3例KCNQ2发育性癫痫性脑病患儿的临床特征及基因变异分析
Clinical Features and Genetic Variation Analysis of Three Children with KCNQ2-Related Developmental and Epileptic Encephalopathy
DOI: 10.12677/acm.2025.15102931, PDF, HTML, XML,    科研立项经费支持
作者: 周 扬, 郑晨曦, 高群婷:济宁医学院临床医学院,山东 济宁;魏善英*, 李秋波*:济宁医学院附属医院儿科,山东 济宁
关键词: KCNQ2基因发育性癫痫性脑病The KCNQ2 Gene Developmental and Epileptic Encephalopathy
摘要: 目的:探讨KCNQ2发育性癫痫性脑病患儿的临床特征及基因变异特点,为该疾病的临床诊断与预后评估提供参考。方法:回顾性分析3例确诊为KCNQ2发育性癫痫性脑病患儿的临床病例资料,并系统复习国内外相关文献,总结疾病的临床特征与基因变异特点。结果:3例患儿中,2例为女性,分别于生后24小时内、26小时起病;1例为男性,于生后第3天起病。所有患儿均以癫痫发作为首发症状,发作形式包括间断发作或丛集性发作,发作频繁时频率可达10次/天以上,具体发作类型以局灶性发作为主,部分合并强直发作。脑电图检查显示,3例患儿均存在脑电图异常,表现为多灶性放电、爆发–抑制或高度失节律。治疗方面,初期给予多种抗癫痫发作药物(如苯巴比妥、左乙拉西坦等)治疗,效果均不佳;其中2例患儿在添加奥卡西平后,癫痫发作完全消失。预后方面,3例患儿均出现明显的精神运动发育落后;1例因持续频繁癫痫发作,于1岁6个月时夭折。基因检测结果显示,3例患儿均携带KCNQ2基因新发错义变异,具体变异位点分别为c.620G>C (p.Arg207Pro)、c.997C>T (p.Arg333Trp)及c.908C>T (p.Ser303Phe)。结论:KCNQ2基因特定位点的新发错义变异是导致发育性癫痫性脑病的重要致病原因。由该类变异引发的疾病具有典型临床特征:癫痫多在新生儿早期起病,发作频率高且对多种抗癫痫药物反应差,常合并明显精神运动发育迟缓,整体预后差。
Abstract: Objective: To explore the clinical features and genetic variation characteristics in children with KCNQ2-related developmental and epileptic encephalopathy (DEE), and to provide references for the clinical diagnosis and prognostic evaluation of this disease. Methods: A retrospective analysis was performed on the clinical case data of three children diagnosed with KCNQ2-related developmental and epileptic encephalopathy (DEE). Additionally, relevant domestic and international literature was systematically reviewed to summarize the clinical features and genetic variation characteristics of the disease. Results: Among the three children, two were female, with onset within 24 hours and 26 hours after birth; one was male, with onset on the third day after birth. All children presented with epileptic seizures as the initial symptom, with seizure patterns including intermittent seizures or clustered seizures. When seizures were frequent, the frequency could reach more than 10 episodes per day. The specific seizure types were mainly focal seizures, and some were complicated with tonic seizures. Electroencephalogram (EEG) examination showed that all three children had abnormal electroencephalographic activity, manifested as multifocal discharges, burst-suppression waves, or hypsarrhythmia. In terms of treatment, multiple anti-seizure medications (such as phenobarbital, levetiracetam, etc.) were administered initially, but the therapeutic effect was poor in all cases; epileptic seizures disappeared completely in two children after oxcarbazepine was added. Regarding prognosis, all three children had significant psychomotor developmental delay; one child died at 1 year and 6 months of age due to persistent and frequent epileptic seizures. Genetic testing results revealed that all three children carried de novo missense variants in the KCNQ2 gene, with specific variant sites being c.620G>C (p.Arg207Pro), c.997C>T (p.Arg333Trp), and c.908C>T (p.Ser303Phe). Conclusion: De novo missense variants at specific loci of the KCNQ2 gene are important pathogenic causes of developmental and epileptic encephalopathy (DEE). Diseases caused by such variants exhibit typical clinical features: epilepsy usually onsets in the early neonatal period, with high seizure frequency and poor response to multiple anti-seizure medications; they are often accompanied by significant psychomotor developmental delay, resulting in an overall poor prognosis.
文章引用:周扬, 郑晨曦, 高群婷, 魏善英, 李秋波. 3例KCNQ2发育性癫痫性脑病患儿的临床特征及基因变异分析[J]. 临床医学进展, 2025, 15(10): 1659-1667. https://doi.org/10.12677/acm.2025.15102931

1. 引言

发育性癫痫性脑病(Developmental and Epileptic Encephalopathy, DEE)是一组严重威胁儿童神经系统健康的罕见疾病,以癫痫发作和神经发育障碍为核心特征,病因复杂多样。目前已明确的致病因素包括遗传性基因变异、脑部结构异常、代谢性疾病及围产期脑损伤等,其中遗传因素在近年研究中被证实是多数DEE亚型的主要致病原因。电压门控钾离子通道Q亚家族成员2 (Potassium Voltage-Gated Channel Subfamily Q Member 2, KCNQ2)是导致癫痫的常见致病基因之一,其变异在不明原因早发癫痫性脑病中的检出率达13% [1] [2],是早发癫痫性脑病的重要遗传致病因素。最初研究认为,KCNQ2变异仅与良性家族性新生儿癫痫(benign familial neonatal epilepsy, BFNE)相关[3] [4];但近年研究发现,该基因变异还可导致DEE [5]-[7],此类疾病被命名为KCNQ2发育性癫痫性脑病(KCNQ2-related Developmental and Epileptic Encephalopathy, KCNQ2-DEE)。值得注意的是,BFNE与KCNQ2-DEE虽均以新生儿期癫痫发作起病,但二者预后差异显著:前者呈良性病程,癫痫发作多在生后4个月内自行缓解,且无神经系统后遗症;后者则以顽固性癫痫发作为主要特征,整体预后不佳。因此,如何早期识别KCNQ2-DEE并实施早期干预,是目前儿科神经领域极具挑战性的医学问题。本研究回顾性分析济宁医学院附属医院儿科收治的3例KCNQ2-DEE患儿的临床特征与遗传学特征,旨在提高临床医师对该疾病的认知水平,为临床诊疗决策及预后评估提供参考。

2. 临床资料

患儿,女,1日龄,因“抽搐10小时”入院。患儿于生后26小时出现抽搐,共发作6次,发作表现为双眼凝视、眨眼、口周发绀、双手握拳、四肢肌张力增高,伴左上肢抖动及恶心、吸吮样动作,每次发作持续约1分钟后自行缓解。患儿系G2P2,胎龄38+2周剖宫产出生,出生体重3100 g,出生时无缺氧窒息史。父母均体健,非近亲结婚;同胞姐姐3岁,体健。家族中无癫痫、智力低下等遗传病史。入院体格检查:身长50.0 cm,头围35.0 cm;神志清,反应尚可,哭声尖直,无特殊面容;前囟平坦,张力不高;心肺腹查体未见异常;四肢肌张力增高,新生儿原始反射可正常引出。实验室检查:血常规、肝肾功能、心肌酶、电解质(含血钙、血磷、血镁)、血糖、血浆氨、血乳酸、甲状腺功能均无异常;血、尿遗传代谢病筛查结果正常。影像学与功能检查:心脏彩超提示筛孔型房间隔缺损;视频脑电图示发作间期多量多灶性放电(右侧额极区、中央区、中颞区、枕区),监测到6次局灶性发作,发作同期脑电图可见右侧大脑半球尖波、尖慢波节律性发放;颅脑磁共振成像(magnetic resonance imaging, MRI)示双侧苍白球对称性异常信号,双侧颞部及小脑脑外间隙增宽。治疗过程:入院后先给予大剂量维生素B6静脉注射,并口服苯巴比妥抗癫痫治疗,但效果不佳,患儿1月龄内仍频繁癫痫发作,呈丛集性,每日发作数次至十余次。后给于苯巴比妥联合左乙拉西坦治疗,发作频率降至平均1~5天1次,最长间隔50天无发作;但后续再次出现频繁局灶性发作,每次持续约3分钟后缓解。4月龄时加用奥卡西平联合治疗,自添加奥卡西平后,患儿未再出现癫痫发作。随访与基因检测:末次随访时患儿1岁龄,发育评估示:能独坐但不能站立,可认识家人,无语言表达能力,不能听懂简单指令。结合患儿临床表现,初步诊断为DEE。全外显子基因检测结果证实:患儿携带KCNQ2基因新发嵌合变异,变异位点为c.620G>C (p.Arg207Pro),位于Exon4区域(详见图1)。

Figure 1. Sequencing map of the c.620G>C (p.Arg207Pro) mutation site in exon 4 of the KCNQ2 gene (the child was mosaic; the father and mother were both wild-type)

1. KCNQ2基因4号外显子c.620G>C (p.Arg207Pro)突变位点测序图(患儿嵌合,父亲、母亲均为野生型)

  • 女,1日龄,因“抽搐1天”入院。患儿于生后24小时内出现抽搐,共发作6次,发作表现为意识丧失、双眼凝视、口角抽动,伴左侧肢体强直抖动、右侧肢体屈曲,每次发作持续20秒至1分钟后可自行缓解。患儿系G4P3,胎龄39+5周经阴分娩,出生体重3690 g,出生时无缺氧窒息史。父母均体健,患儿有2名同母异父哥哥,均身体健康。家族中无癫痫、智力低下等遗传病史。入院体格检查:身长52.0 cm,头围34.0 cm;神志清,反应可,呼吸平稳,无特殊面容;前囟平坦,张力不高;心肺腹查体未见异常;四肢肌力、肌张力均正常,新生儿原始反射可正常引出。实验室检查:血常规、肝肾功能、心肌酶、电解质(含钙、磷、镁)、血糖、血乳酸、甲状腺功能均无异常;血浆氨水平为67.6 μmol/L;血、尿遗传代谢病筛查结果正常。影像学与功能检查:视频脑电图示多量多灶性放电(右侧额区、中央区、前颞区、中颞区,以右侧中央区最为显著),监测到3次起源于右侧中央区的局灶性发作;颅脑MRI示右侧枕部及大脑镰旁硬膜下少许出血,伴胼胝体发育不良合并脂肪瘤。治疗过程:入院后给予静脉注射苯巴比妥钠(饱和剂量20 mg/kg/d),24小时后改为口服苯巴比妥片(维持剂量5 mg/kg/d)治疗,但效果不佳,患儿仍每日发作1~2次,最长仅间隔2周无发作。患儿27日龄时再次出现频繁癫痫发作,发作频率升至3~7次/天,在口服苯巴比妥基础上联合左乙拉西坦,同时持续泵入咪达唑仑(剂量逐渐加至5.5 μg/kg/min),该治疗方案维持14天。期间患儿每日仍有发作,频率达10~24次/天,发作表现同前,且发作时心率升至180~200次/分;间歇期患儿吃奶量减少、反应差,嗜睡明显。复查视频脑电图示:间歇期大量多灶性放电,8小时监测期间记录到11次起源于右侧中央区的局灶性发作。临床建议进一步联合奥卡西平治疗,但患儿家长拒绝,选择放弃治疗并出院。患儿出院后停用咪达唑仑,继续口服苯巴比妥与左乙拉西坦,癫痫发作频率逐渐减少,出院当日发作5~6次,后续曾间隔3天无发作。患儿生后51天门诊复诊时,加用奥卡西平治疗。随访与基因检测:末次随访时患儿4月龄,自加用奥卡西平后未再出现癫痫发作,但发育评估提示明显落后:不能抬头,自主活动少,双眼无神、无法被逗笑,且不能追视物体。经患儿父母知情同意后,对患儿行全外显子组测序检查,结果显示:患儿携带KCNQ2基因新发杂合突变,突变位点为c.997C>T (p.Arg333Trp),位于Exon7区域(详见图2)。

Figure 2. Sequencing map of the c.997C>T (p.Arg333Trp) mutation site in exon 7 of the KCNQ2 gene (the child was heterozygous; the father and mother were both wild-type)

2. KCNQ2基因7号外显子c.997C>T (p.Arg333Trp)突变位点测序图(患儿杂合,父亲、母亲均为野生型)

例3,男,1月6日龄,因“间断抽搐1月余”入院。患儿生后即表现为吃奶量少、反应差、嗜睡;生后第3天出现抽搐,发作初始表现为“吭吭”发声,随后出现四肢肌张力增高,伴哭闹、痛苦表情及口唇青紫,每次发作持续30秒至2分钟后缓解,发作频率平均为1~3天1次。患儿系G3P2,足月剖宫产出生,出生体重3450 g,出生时无缺氧窒息史。父母均体健,同胞姐姐1人,身体健康。家族中无癫痫、智力低下等遗传病史。入院体格检查:体重4000 g,身长51.0 cm,头围37.0 cm;精神、反应欠佳,无特殊面容;前囟平坦,张力不高;心肺腹查体未见异常;双侧阴囊增大,透光试验阳性;病理反射未引出。实验室检查:外院检测示血常规、肝肾功能、心肌酶、生化指标(含钙、磷、镁)均无异常;血、尿遗传代谢病筛查结果正常。影像学检查:心脏彩超:提示卵圆孔未闭、三尖瓣反流、轻度肺动脉高压;生殖系彩超:双侧睾丸鞘膜腔积液;泌尿系彩超:右侧重复肾待排除;颅脑MRI:胼胝体压部体积偏小,考虑发育不良。视频脑电图:呈重度异常,表现为爆发–抑制图形,监测到1次局灶性电临床发作;基因检测:提示KCNQ2基因新发杂合变异,变异位点为c.908C>T (p.Ser303Phe),位于Exon6区域,疑似致病(详见图3);未检测到具有临床意义的基因拷贝数缺失、重复及大片段纯合子改变。治疗过程:生后23天外院给于苯巴比妥口服,先后联合托吡酯、氯硝西泮、左乙拉西坦、吡仑帕奈治疗,但整体效果不佳,患儿仍每日均有发作,发作频繁时可达10余次/天,具体发作类型分为两类:局灶性发作:表现为四肢肌张力增高,右上肢屈曲上抬、左上肢伸直,有时伴肢体抖动,患儿表情痛苦;强直痉挛发作:发作初始大叫一声,随后全身蜷曲、用力向左转头,成串发作,有时伴吞咽动作,每次持续约1分钟后缓解。复查视频脑电图示:脑电背景呈高度失节律,监测到多次强直发作与局灶性发作,结合临床表现与检查结果,诊断为“婴儿癫痫性脑病:大田原综合征演变为West综合征”。随访与结局:患儿末次门诊随访时为1岁5个月龄,每日仍有频繁癫痫发作,发育评估提示严重发育落后:不能独坐,不认识家人,无语言表达能力,且不能听懂简单指令。患儿最终于1岁6个月龄时,因频繁癫痫发作导致病情恶化夭折。

Figure 3. Sequencing map of the c.908C>T (p.Ser303Phe) mutation site in exon 6 of the KCNQ2 gene (the child was heterozygous; the father, mother, and sister were all wild-type)

3. KCNQ2基因6号外显子c.908C>T (p.Ser303Phe)突变位点测序图(患儿杂合,父亲、母亲、姐姐均为野生型)

3. 讨论

KCNQ2-DEE是与KCNQ2基因变异相关的发育性癫痫性脑病(DEE),其典型表现为新生儿早期起病的难治性癫痫,发作形式多为强直性发作,常伴有爆发–抑制脑电图异常及严重发育迟缓[8]。本研究报告的3例患儿均携带KCNQ2基因新发错义变异,其临床特征与上述疾病特点高度契合:3例患儿分别于生后24小时内、26小时及第3天出现首次癫痫发作,发作频繁时频率可达10次/天以上,发作形式局灶性发作、强直发作。诊断方面,1例患儿明确诊断为大田原综合征,后演变为West综合征;其余2例诊断为未分型癫痫性脑病。脑电图表现存在差异:2例以多量多灶性放电为主要特征,1例起病时呈爆发–抑制图形,后演变为高度失节律。治疗反应与预后方面,3例患儿呈现不同结局:例1、例2初始采用苯巴比妥联合左乙拉西坦治疗,效果均不佳;加用奥卡西平后,癫痫发作得到有效控制,但仍遗留明显精神运动发育落后。例3在苯巴比妥基础上先后联合左乙拉西坦、托吡酯、氯硝西泮、吡仑帕奈治疗,仍无法控制频繁癫痫发作,且伴严重全面发育落后,最终于1岁6个月龄时夭折。综上,3例患儿均符合KCNQ2-DEE的核心特征:新生儿早期出现难以控制的癫痫发作(以频繁局灶性发作或强直发作为主)、脑电图异常(爆发–抑制、高度失节律或多灶性放电)、明显精神运动发育落后,且基因检测均证实存在KCNQ2 基因新发错义变异,故KCNQ2-DEE诊断明确。本研究病例的电临床特征与以往文献报道结果一致[2] [5] [7] [9],进一步验证了该疾病的典型表现。

KCNQ2基因定位于常染色体20q13.33区域,其编码产物为电压门控钾离子(K⁺)通道亚基Kv7.2。该亚基是构成M电流(Iₖₘ)的关键组分,而Iₖₘ属于阈下缓慢激活且不失活的钾离子电流,具有两大核心功能,可降低神经元兴奋性并介导神经元锋电位的频率适应[10]-[12]。KCNQ2基因的致病变异通常对钾离子通道功能产生显性负性效应[13] [14]。体外研究证实,绝大多数KCNQ2致病变异会导致Kv7.2亚基功能受损,进而引发通道功能丧失效应。值得注意的是,KCNQ2变异导致Iₖₘ功能下降的分子机制具有多样性,主要包括以下几类:转录或翻译过程障碍,导致Kv7.2亚基的表达水平异常;通道自身功能异常,如离子通透性改变、离子选择性异常或门控功能障碍;通道调控功能异常,即受关键内源性蛋白或辅因子尤其是磷脂酰肌醇4,5-二磷酸(PIP₂)调控的能力受损。不同KCNQ2致病变异会触发上述不同的分子致病机制[11] [15],这也导致其出现广泛的临床表型谱,从症状较轻的BFNE到症状严重的KCNQ2-DEE。进一步研究表明,电压门控钾离子通道功能损害的程度与临床疾病严重程度呈明确相关性:BFNE相关变异仅导致通道轻度功能丧失,而KCNQ2-DEE相关变异则会造成通道严重功能丧失[8] [16] [17]

本研究中3例患儿的KCNQ2基因突变均为新发错义突变,具体变异位点分别为:c.620G>C (p.Arg207Pro)、c.997C>T (p.Arg333Trp)、c.908C>T (p.Ser303Phe)。为进一步验证该突变类型的临床意义,通过癫痫基因数据、RIKEE计划数据库的KCNQ2变异分析研究发现:在111例KCNQ2-DEE病例中,错义突变占比高达98.2%,仅1.8%为框架内插入突变[6];而在BFNE病例中,突变类型分布存在显著差异:截断突变占59.5%、错义突变占37.8%、框架内插入突变占2.7%。由此可见,错义变异是KCNQ2-DEE的主要变异形式,这与本研究3例患儿均为新发错义突变的结果完全一致,进一步证实了该变异类型在KCNQ2-DEE发病中的核心作用。同时,对比BFNE与KCNQ2-DEE的突变类型分布差异可知,突变类型可作为临床鉴别这两种KCNQ2相关疾病的重要参考指标。

KCNQ2基因编码的钾离子通道蛋白亚基Kv7.2具有特定的结构特征,主要包括6个跨膜区域(S1~S6)、N端胞质尾及较长的C端胞质区域。本研究中3个KCNQ2变异位点对应的编码蛋白区域明确:分别位于S4电压感应区、C端胞质区域,以及S5~S6跨膜区域之间的孔道形成区。既往学者对93例KCNQ2-DEE患者的研究中,已发现4个明确的突变热点区域,包括S4电压传感器、S5~S6孔道区、C端胞质区[7],这与本研究3个变异位点的分布完全一致,进一步验证了这些区域在KCNQ2-DEE发病中的关键作用。与之形成鲜明对比的是,BFNE的KCNQ2变异热点主要集中在S2、S3跨膜区域[6]。S2、S3区域被证实可与PIP2结合,因此在Kv7.2离子孔道的门控过程中发挥重要调控作用[18]。该区域的基因变异易导致离子通道功能受损,进而引发单倍体剂量不足,这是目前公认的BFNE核心病理机制。此外,在Kv7.2的离子孔道至A螺旋附近区域,还存在PIP2、A激酶锚定蛋白(AKAP)及钙调蛋白(CaM)的特异性结合位点,AKAP的结合可调节通道兴奋性,CaM的结合则影响Kv7.2蛋白向细胞膜表面的转运过程[19]。若KCNQ2基因变异发生在这些关键结合区域,会导致蛋白间结合异常,进而引发显性负效应,这一机制被认为是KCNQ2-DEE的潜在病理基础。本研究通过对比KCNQ2基因变异的累积分布特征,为KCNQ2相关癫痫的临床表型与基因变异定位之间的关联提供了直接证据,也为进一步明确不同表型的致病机制差异奠定了基础。

本研究3例患儿的治疗效果有明显差异:例1于4月龄、例2于51日龄时,在口服苯巴比妥、左乙拉西坦基础上联合钠通道阻滞剂奥卡西平,癫痫发作有效控制;而例3始终未添加奥卡西平,癫痫发作持续频繁且伴严重发育落后,最终于1岁6个月龄时夭折。由此可见,早期识别KCNQ2-DEE并及时启用钠通道阻滞剂治疗,可能对控制癫痫发作具有重要帮助。电压门控钠通道与KCNQ2钾通道在神经细胞膜的关键区域存在共同定位与结合[20],对电压门控钠通道的调控可显著影响这一通道复合体的功能[21]。因此,钠通道阻滞剂能够通过调节钠通道活性,减轻KCNQ2基因变异导致钾通道功能丧失所引发的神经元过度兴奋性,这为其在KCNQ2-DEE治疗中的有效性提供了机制层面的解释。既往研究结果进一步佐证了该结论[9] [22] [23],不仅经典钠通道阻滞剂(如奥卡西平、苯妥英钠、拉莫三嗪)对部分KCNQ2-DEE患者有效,具有多种作用机制的抗癫痫药物(如托吡酯、唑尼沙胺)也显示出一定治疗效果,核心原因在于这些药物同样具备钠通道阻断作用[23]。需特别说明的是,雷替加宾具有独特的作用机制,作为钾通道开放剂[24],它是首个被批准用于促进钾通道激活的抗癫痫药物。然而,由于其临床应用中易引发严重副作用,目前雷替加宾已停止临床使用。

本研究中3例患儿均存在发育落后,但例1、例2在早期联合奥卡西平实现癫痫发作控制后,发育落后程度明显轻于例3。基于此,我们推测,早期有效控制癫痫发作,可能对改善KCNQ2-DEE患儿远期发育不良预后具有积极意义。需注意的是,例3起病早期脑电图即表现为爆发–抑制图形,后续进一步转变为高度失节律,有学者研究得出患儿起病早期出现脑电图不连续或爆发–抑制的背景活动与不良发育结局存在相关性[25],因此这也可能是例3发育预后更差的重要影响因素之一。

同时需客观指出,本研究通过3例病例初步探索了KCNQ2-DEE的临床特征、基因变异特点及对抗癫痫发作药物的治疗反应,由于样本量小、回顾性设计偏倚、未控制混杂变量及随访时间不足等问题,导致研究存在一定局限性,但可为后续研究提供临床线索。未来可通过开展多中心、大样本的纵向随访研究,更精准地评估KCNQ2-DEE的临床表型、基因型特点,以及早期癫痫控制与患儿发育预后的相关性,为优化临床诊疗策略提供更可靠的循证依据。

综上所述,KCNQ2-DEE具有明确的临床与遗传学特征:疾病多在新生儿早期起病,以顽固性癫痫发作为核心表现,发作形式为局灶性发作或强直发作;脑电图表现为多灶性放电、爆发–抑制图形或高度失节律;致病变异以KCNQ2基因新发错义变异为主,且变异位点对应的蛋白质区域多集中在S4电压感应区、S5~S6孔道形成区及C端胞质区域。此类患儿对多种常规抗癫痫发作药物治疗反应不佳,且普遍伴有较严重的精神运动发育落后,临床中亟需有效的治疗方案改善预后。综合本研究数据与既往相关研究结论,提示钠通道阻滞剂或可作为KCNQ2-DEE有潜力的治疗选择,其临床价值值得未来通过更大规模的前瞻性研究进一步验证。

声 明

该病例报道已获得病人的知情同意。

基金项目

济宁市重点研发计划(2023YXNS028)。

NOTES

*通讯作者。

参考文献

[1] Weckhuysen, S., Mandelstam, S., Suls, A., Audenaert, D., Deconinck, T., Claes, L.R.F., et al. (2012) KCNQ2 Encephalopathy: Emerging Phenotype of a Neonatal Epileptic Encephalopathy. Annals of Neurology, 71, 15-25. [Google Scholar] [CrossRef] [PubMed]
[2] Weckhuysen, S., Ivanovic, V., Hendrickx, R., et al. (2013) Extending the KCNQ2 Encephalopathy Spectrum: Clinical and Neuroimaging Findings in 17 Patients. Neurology, 81, 1697-1703.
[3] Singh, N.A., Charlier, C., Stauffer, D., DuPont, B.R., Leach, R.J., Melis, R., et al. (1998) A Novel Potassium Channel Gene, KCNQ2, Is Mutated in an Inherited Epilepsy of Newborns. Nature Genetics, 18, 25-29. [Google Scholar] [CrossRef] [PubMed]
[4] Biervert, C., Schroeder, B.C., Kubisch, C., Berkovic, S.F., Propping, P., Jentsch, T.J., et al. (1998) A Potassium Channel Mutation in Neonatal Human Epilepsy. Science, 279, 403-406. [Google Scholar] [CrossRef] [PubMed]
[5] Kato, M., Yamagata, T., Kubota, M., Arai, H., Yamashita, S., Nakagawa, T., et al. (2013) Clinical Spectrum of Early Onset Epileptic Encephalopathies Caused by KCNQ2 Mutation. Epilepsia, 54, 1282-1287. [Google Scholar] [CrossRef] [PubMed]
[6] Goto, A., Ishii, A., Shibata, M., Ihara, Y., Cooper, E.C. and Hirose, S. (2019) Characteristics of KCNQ2 Variants Causing Either Benign Neonatal Epilepsy or Developmental and Epileptic Encephalopathy. Epilepsia, 60, 1870-1880. [Google Scholar] [CrossRef] [PubMed]
[7] Millichap, J.J., Park, K.L., Tsuchida, T., et al. (2016) KCNQ2 Encephalopathy: Features, Mutational Hot Spots, and Ezogabine Treatment of 11 Patients. Neurology Genetics, 2, 1-9. [Google Scholar] [CrossRef] [PubMed]
[8] Orhan, G., Bock, M., Schepers, D., Ilina, E.I., Reichel, S.N., Löffler, H., et al. (2014) Dominant-Negative Effects of KCNQ2 Mutations Are Associated with Epileptic Encephalopathy. Annals of Neurology, 75, 382-394. [Google Scholar] [CrossRef] [PubMed]
[9] Pisano, T., Numis, A.L., Heavin, S.B., Weckhuysen, S., Angriman, M., Suls, A., et al. (2015) Early and Effective Treatment of KCNQ2 Encephalopathy. Epilepsia, 56, 685-691. [Google Scholar] [CrossRef] [PubMed]
[10] Jentsch, T.J. (2000) Neuronal KCNQ Potassium Channels: Physislogy and Role in Disease. Nature Reviews Neuroscience, 1, 21-30. [Google Scholar] [CrossRef] [PubMed]
[11] Soldovieri, M.V., Miceli, F. and Taglialatela, M. (2011) Driving with No Brakes: Molecular Pathophysiology of Kv7 Potassium Channels. Physiology, 26, 365-376. [Google Scholar] [CrossRef] [PubMed]
[12] Syeda, R., Santos, J.S. and Montal, M. (2016) The Sensorless Pore Module of Voltage-Gated K+ Channel Family 7 Embodies the Target Site for the Anticonvulsant Retigabine. Journal of Biological Chemistry, 291, 2931-2937. [Google Scholar] [CrossRef] [PubMed]
[13] Millichap, J.J. and Cooper, E.C. (2012) KCNQ2 Potassium Channel Epileptic Encephalopathy Syndrome: Divorce of an Electro-Mechanical Couple? Epilepsy Currents, 12, 150-152. [Google Scholar] [CrossRef] [PubMed]
[14] Singh, N.A. (2003) KCNQ2 and KCNQ3 Potassium Channel Genes in Benign Familial Neonatal Convulsions: Expansion of the Functional and Mutation Spectrum. Brain, 126, 2726-2737. [Google Scholar] [CrossRef] [PubMed]
[15] Hernandez, C.C., Zaika, O., Tolstykh, G.P. and Shapiro, M.S. (2008) Regulation of Neural KCNQ Channels: Signalling Pathways, Structural Motifs and Functional Implications. The Journal of Physiology, 586, 1811-1821. [Google Scholar] [CrossRef] [PubMed]
[16] Miceli, F., Soldovieri, M.V., Ambrosino, P., Barrese, V., Migliore, M., Cilio, M.R., et al. (2013) Genotype-Phenotype Correlations in Neonatal Epilepsies Caused by Mutations in the Voltage Sensor of KV7.2 Potassium Channel Subunits. Proceedings of the National Academy of Sciences, 110, 4386-4391. [Google Scholar] [CrossRef] [PubMed]
[17] Volkers, L., Rook, M.B., Das, J.H.G., Verbeek, N.E., Groenewegen, W.A., van Kempen, M.J.A., et al. (2009) Functional Analysis of Novel KCNQ2 Mutations Found in Patients with Benign Familial Neonatal Convulsions. Neuroscience Letters, 462, 24-29. [Google Scholar] [CrossRef] [PubMed]
[18] Zaydman, M.A. and Cui, J. (2014) PIP2 Regulation of KCNQ Channels: Biophysical and Molecular Mechanisms for Lipid Modulation of Voltage-Dependent Gating. Frontiers in Physiology, 5, Article 195. [Google Scholar] [CrossRef] [PubMed]
[19] Soldovieri, M.V., Miceli, F., Bellini, G., Coppola, G., Pascotto, A. and Taglialatela, M. (2014) Correlating the Clinical and Genetic Features of Benign Familial Neonatal Seizures (BFNS) with the Functional Consequences of Underlying Mutations. Channels, 1, 228-233. [Google Scholar] [CrossRef] [PubMed]
[20] Pan, Z., Kao, T., Horvath, Z., Lemos, J., Sul, J., Cranstoun, S.D., et al. (2006) A Common Ankyrin-G-Based Mechanism Retains KCNQ and Navchannels at Electrically Active Domains of the Axon. The Journal of Neuroscience, 26, 2599-2613. [Google Scholar] [CrossRef] [PubMed]
[21] Nguyen, H.M., Miyazaki, H., Hoshi, N., et al. (2012) Modulation of Voltage-Gated K+ Channels by the Sodium Channel β1 Subunit. Proceedings of the National Academy of Sciences, 109, 18577-18582. [Google Scholar] [CrossRef] [PubMed]
[22] Schubert-Bast, S., Hofstetter, P., Fischer, D., Schloesser, R., Ramantani, G. and Kieslich, M. (2017) Sodium Channel Blockers in KCNQ2-Encephalopathy: Lacosamide as a New Treatment Option. Seizure, 51, 171-173. [Google Scholar] [CrossRef] [PubMed]
[23] Kim, H.J., Yang, D., Kim, S.H., Won, D., Kim, H.D., Lee, J.S., et al. (2021) Clinical Characteristics of KCNQ2 Encephalopathy. Brain and Development, 43, 244-250. [Google Scholar] [CrossRef] [PubMed]
[24] Gunthorpe, M.J., Large, C.H. and Sankar, R. (2012) The Mechanism of Action of Retigabine (Ezogabine), a First-in-Class K+ Channel Opener for the Treatment of Epilepsy. Epilepsia, 53, 412-424. [Google Scholar] [CrossRef] [PubMed]
[25] Casas-Alba, D., Aguilar, A., Alonso, I., García, M.T., Cilio, M.R., Fons, C., et al. (2023) Relationship between Epileptic Activity and Developmental Outcome in KCNQ2-Related Epilepsy. Pediatric Neurology, 144, 11-15. [Google Scholar] [CrossRef] [PubMed]