应将眼轴长度测量作为BRVO风险患者综合评估的一部分。轴长较短的患者可能需要更密切地监测静脉闭塞的早期迹象。此外,对于轴向长度短且有其他危险因素(如高血压、糖尿病)的患者,应强调控制血压和改变生活方式等预防策略,以降低BRVO的总体风险。

2.5. 炎性因子

已有报道称,伴有黄斑水肿的BRVO (视网膜分支静脉阻塞)患者眼内水平中的单核细胞趋化蛋白-1 (MCP-1) (一种趋化因子)、细胞间粘附分子-1 (ICAM-1) (一种粘附分子)、白细胞介素-6 (IL-6)和IL-8 (炎性细胞因子)会升高[30] [31]。MCP-1是一种促进单核细胞趋化性的趋化因子。其表达会因视网膜缺氧、动脉硬化和氧化应激而增加[32] [33]。MCP-1会促进紧密连接蛋白(如闭锁小带-1 (zonula occludens-1)或Occludin)的磷酸化[34] [35]。ICAM-1是一种粘附分子。正常视网膜色素上皮细胞可表达ICAM-1,并且在体内和体外研究中已证实视网膜和脉络膜中的其他多种细胞(以及白细胞)也可表达ICAM-1 [36]。此外,视网膜缺氧会上调ICAM-1 mRNA和蛋白的表达[37] [38]。ICAM-1表达的上调会因白细胞与血管壁的滚动和粘附增加而诱白细胞停滞(leukostasis),从而导致血流淤滞[39]。在体内发生视网膜静脉阻塞后,已证实白细胞滚动增加以及与静脉壁的粘附会导致血流停滞[40]。因此,白细胞通过粘附于血管内皮细胞而被滞留,可能增加BRVO后视网膜微血管的渗漏。IL-6是一种多功能细胞因子,可通过诱导肌动蛋白丝重排从而在相邻细胞间形成间隙连接(gap junctions),进而增加内皮通透性[41]。在暴露于缺氧条件下的培养内皮细胞中,IL-6 mRNA的表达以时间依赖的方式增加[42] [43]。IL-8是一种有效的趋化因子,也能激活中性粒细胞和T细胞。血管内皮细胞暴露于缺氧和氧化应激会诱导IL-8的产生[44] [45],并且IL-8通过下调紧密连接来调节内皮通透性。鉴于发生黄斑水肿的BRVO (视网膜分支静脉阻塞)患者眼内这些炎症因子和细胞因子的水平会升高,炎症很可能参与了BRVO相关黄斑水肿的发病机制。

3. RVO继发黄斑水肿的治疗

根据所查阅的文献以及实际临床应用,主流的治疗方式包括玻璃体腔注射抗VEGF药物或者进行视网膜激光光凝等方法治疗黄斑水肿。常用的抗VEGF药物有阿柏西普、雷珠单抗、贝伐珠单抗(此为超说明书用药,临床一般不使用);在初治RVO患者中雷珠单抗与阿柏西普的视力结局相似,但是有研究表明,既往长期接受贝伐珠单抗或雷珠单抗治疗,换用阿柏西普后仍可能实现视力和黄斑中心凹厚度(CMT)的显著改善。可能是因阿柏西普其独特的药代动力学/药效学特性不同,与仅抑制VEGF-A的贝伐珠单抗和雷珠单抗不同,阿柏西普对VEGF-A具有更高结合亲和力,并能抑制血管生成过程中释放的VEGF-B和PIGF等其他因子。近年来,法瑞西单抗陆续在美国及日本获批后,我国也于2024年底在适应症中增加了中央静脉阻塞,作为一种双特异性抗体,可特异性抑制血管内皮生长因子-A (VEGF-A)和血管生成素-2 (Ang-2),通过双途径作用提高疗效并延长给药间隔,但由于临床使用时间相对较短,其超长期的安全性和耐受性仍需在更广泛的实际临床应用中持续观察和评估。

而视网膜激光光凝主要的作用机制为:通过激光的生物热凝固效应,对视网膜的异常组织进行热凝破坏、凝固,封闭大片无灌注区,来自脉络膜血循环的氧供应增多,视网膜缺血缺氧的面积减少从而释放出的新生血管生长因子也随之减少,由此降低了新生血管的形成。另外,光凝术还可清除视网膜色素部分失去功能的上皮细胞,新生细胞替代衰老病变的细胞连接完整的外层视网膜屏障,并且光凝术后在受损视网膜与黄斑区中心形成的一道屏障可以增强视网膜的屏障作用,有效阻挡毛细血管的渗出进入中心凹区、促进黄斑水肿的消退从而改善视力。

大量治疗RVO继发黄斑水肿的临床数据表明,单独使用其一种方法往往效果并不理想,因此越来越多的学者开始研究联合治疗来对抗视网膜静脉阻塞引起的黄斑水肿,以更好地提高患者的预后。数据表明,当抗VEGF药物联合激光治疗时可以有效降低RVO继发黄斑水肿的发生风险,其效果明显优于单纯抗VEGF治疗,且能够有效减少抗VEGF药物的注射次数,更快使患者达到最佳视力。如何选择合适的联合治疗方案以及时机还需要进行更大样本的临床研究加以探索总结。

4. 结语

视网膜静脉阻塞(RVO)继发黄斑水肿(ME)是导致患者视力严重下降的主要并发症之一,其发病机制复杂,涉及血流动力学改变、炎症反应、血管内皮生长因子(VEGF)上调等多因素共同作用。年龄、病程、眼部结构特征(如短眼轴、脉络膜变化、视网膜内层结构紊乱DRIL)、全身基础疾病(如高血压、高脂血症、糖尿病)以及眼内炎性因子(如MCP-1、ICAM-1、IL-6、IL-8)水平升高,均与RVO-ME的发生、发展及复发密切相关。当前治疗以玻璃体腔注射抗VEGF药物为主,联合激光光凝、类固醇激素等方式可显著提高疗效,减少复发风险。近年来,联合治疗策略不断拓展,甚至包括电针等非传统疗法,显示出潜在临床应用价值。然而,治疗时机、个体化方案选择及复发预测仍是临床面临的挑战。未来研究应聚焦于更大样本的临床试验,进一步明确各类生物标志物(如炎性因子、高反射灶、DRIL等)在预后评估中的作用,优化治疗策略,提升RVO-ME患者的视力预后和生活质量。同时,加强多学科协作,全面管理患者全身性危险因素,对预防RVO发生及减少ME复发具有重要意义。

NOTES

*通讯作者。

参考文献

[1] Lahey, J.M., Tunç, M., Kearney, J., Modlinski, B., Koo, H., Johnson, R.N., et al. (2002) Laboratory Evaluation of Hypercoagulable States in Patients with Central Retinal Vein Occlusion Who Are Less than 56 Years of Age. Ophthalmology, 109, 126-131. [Google Scholar] [CrossRef] [PubMed]
[2] Noma, H., Yasuda, K. and Shimura, M. (2020) Cytokines and Pathogenesis of Central Retinal Vein Occlusion. Journal of Clinical Medicine, 9, Article 3457. [Google Scholar] [CrossRef] [PubMed]
[3] Avrutsky, M.I., Ortiz, C.C., Johnson, K.V., Potenski, A.M., Chen, C.W., Lawson, J.M., et al. (2020) Endothelial Activation of Caspase-9 Promotes Neurovascular Injury in Retinal Vein Occlusion. Nature Communications, 11, Article No. 3173. [Google Scholar] [CrossRef] [PubMed]
[4] Lendzioszek, M., Bryl, A., Poppe, E., Zorena, K. and Mrugacz, M. (2024) Retinal Vein Occlusion-Background Knowledge and Foreground Knowledge Prospects—A Review. Journal of Clinical Medicine, 13, Article 3950. [Google Scholar] [CrossRef] [PubMed]
[5] Tang, Y., Cheng, Y., Wang, S., Wang, Y., Liu, P. and Wu, H. (2022) Review: The Development of Risk Factors and Cytokines in Retinal Vein Occlusion. Frontiers in Medicine, 9, Article 910600. [Google Scholar] [CrossRef] [PubMed]
[6] Romano, F., Lamanna, F., Gabrielle, P.H., Teo, K.Y.C., Battaglia Parodi, M., Iacono, P., et al. (2023) Update on Retinal Vein Occlusion. Asia-Pacific Journal of Ophthalmology, 12, 196-210. [Google Scholar] [CrossRef] [PubMed]
[7] Deng, J., Yao, H., Wang, T., Deng, J., Liu, D. and Li, X. (2014) The Development of Blood-Retinal Barrier during the Interaction of Astrocytes with Vascular Wall Cells. Neural Regeneration Research, 9, 1047-1054. [Google Scholar] [CrossRef] [PubMed]
[8] 褚梦琪, 毛剑波, 朱莎, 陈亦棋, 吴素兰, 张赟, 等. 后Tenon囊下注射曲安奈德治疗缺血型视网膜静脉阻塞黄斑水肿短期疗效观察[J]. 中华眼底病杂志, 2016, 32(5): 522-526.
[9] Ozsaygili, C., Duru, Z., Cicek, A., Ulusoy, D.M., Demirtas, A.A. and Duru, N. (2020) The Effect of Age on Aflibercept (Eylea) Response in Diabetic Macular Edema. Retina, 40, 1038-1043. [Google Scholar] [CrossRef] [PubMed]
[10] Iglicki, M., González, D.P., Loewenstein, A. and Zur, D. (2022) Next-Generation Anti-VEGF Agents for Diabetic Macular Oedema. Eye (London, England), 36, 273-277.
[11] Ruiz-Medrano, J., Rodríguez-Leor, R., Almazán, E., Lugo, F., Casado-Lopez, E., Arias, L., et al. (2021) Results of Dexamethasone Intravitreal Implant (Ozurdex) in Diabetic Macular Edema Patients: Early versus Late Switch. European Journal of Ophthalmology, 31, 1135-1145. [Google Scholar] [CrossRef] [PubMed]
[12] Aribas, Y.K., Hondur, A.M. and Tezel, T.H. (2020) Choroidal Vascularity Index and Choriocapillary Changes in Retinal Vein Occlusions. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 2389-2397. [Google Scholar] [CrossRef] [PubMed]
[13] Okamoto, M., Yamashita, M., Sakamoto, T. and Ogata, N. (2018) Choroidal Blood Flow and Thickness as Predictors for Response to Anti-Vascular Endothelial Growth Factor Therapy in Macular Edema Secondary to Branch Retinal Vein Occlusion. Retina, 38, 550-558. [Google Scholar] [CrossRef] [PubMed]
[14] Suzuki, M., Nagai, N., Minami, S., Kurihara, T., Kamoshita, M., Sonobe, H., et al. (2020) Predicting Recurrences of Macular Edema Due to Branch Retinal Vein Occlusion during Anti-Vascular Endothelial Growth Factor Therapy. Graefes Archive for Clinical and Experimental Ophthalmology, 258, 49-56. [Google Scholar] [CrossRef] [PubMed]
[15] 莫宾, 周海英, 焦璇, 张风. 糖尿病黄斑水肿OCT中高反射灶与视力预后的关系[J]. 眼科, 2017, 26(3): 174-178.
[16] 邓玉梦, 黄珍, 叶娅, 闫明, 宋艳萍. 强反射点与视网膜分支静脉阻塞和中央静脉阻塞患者血脂水平和炎症指标的相关性[J]. 中华眼底病杂志, 2021, 37(2): 115-121.
[17] Takano, Y., Noma, H., Yasuda, K., Yamaguchi, T., Goto, H. and Shimura, M. (2021) Retinal Blood Flow as a Predictor of Recurrence of Macular Edema after Intravitreal Ranibizumab Injection in Central Retinal Vein Occlusion. Ophthalmic Research, 64, 1013-1019. [Google Scholar] [CrossRef] [PubMed]
[18] Jusic, A., Junuzovic, I., Hujdurovic, A., Zhang, L., Vausort, M. and Devaux, Y. (2023) A Machine Learning Model Based on MicroRNAs for the Diagnosis of Essential Hypertension. Non-Coding RNA, 9, Article 64. [Google Scholar] [CrossRef] [PubMed]
[19] Ørskov, M., Vorum, H., Bjerregaard Larsen, T., Vestergaard, N., Lip, G.Y.H., Bek, T., et al. (2022) A Review of Risk Factors for Retinal Vein Occlusions. Expert Review of Cardiovascular Therapy, 20, 761-772. [Google Scholar] [CrossRef] [PubMed]
[20] Rim, T.H., Kim, D.W., Han, J.S. and Chung, E.J. (2015) Retinal Vein Occlusion and the Risk of Stroke Development: A 9-Year Nationwide Population-Based Study. Ophthalmology, 122, 1187-1194. [Google Scholar] [CrossRef] [PubMed]
[21] Rim, T.H., Oh, J., Lee, C.S., Lee, S.C., Kang, S. and Kim, S.S. (2016) Evaluation of the Association between Retinal Vein Occlusion and the Risk of Atrial Fibrillation Development: A 12-Year, Retrospective Nationwide Cohort Study. Scientific Reports, 6, Article No. 34708. [Google Scholar] [CrossRef] [PubMed]
[22] Chen, Y.Y., Sheu, S.J., Hu, H.Y., Chu, D. and Chou, P. (2017) Association between Retinal Vein Occlusion and an Increased Risk of Acute Myocardial Infarction: A Nationwide Population-Based Follow-Up Study. PLOS ONE, 12, e0184016. [Google Scholar] [CrossRef] [PubMed]
[23] Hayreh, S.S., Zimmerman, B., McCarthy, M.J. and Podhajsky, P. (2001) Systemic Diseases Associated with Various Types of Retinal Vein Occlusion. American Journal of Ophthalmology, 131, 61-77. [Google Scholar] [CrossRef] [PubMed]
[24] Jonas, J.B., Xu, L., Wei, W.B., Pan, Z., Yang, H., Holbach, L., et al. (2016) Retinal Thickness and Axial Length. Investigative Opthalmology & Visual Science, 57, 1791-1797. [Google Scholar] [CrossRef] [PubMed]
[25] McIntosh, R.L., Rogers, S.L., Lim, L., Cheung, N., Wang, J.J., Mitchell, P., et al. (2010) Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review. Ophthalmology, 117, 1113-1123.e15. [Google Scholar] [CrossRef] [PubMed]
[26] Everett, L.A. and Paulus, Y.M. (2021) Laser Therapy in the Treatment of Diabetic Retinopathy and Diabetic Macular Edema. Current Diabetes Reports, 21, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
[27] Schmidl, D., Garhofer, G. and Schmetterer, L. (2011) The Complex Interaction between Ocular Perfusion Pressure and Ocular Blood Flow-Relevance for Glaucoma. Experimental Eye Research, 93, 141-155. [Google Scholar] [CrossRef] [PubMed]
[28] Funk, M., Kriechbaum, K., Prager, F., Benesch, T., Georgopoulos, M., Zlabinger, G.J., et al. (2009) Intraocular Concentrations of Growth Factors and Cytokines in Retinal Vein Occlusion and the Effect of Therapy with Bevacizumab. Investigative Opthalmology & Visual Science, 50, 1025-1032. [Google Scholar] [CrossRef] [PubMed]
[29] Yoshimura, T., Sonoda, K., Sugahara, M., Mochizuki, Y., Enaida, H., Oshima, Y., et al. (2009) Comprehensive Analysis of Inflammatory Immune Mediators in Vitreoretinal Diseases. PLOS ONE, 4, e8158. [Google Scholar] [CrossRef] [PubMed]
[30] Chen, Y.L., Chang, Y.J. and Jiang, M.J. (1999) Monocyte Chemotactic Protein-1 Gene and Protein Expression in Atherogenesis of Hypercholesterolemic Rabbits. Atherosclerosis, 143, 115-123. [Google Scholar] [CrossRef] [PubMed]
[31] Chen, P., Shibata, M., Zidovetzki, R., Fisher, M., Zlokovic, B.V. and Hofman, F.M. (2001) Endothelin-1 and Monocyte Chemoattractant Protein-1 Modulation in Ischemia and Human Brain-Derived Endothelial Cell Cultures. Journal of Neuroimmunology, 116, 62-73. [Google Scholar] [CrossRef] [PubMed]
[32] Lee, P.C., Ho, I.C. and Lee, T.C. (2005) Oxidative Stress Mediates Sodium Arsenite-Induced Expression of Heme Oxygenase-1, Monocyte Chemoattractant Protein-1, and Interleukin-6 in Vascular Smooth Muscle Cells. Toxicological Sciences, 85, 541-550. [Google Scholar] [CrossRef] [PubMed]
[33] Stamatovic, S.M., Keep, R.F., Kunkel, S.L. and Andjelkovic, A.V. (2003) Potential Role of MCP-1 in Endothelial Cell Tight Junction ‘Opening’: Signaling via Rho and Rho Kinase. Journal of Cell Science, 116, 4615-4628. [Google Scholar] [CrossRef] [PubMed]
[34] Lee, Y.R., Liu, M.T., Lei, H.Y., Liu, C.C., Wu, J.M., Tung, Y.C., et al. (2006) MCP-1, a Highly Expressed Chemokine in Dengue Haemorrhagic Fever/Dengue Shock Syndrome Patients, May Cause Permeability Change, Possibly through Reduced Tight Junctions of Vascular Endothelium Cells. Journal of General Virology, 87, 3623-3630. [Google Scholar] [CrossRef] [PubMed]
[35] Elner, S.G., Elner, V.M., Pavilack, M.A., et al. (1992) Modulation and Function of Intercellular Adhesion Molecule-1 (CD54) on Human Retinal Pigment Epithelial Cells. Laboratory Investigation, 66, 200-211.
[36] Nishiwaki, A., Ueda, T., Ugawa, S., Shimada, S. and Ogura, Y. (2003) Upregulation of P-Selectin and Intercellular Adhesion Molecule-1 after Retinal Ischemia-Reperfusion Injury. Investigative Opthalmology & Visual Science, 44, 4931-4935. [Google Scholar] [CrossRef] [PubMed]
[37] Hirose, F., Kiryu, J., Miyamoto, K., Nishijima, K., Miyahara, S., Katsuta, H., et al. (2004) In Vivo Evaluation of Retinal Injury after Transient Ischemia in Hypertensive Rats. Hypertension, 43, 1098-1102. [Google Scholar] [CrossRef] [PubMed]
[38] Miyamoto, K., Khosrof, S., Bursell, S., Rohan, R., Murata, T., Clermont, A.C., et al. (1999) Prevention of Leukostasis and Vascular Leakage in Streptozotocin-Induced Diabetic Retinopathy via Intercellular Adhesion Molecule-1 Inhibition. Proceedings of the National Academy of Sciences, 96, 10836-10841. [Google Scholar] [CrossRef] [PubMed]
[39] Tsujikawa, A., Ogura, Y., Hiroshiba, N., Miyamoto, K., Kiryu, J. and Honda, Y. (1998) In Vivo Evaluation of Leukocyte Dynamics in Retinal Ischemia Reperfusion Injury. Investigative Ophthalmology & Visual Science, 39, 793-800.
[40] Maruo, N., Morita, I., Shirao, M. and Murota, S. (1992) IL-6 Increases Endothelial Permeability in Vitro. Endocrinology, 131, 710-714. [Google Scholar] [CrossRef] [PubMed]
[41] Yan, S.F., Tritto, I., Pinsky, D., Liao, H., Huang, J., Fuller, G., et al. (1995) Induction of Interleukin 6 (IL-6) by Hypoxia in Vascular Cells. Central Role of the Binding Site for Nuclear Factor-IL-6. Journal of Biological Chemistry, 270, 11463-11471. [Google Scholar] [CrossRef] [PubMed]
[42] Ali, M.H., Schlidt, S.A., Chandel, N.S., Hynes, K.L., Schumacker, P.T. and Gewertz, B.L. (1999) Endothelial Permeability and IL-6 Production during Hypoxia: Role of ROS in Signal Transduction. American Journal of Physiology-Lung Cellular and Molecular Physiology, 277, L1057-L1065. [Google Scholar] [CrossRef] [PubMed]
[43] Pearlstein, D.P., Ali, M.H., Mungai, P.T., Hynes, K.L., Gewertz, B.L. and Schumacker, P.T. (2002) Role of Mitochondrial Oxidant Generation in Endothelial Cell Responses to Hypoxia. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 566-573. [Google Scholar] [CrossRef] [PubMed]
[44] Shono, T., Ono, M., Izumi, H., Jimi, S., Matsushima, K., Okamoto, T., et al. (1996) Involvement of the Transcription Factor NF-κB in Tubular Morphogenesis of Human Microvascular Endothelial Cells by Oxidative Stress. Molecular and Cellular Biology, 16, 4231-4239. [Google Scholar] [CrossRef] [PubMed]
[45] Taub, D.D., Anver, M., Oppenheim, J.J., Longo, D.L. and Murphy, W.J. (1996) T Lymphocyte Recruitment by Interleukin-8 (IL-8). Il-8-Induced Degranulation of Neutrophils Releases Potent Chemoattractants for Human T Lymphocytes Both in Vitro and in Vivo. Journal of Clinical Investigation, 97, 1931-1941. [Google Scholar] [CrossRef] [PubMed]