[1]
|
Zheng, Y., Fu, H., Au, O.K. and Tai, C. (2011) Bilateral Normal Filtering for Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 17, 1521-1530. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Fleishman, S., Drori, I. and Cohen-Or, D. (2003) Bilateral Mesh Denoising. ACM SIGGRAPH 2003 Papers, San Diego, 27-31 July 2003, 950-953. [Google Scholar] [CrossRef]
|
[3]
|
Zhang, W., Deng, B., Zhang, J., Bouaziz, S. and Liu, L. (2015) Guided Mesh Normal Filtering. Computer Graphics Forum, 34, 23-34. [Google Scholar] [CrossRef]
|
[4]
|
He, L. and Schaefer, S. (2013) Mesh denoising via L0 minimization. ACM Transactions on Graphics, 32, 1-8. [Google Scholar] [CrossRef]
|
[5]
|
王鹏, 王胜法, 曹俊杰, 等. L1优化在网格去噪中的应用[J]. 中国图象图形学报, 2014, 19(4): 637-644.
|
[6]
|
Hattori, S., Yatagawa, T., Ohtake, Y. and Suzuki, H. (2022) Learning Self-Prior for Mesh Denoising Using Dual Graph Convolutional Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M. and Hassner, T., Eds., Computer Vision—ECCV 2022, Springer, 363-379. [Google Scholar] [CrossRef]
|
[7]
|
Li, X., Li, R., Zhu, L., Fu, C. and Heng, P. (2021) DNF-Net: A Deep Normal Filtering Network for Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 27, 4060-4072. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Field, D.A. (1988) Laplacian Smoothing and Delaunay Triangulations. Communications in Applied Numerical Methods, 4, 709-712. [Google Scholar] [CrossRef]
|
[9]
|
Taubin, G. (1995) A Signal Processing Approach to Fair Surface Design. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH’95, Los Angeles, CA, 6-11 August 1995, 351-358. [Google Scholar] [CrossRef]
|
[10]
|
Taubin, G. (1995) Curve and Surface Smoothing without Shrinkage. Proceedings of IEEE International Conference on Computer Vision, Cambridge, 20-23 June 1995, 852-857.
|
[11]
|
Vollmer, J., Mencl, R. and Müller, H. (1999) Improved Laplacian Smoothing of Noisy Surface Meshes. Computer Graphics Forum, 18, 131-138. [Google Scholar] [CrossRef]
|
[12]
|
Desbrun, M., Meyer, M., Schröder, P. and Barr, A.H. (1999) Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques—SIGGRAPH’99, Los Angeles, CA, 8-13 August 1999, 317-324. [Google Scholar] [CrossRef]
|
[13]
|
Meyer, M., Desbrun, M., Schröder, P. and Barr, A.H. (2003) Discrete Differential-Geometry Operators for Triangulated 2-manifolds. In: Mathematics and Visualization, Springer Berlin Heidelberg, 35-57. [Google Scholar] [CrossRef]
|
[14]
|
Zhang, Y. and Ben Hamza, A. (2007) Vertex-based Diffusion for 3-D Mesh Denoising. IEEE Transactions on Image Processing, 16, 1036-1045. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Liu, Z., Wang, W., Zhong, S., Zeng, B., Liu, J. and Wang, W. (2020) Mesh Denoising via a Novel Mumford-Shah Framework. Computer-Aided Design, 126, Article ID: 102858. [Google Scholar] [CrossRef]
|
[16]
|
Wang, W., Pan, W., Dai, C., Dazeley, R., Wei, L., Rolfe, B., et al. (2023) Segmentation-Driven Feature-Preserving Mesh Denoising. The Visual Computer, 40, 6201-6217. [Google Scholar] [CrossRef]
|
[17]
|
Xu, L., Lu, C., Xu, Y. and Jia, J. (2011) Image Smoothing via L0 Gradient Minimization. Proceedings of the 2011 SIGGRAPH Asia Conference, Hong Kong, 12-15 December 2011, 1-12. [Google Scholar] [CrossRef]
|
[18]
|
Cheng, X., Zeng, M. and Liu, X. (2014) Feature-Preserving Filtering with L0 Gradient Minimization. Computers & Graphics, 38, 150-157. [Google Scholar] [CrossRef]
|
[19]
|
Centin, M. and Signoroni, A. (2018) Mesh Denoising with (Geo)metric Fidelity. IEEE Transactions on Visualization and Computer Graphics, 24, 2380-2396. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
赵勇, 李玲, 单欣, 等. 三维几何模型的L0去噪算法[J]. 计算机辅助设计与图形学学报, 2018, 30(5): 772-777.
|
[21]
|
Donoho, D.L., Elad, M. and Temlyakov, V.N. (2006) Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise. IEEE Transactions on Information Theory, 52, 6-18. [Google Scholar] [CrossRef]
|
[22]
|
Wang, R., Yang, Z., Liu, L., Deng, J. and Chen, F. (2014) Decoupling Noise and Features via Weighted ℓ1-Analysis Compressed Sensing. ACM Transactions on Graphics, 33, 1-12. [Google Scholar] [CrossRef]
|
[23]
|
Wu, X., Zheng, J., Cai, Y. and Fu, C. (2015) Mesh Denoising Using Extended ROF Model with L1 Fidelity. Computer Graphics Forum, 34, 35-45. [Google Scholar] [CrossRef]
|
[24]
|
Zhong, S., Xie, Z., Liu, J. and Liu, Z. (2019) Robust Mesh Denoising via Triple Sparsity. Sensors, 19, Article 1001. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Li, X., Zhu, L., Fu, C. and Heng, P. (2018) Non‐Local Low‐Rank Normal Filtering for Mesh Denoising. Computer Graphics Forum, 37, 155-166. [Google Scholar] [CrossRef]
|
[26]
|
Zhang, H., Wu, C., Zhang, J. and Deng, J. (2015) Variational Mesh Denoising Using Total Variation and Piecewise Constant Function Space. IEEE Transactions on Visualization and Computer Graphics, 21, 873-886. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Zhong, S., Xie, Z., Wang, W., Liu, Z. and Liu, L. (2018) Mesh Denoising via Total Variation and Weighted Laplacian Regularizations. Computer Animation and Virtual Worlds, 29, e1827. [Google Scholar] [CrossRef]
|
[28]
|
Wei, M., Huang, J., Xie, X., Liu, L., Wang, J. and Qin, J. (2019) Mesh Denoising Guided by Patch Normal Co-Filtering via Kernel Low-Rank Recovery. IEEE Transactions on Visualization and Computer Graphics, 25, 2910-2926. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Liu, Z., Lai, R., Zhang, H. and Wu, C. (2019) Triangulated Surface Denoising Using High Order Regularization with Dynamic Weights. SIAM Journal on Scientific Computing, 41, B1-B26. [Google Scholar] [CrossRef]
|
[30]
|
Liu, Z., Zhong, S., Xie, Z. and Wang, W. (2019) A Novel Anisotropic Second Order Regularization for Mesh Denoising. Computer Aided Geometric Design, 71, 190-201. [Google Scholar] [CrossRef]
|
[31]
|
Bredies, K., Kunisch, K. and Pock, T. (2010) Total Generalized Variation. SIAM Journal on Imaging Sciences, 3, 492-526. [Google Scholar] [CrossRef]
|
[32]
|
Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M. and Bischof, H. (2013) Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation. 2013 IEEE International Conference on Computer Vision, Sydney, 1-8 December 2013, 993-1000. [Google Scholar] [CrossRef]
|
[33]
|
Jung, M. and Kang, M. (2015) Simultaneous Cartoon and Texture Image Restoration with Higher-Order Regularization. SIAM Journal on Imaging Sciences, 8, 721-756. [Google Scholar] [CrossRef]
|
[34]
|
Feng, W.S., Lei, H. and Gao, Y. (2014) Speckle Reduction via Higher Order Total Variation Approach. IEEE Transactions on Image Processing, 23, 1831-1843. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Knoll, F., Bredies, K., Pock, T. and Stollberger, R. (2010) Second Order Total Generalized Variation (TGV) for MRI. Magnetic Resonance in Medicine, 65, 480-491. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Niu, S., Gao, Y., Bian, Z., Huang, J., Chen, W., Yu, G., et al. (2014) Sparse-View X-Ray CT Reconstruction via Total Generalized Variation Regularization. Physics in Medicine and Biology, 59, 2997-3017. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Liu, Z., Li, Y., Wang, W., Liu, L. and Chen, R. (2022) Mesh Total Generalized Variation for Denoising. IEEE Transactions on Visualization and Computer Graphics, 28, 4418-4433. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Zhang, H., He, Z. and Wang, X. (2022) A Novel Mesh Denoising Method Based on Relaxed Second-Order Total Generalized Variation. SIAM Journal on Imaging Sciences, 15, 1-22. [Google Scholar] [CrossRef]
|
[39]
|
Wang, J., Han, Z., Jiang, W. and Kim, J. (2023) A Fast, Efficient, and Explicit Phase-Field Model for 3D Mesh Denoising. Applied Mathematics and Computation, 458, Article ID: 128239. [Google Scholar] [CrossRef]
|
[40]
|
Wang, J., Li, Y., Choi, Y., Lee, C. and Kim, J. (2020) Fast and Accurate Smoothing Method Using a Modified Allen-Cahn Equation. Computer-Aided Design, 120, Article ID: 102804. [Google Scholar] [CrossRef]
|
[41]
|
Pan, J., Bo, P., Li, Y. and Wang, Z. (2024) Mesh Denoising of Developable Surfaces with Curved Foldings. Computer-Aided Design, 177, Article ID: 103776. [Google Scholar] [CrossRef]
|
[42]
|
Tomasi, C. and Manduchi, R. (1998) Bilateral Filtering for Gray and Color Images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), Bombay, 7 January 1998, 839-846. [Google Scholar] [CrossRef]
|
[43]
|
Jones, T.R., Durand, F. and Desbrun, M. (2003) Non-Iterative, Feature-Preserving Mesh Smoothing. ACM SIGGRAPH 2003 Papers, San Diego, 27-31 July 2003, 943-949. [Google Scholar] [CrossRef]
|
[44]
|
Vialaneix, G. and Boubekeur, T. (2011) SBL Mesh Filter: Fast Separable Approximation of Bilateral Mesh Filtering. ACM SIGGRAPH 2011 Talks, Vancouver, 7-11 August 2011, 1. [Google Scholar] [CrossRef]
|
[45]
|
Choudhury, P. and Tumblin, J. (2005) The Trilateral Filter for High Contrast Images and Meshes. ACM SIGGRAPH 2005 Courses on—SIGGRAPH’05, Los Angeles, 31 July-4 August 2005, 5. [Google Scholar] [CrossRef]
|
[46]
|
Wang, Y., Yang, Y. and Liu, Q. (2020) Feature-Aware Trilateral Filter with Energy Minimization for 3D Mesh Denoising. IEEE Access, 8, 52232-52244. [Google Scholar] [CrossRef]
|
[47]
|
Yagou, H., Ohtake, Y. and Belyaev, A. (2002) Mesh Smoothing via Mean and Median Filtering Applied to Face Normals. Proceedings of Geometric Modeling and Processing, Wako, 10-12 July 2002, 124-131.
|
[48]
|
Sun, X., Rosin, P.L., Martin, R. and Langbein, F. (2007) Fast and Effective Feature-Preserving Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 13, 925-938. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Wei, M., Yu, J., Pang, W., Wang, J., Qin, J., Liu, L., et al. (2015) Bi-Normal Filtering for Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 21, 43-55. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Hurtado, J., Gattass, M., Raposo, A. and Lopez, C. (2024) Sharp Feature-Preserving Mesh Denoising. Multimedia Tools and Applications, 83, 69555-69580. [Google Scholar] [CrossRef]
|
[51]
|
Wang, P., Fu, X., Liu, Y., Tong, X., Liu, S. and Guo, B. (2015) Rolling Guidance Normal Filter for Geometric Processing. ACM Transactions on Graphics, 34, 1-9. [Google Scholar] [CrossRef]
|
[52]
|
Zhang, J., Deng, B., Hong, Y., Peng, Y., Qin, W. and Liu, L. (2019) Static/Dynamic Filtering for Mesh Geometry. IEEE Transactions on Visualization and Computer Graphics, 25, 1774-1787. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Zhao, W., Liu, X., Wang, S. and Zhao, D. (2018) Multi-Scale Similarity Enhanced Guided Normal Filtering. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S. and Fan, X., Eds., Advances in Multimedia Information Processing—PCM 2017, Springer, 645-653. [Google Scholar] [CrossRef]
|
[54]
|
Liu, S., Rho, S., Wang, R. and Jiang, F. (2018) Feature-Preserving Mesh Denoising Based on Guided Normal Filtering. Multimedia Tools and Applications, 77, 23009-23021. [Google Scholar] [CrossRef]
|
[55]
|
Zhao, W., Liu, X., Wang, S., Fan, X. and Zhao, D. (2021) Graph-Based Feature-Preserving Mesh Normal Filtering. IEEE Transactions on Visualization and Computer Graphics, 27, 1937-1952. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Zhong, S., Song, Z., Liu, Z., Xie, Z., Chen, J., Liu, L., et al. (2021) Shape-Aware Mesh Normal Filtering. Computer-Aided Design, 140, Article ID: 103088. [Google Scholar] [CrossRef]
|
[57]
|
Guo, M., Song, Z., Han, C., Zhong, S., Lv, R. and Liu, Z. (2021) Mesh Denoising via Adaptive Consistent Neighborhood. Sensors, 21, Article 412. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Li, T., Liu, W., Liu, H., Wang, J. and Liu, L. (2019) Feature-Convinced Mesh Denoising. Graphical Models, 101, 17-26. [Google Scholar] [CrossRef]
|
[59]
|
Han, H. and Han, J. (2022) Modified Bilateral Filter for Feature Enhancement in Mesh Denoising. IEEE Access, 10, 56845-56862. [Google Scholar] [CrossRef]
|
[60]
|
Yadav, S.K., Reitebuch, U. and Polthier, K. (2019) Robust and High Fidelity Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 25, 2304-2310. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Wang, P., Liu, Y. and Tong, X. (2016) Mesh Denoising via Cascaded Normal Regression. ACM Transactions on Graphics, 35, 1-12. [Google Scholar] [CrossRef]
|
[62]
|
Wang, J., Huang, J., Wang, F.L., Wei, M., Xie, H. and Qin, J. (2019) Data-Driven Geometry-Recovering Mesh Denoising. Computer-Aided Design, 114, 133-142. [Google Scholar] [CrossRef]
|
[63]
|
Zhao, W.B., Liu, X.M., Zhao, Y.S., et al. (2019) NormalNet: Learning Based Guided Normal Filtering for Mesh Denoising. arXiv: 1903.04015. https://arXiv.org/abs/1903.04015
|
[64]
|
Armando, M., Franco, J. and Boyer, E. (2022) Mesh Denoising with Facet Graph Convolutions. IEEE Transactions on Visualization and Computer Graphics, 28, 2999-3012. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
Shen, Y., Fu, H., Du, Z., Chen, X., Burnaev, E., Zorin, D., et al. (2022) GCN-Denoiser: Mesh Denoising with Graph Convolutional Networks. ACM Transactions on Graphics, 41, 1-14. [Google Scholar] [CrossRef]
|
[66]
|
Xing, Y., Tan, J., Hong, P., He, Y. and Hu, M. (2022) Mesh Denoising Based on Recurrent Neural Networks. Symmetry, 14, Article 1233. [Google Scholar] [CrossRef]
|
[67]
|
Zhao, W., Liu, X., Jiang, J., Zhao, D., Li, G. and Ji, X. (2022) Local Surface Descriptor for Geometry and Feature Preserved Mesh Denoising. Proceedings of the AAAI Conference on Artificial Intelligence, 36, 3446-3453. [Google Scholar] [CrossRef]
|
[68]
|
Tang, W., Gong, Y. and Qiu, G. (2023) Feature Preserving 3D Mesh Denoising with a Dense Local Graph Neural Network. Computer Vision and Image Understanding, 233, Article ID: 103710. [Google Scholar] [CrossRef]
|
[69]
|
Wang, X., Wei, H., Fan, X. and Zhao, D. (2024) Hyper-MD: Mesh Denoising with Customized Parameters Aware of Noise Intensity and Geometric Characteristics. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 16-22 June 2024, 4651-4660. [Google Scholar] [CrossRef]
|
[70]
|
Lee, S., Heo, S. and Lee, S. (2025) DMESH: A Structure-Preserving Diffusion Model for 3-D Mesh Denoising. IEEE Transactions on Neural Networks and Learning Systems, 36, 4385-4399. [Google Scholar] [CrossRef] [PubMed]
|
[71]
|
Wang, X., Zhang, X., Cui, W., Xiong, R., Fan, X. and Zhao, D. (2024) Mesh Denoising Using Filtering Coefficients Jointly Aware of Noise and Geometry. Proceedings of the 32nd ACM International Conference on Multimedia, Melbourne, 28 October-1 November 2024, 1791-1799. [Google Scholar] [CrossRef]
|
[72]
|
Zhao, W.B., Liu, X.M., Zhai, D.M., et al. (2024) Mesh Denoising Transformer. arXiv: 2405.06536. https://arxiv.org/abs/2405.06536
|
[73]
|
Zhou, Z., Yuan, M., Zhao, M., Guo, J. and Yan, D. (2025) Resgem: Multi-Scale Graph Embedding Network for Residual Mesh Denoising. IEEE Transactions on Visualization and Computer Graphics, 31, 2028-2044. [Google Scholar] [CrossRef] [PubMed]
|