[1]
|
Johnson, D.E., Burtness, B., Leemans, C.R., Lui, V.W.Y., Bauman, J.E. and Grandis, J.R. (2020) Head and Neck Squamous Cell Carcinoma. Nature Reviews Disease Primers, 6, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Shirima, C., Bleotu, C., Spandidos, D., El-Naggar, A., Gradisteanu Pircalabioru, G. and Michalopoulos, I. (2024) Epithelial-Derived Head and Neck Squamous Tumourigenesis (Review). Oncology Reports, 52, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Prakash, J. and Shaked, Y. (2024) The Interplay between Extracellular Matrix Remodeling and Cancer Therapeutics. Cancer Discovery, 14, 1375-1388. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K.J. and Werb, Z. (2020) Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nature Communications, 11, Article No. 5120. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Huang, J., Zhang, L., Wan, D., Zhou, L., Zheng, S., Lin, S., et al. (2021) Extracellular Matrix and Its Therapeutic Potential for Cancer Treatment. Signal Transduction and Targeted Therapy, 6, Article No. 153. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Patterson, C.E., Schaub, T., Coleman, E.J. and Davis, E.C. (2000) Developmental Regulation of FKBP65. An ER-Localized Extra-Cellular Matrix Binding-Protein. Molecular Biology of the Cell, 11, 3925-3935. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Siekierka, J.J., Hung, S.H.Y., Poe, M., Lin, C.S. and Sigal, N.H. (1989) A Cytosolic Binding Protein for the Immunosuppressant FK506 Has Peptidyl-Prolyl Isomerase Activity but Is Distinct from Cyclophilin. Nature, 341, 755-757. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Davis, E.C., Broekelmann, T.J., Ozawa, Y. and Mecham, R.P. (1998) Identification of Tropoelastin as a Ligand for the 65-Kd FK506-Binding Protein, FKBP65, in the Secretory Pathway. The Journal of Cell Biology, 140, 295-303. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Ishikawa, Y., Vranka, J., Wirz, J., Nagata, K. and Bächinger, H.P. (2008) The Rough Endoplasmic Reticulum-Resident Fk506-Binding Protein FKBP65 Is a Molecular Chaperone That Interacts with Collagens. Journal of Biological Chemistry, 283, 31584-31590. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Staab-Weijnitz, C.A., Fernandez, I.E., Knüppel, L., Maul, J., Heinzelmann, K., Juan-Guardela, B.M., et al. (2015) Fk506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 192, 455-467. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Staab-Weijnitz, C.A. (2022) Fighting the Fiber: Targeting Collagen in Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 66, 363-381. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Liang, X., Chai, B., Duan, R., Zhou, Y., Huang, X. and Li, Q. (2017) Inhibition of FKBP10 Attenuates Hypertrophic Scarring through Suppressing Fibroblast Activity and Extracellular Matrix Deposition. Journal of Investigative Dermatology, 137, 2326-2335. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Knüppel, L., Heinzelmann, K., Lindner, M., Hatz, R., Behr, J., Eickelberg, O., et al. (2018) Fk506-Binding Protein 10 (FKBP10) Regulates Lung Fibroblast Migration via Collagen VI Synthesis. Respiratory Research, 19, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Liu, R., Zou, Z., Chen, L., Feng, Y., Ye, J., Deng, Y., et al. (2024) FKBP10 Promotes Clear Cell Renal Cell Carcinoma Progression and Regulates Sensitivity to the Hif2α Blockade by Facilitating LDHA Phosphorylation. Cell Death & Disease, 15, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Wang, R., Zhang, D., Zhao, C., Wang, Q., Qu, H. and He, Q. (2019) FKBP10 Functioned as a Cancer‐Promoting Factor Mediates Cell Proliferation, Invasion, and Migration via Regulating PI3K Signaling Pathway in Stomach Adenocarcinoma. The Kaohsiung Journal of Medical Sciences, 36, 311-317. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Chen, Z., He, L., Zhao, L., Zhang, G., Wang, Z., Zhu, P., et al. (2022) circREEP3 Drives Colorectal Cancer Progression via Activation of FKBP10 Transcription and Restriction of Antitumor Immunity. Advanced Science, 9, e2105160. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Sun, Z., Qin, X., Fang, J., Tang, Y. and Fan, Y. (2021) Multi-Omics Analysis of the Expression and Prognosis for FKBP Gene Family in Renal Cancer. Frontiers in Oncology, 11, Article ID: 697534. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Ramadori, G., Ioris, R.M., Villanyi, Z., Firnkes, R., Panasenko, O.O., Allen, G., et al. (2020) FKBP10 Regulates Protein Translation to Sustain Lung Cancer Growth. Cell Reports, 30, 3851-3863.e6. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Cai, H., Zhang, M., Cheng, Z., Yu, J., Yuan, Q., Zhang, J., et al. (2021) FKBP10 Promotes Proliferation of Glioma Cells via Activating AKT-CREB-PCNA Axis. Journal of Biomedical Science, 28, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Tang, Z., Kang, B., Li, C., Chen, T. and Zhang, Z. (2019) GEPIA2: An Enhanced Web Server for Large-Scale Expression Profiling and Interactive Analysis. Nucleic Acids Research, 47, W556-W560. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Vasaikar, S.V., Straub, P., Wang, J. and Zhang, B. (2017) LinkedOmics: Analyzing Multi-Omics Data within and across 32 Cancer Types. Nucleic Acids Research, 46, D956-D963. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., et al. (2022) The STRING Database in 2023: Protein-Protein Association Networks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research, 51, D638-D646. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Wang, C., Shen, W., Anuraga, G., Hsieh, Y., Khoa Ta, H., Xuan, D., et al. (2022) Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma. Journal of Personalized Medicine, 13, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Alqudah, A., AbuDalo, R., Qnais, E., Wedyan, M., Oqal, M. and McClements, L. (2022) The Emerging Importance of Immunophilins in Fibrosis Development. Molecular and Cellular Biochemistry, 478, 1281-1291. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Tran, C.T., Smet, M., Forsey, J., Zankl, A. and Nayyar, R. (2022) Bruck Syndrome: Beyond the Obvious. Fetal Diagnosis and Therapy, 49, 479-485. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Zhao, X., Wang, J., Tian, S., Tang, L., Cao, S., Ye, J., et al. (2025) FKBP10 Promotes the Muscle Invasion of Bladder Cancer via Lamin a Dysregulation. International Journal of Biological Sciences, 21, 758-771. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Britton, W.R., Cioffi, I., Stonebraker, C., Spence, M., Okolo, O., Martin, C., et al. (2024) Advancements in TGF-β Targeting Therapies for Head and Neck Squamous Cell Carcinoma. Cancers, 16, Article No. 3047. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Xie, J., Huang, L., Lu, Y. and Zheng, D. (2021) Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Frontiers in Molecular Biosciences, 7, Article ID: 590912. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Su, J., Morgani, S.M., David, C.J., Wang, Q., Er, E.E., Huang, Y., et al. (2020) TGF-β Orchestrates Fibrogenic and Developmental Emts via the RAS Effector Rreb1. Nature, 577, 566-571. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Peng, D., Fu, M., Wang, M., Wei, Y. and Wei, X. (2022) Targeting TGF-β Signal Transduction for Fibrosis and Cancer Therapy. Molecular Cancer, 21, Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Liu, S., Ren, J. and ten Dijke, P. (2021) Targeting TGF-β Signal Transduction for Cancer Therapy. Signal Transduction and Targeted Therapy, 6, Article No. 8. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Bagaev, A., Kotlov, N., Nomie, K., Svekolkin, V., Gafurov, A., Isaeva, O., et al. (2021) Conserved Pan-Cancer Microenvironment Subtypes Predict Response to Immunotherapy. Cancer Cell, 39, 845-865.e7. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Pan, Y., Yu, Y., Wang, X. and Zhang, T. (2020) Tumor-Associated Macrophages in Tumor Immunity. Frontiers in Immunology, 11, Article ID: 583084. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Friedman-DeLuca, M., Karagiannis, G.S., Condeelis, J.S., Oktay, M.H. and Entenberg, D. (2024) Macrophages in Tumor Cell Migration and Metastasis. Frontiers in Immunology, 15, Article ID: 1494462. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Yang, T., Deng, Z., Xu, L., Li, X., Yang, T., Qian, Y., et al. (2022) Macrophages-aPKC(ɩ)-CCL5 Feedback Loop Modulates the Progression and Chemoresistance in Cholangiocarcinoma. Journal of Experimental & Clinical Cancer Research, 41, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Gao, J., Liang, Y. and Wang, L. (2022) Shaping Polarization of Tumor-Associated Macrophages in Cancer Immunotherapy. Frontiers in Immunology, 13, Article ID: 888713. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Alanay, Y., Avaygan, H., Camacho, N., Utine, G.E., Boduroglu, K., Aktas, D., et al. (2010) Mutations in the Gene Encoding the RER Protein FKBP65 Cause Autosomal-Recessive Osteogenesis Imperfecta. The American Journal of Human Genetics, 86, 551-559. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Guo, Y., Lu, G., Mao, H., Zhou, S., Tong, X., Wu, J., et al. (2020) miR-133b Suppresses Invasion and Migration of Gastric Cancer Cells via the COL1A1/TGF-β Axis. OncoTargets and Therapy, 13, 7985-7995. [Google Scholar] [CrossRef] [PubMed]
|