[1]
|
Kulig, P., Musiol, S., Freiberger, S.N., Schreiner, B., Gyülveszi, G., Russo, G., et al. (2016) IL-12 Protects from Psoriasiform Skin Inflammation. Nature Communications, 7, Article No. 13466. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Armstrong, A.W. and Read, C. (2020) Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review. JAMA, 323, 1945-1960. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
李楠, 王红梅, 冯剑, 等. 肠道菌群及其代谢产物SCFAs对银屑病发病机制的影响[J]. 医学综述, 2021, 27(20): 3977-3983.
|
[4]
|
Park, D.H., Kim, J.W., Park, H. and Hahm, D. (2021) Comparative Analysis of the Microbiome across the Gut-Skin Axis in Atopic Dermatitis. International Journal of Molecular Sciences, 22, Article No. 4228. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Omenetti, S. and Pizarro, T.T. (2015) The Treg/Th17 Axis: A Dynamic Balance Regulated by the Gut Microbiome. Frontiers in Immunology, 6, Article No. 639. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
O’Neill, C.A., Monteleone, G., McLaughlin, J.T. and Paus, R. (2016) The Gut‐Skin Axis in Health and Disease: A Paradigm with Therapeutic Implications. BioEssays, 38, 1167-1176. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
张登本. 全注全译黄帝内经[M]. 北京: 新世界出版社, 2010.
|
[8]
|
刘朝霞, 韩晓冰, 张成会, 等. 运用健脾祛湿法治疗银屑病思路[J]. 中医杂志, 2012, 53(23): 2005-2006.
|
[9]
|
陈亚敏. 参苓白术散的临床应用[J]. 陕西中医, 2004(5): 460.
|
[10]
|
许树东. 银屑病治疗经验点滴[J]. 河南中医, 1994(6): 371.
|
[11]
|
刘凯文. 基于高通量测序探讨参苓白术散对脾气亏虚型泄泻肠道菌群的影响[D]: [硕士学位论文]. 北京: 北京中医药大学, 2020.
|
[12]
|
Ipci, K., Altıntoprak, N., Muluk, N.B., Senturk, M. and Cingi, C. (2016) The Possible Mechanisms of the Human Microbiome in Allergic Diseases. European Archives of Oto-Rhino-Laryngology, 274, 617-626. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
涂晨, 王爽, 刘彦婷, 等. 银屑病患者肠道菌群多样性与表型分析[J]. 中国皮肤性病学杂志, 2021, 35(4): 397-404.
|
[14]
|
刘朝霞, 刘红霞. 刘红霞治疗寻常型银屑病经验[J]. 辽宁中医杂志, 2008(5): 670-671.
|
[15]
|
Mlcek, J., Jurikova, T., Skrovankova, S. and Sochor, J. (2016) Quercetin and Its Anti-Allergic Immune Response. Molecules, 21, Article No. 623. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Li, Y., Yao, J., Han, C., Yang, J., Chaudhry, M., Wang, S., et al. (2016) Quercetin, Inflammation and Immunity. Nutrients, 8, Article No. 167. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Batiha, G.E., Beshbishy, A.M., Ikram, M., Mulla, Z.S., El-Hack, M.E.A., Taha, A.E., et al. (2020) The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods, 9, Article No. 374. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Haddad, P. and Eid, H. (2017) The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Current Medicinal Chemistry, 24, 355-364. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Tang, S., Deng, X., Zhou, J., Li, Q., Ge, X. and Miao, L. (2020) Pharmacological Basis and New Insights of Quercetin Action in Respect to Its Anti-Cancer Effects. Biomedicine & Pharmacotherapy, 121, Article ID: 109604. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Sundarrajan, S., Nandakumar, M.P., Prabhu, D., Jeyaraman, J. and Arumugam, M. (2019) Conformational Insights into the Inhibitory Mechanism of Phyto-Compounds against Src Kinase Family Members Implicated in Psoriasis. Journal of Biomolecular Structure and Dynamics, 38, 1398-1414. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Chen, H., Lu, C., Liu, H., Wang, M., Zhao, H., Yan, Y., et al. (2017) Quercetin Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice via the NF-κB Pathway. International Immunopharmacology, 48, 110-117. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Qi, J., Yu, J., Li, Y., Luo, J., Zhang, C., Ou, S., et al. (2019) Alternating Consumption of β‐Glucan and Quercetin Reduces Mortality in Mice with Colorectal Cancer. Food Science & Nutrition, 7, 3273-3285. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Liu, C., Liu, H., Lu, C., Deng, J., Yan, Y., Chen, H., et al. (2019) Kaempferol Attenuates Imiquimod-Induced Psoriatic Skin Inflammation in a Mouse Model. Clinical and Experimental Immunology, 198, 403-415. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Bian, Y., Lei, J., Zhong, J., Wang, B., Wan, Y., Li, J., et al. (2022) Kaempferol Reduces Obesity, Prevents Intestinal Inflammation, and Modulates Gut Microbiota in High-Fat Diet Mice. The Journal of Nutritional Biochemistry, 99, Article ID: 108840. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Zhou, W., Hu, M., Zang, X., Liu, Q., Du, J., Hu, J., et al. (2020) Luteolin Attenuates Imiquimod-Induced Psoriasis-Like Skin Lesions in BALB/c Mice via Suppression of Inflammation Response. Biomedicine & Pharmacotherapy, 131, Article ID: 110696. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Bin Sayeed, M.S. and Ameen, S.S. (2015) Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight against Cancer. Nutrition and Cancer, 67, 1216-1222. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Thiele, J.J. and Ekanayake-Mudiyanselage, S. (2007) Vitamin E in Human Skin: Organ-Specific Physiology and Considerations for Its Use in Dermatology. Molecular Aspects of Medicine, 28, 646-667. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Liao, P., Lai, M., Hsu, K., Kuo, Y., Chen, J., Tsai, M., et al. (2018) Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of Agricultural and Food Chemistry, 66, 10748-10759. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Yin, Y., Liu, X., Liu, J., Cai, E., Zhu, H., Li, H., et al. (2018) Beta-Sitosterol and Its Derivatives Repress Lipopolysaccharide/d-Galactosamine-Induced Acute Hepatic Injury by Inhibiting the Oxidation and Inflammation in Mice. Bioorganic & Medicinal Chemistry Letters, 28, 1525-1533. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Yates, M.E., Waltermire, H., Mori, K., Li, Z., Li, Y., Guzolik, H., et al. (2024) esr1 Fusions Invoke Breast Cancer Subtype-Dependent Enrichment of Ligand-Independent Oncogenic Signatures and Phenotypes. Endocrinology, 165, bqae111. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
孙鸽, 夏献民. RelA翻译后修饰对核因子κB活性的调控作用[J]. 临床与病理杂志, 2018, 38(4): 843-852.
|
[32]
|
Rossi, J., Lu, Z., Jourdan, M. and Klein, B. (2015) Interleukin-6 as a Therapeutic Target. Clinical Cancer Research, 21, 1248-1257. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Saxena, A., Khosraviani, S., Noel, S., Mohan, D., Donner, T. and Hamad, A.R.A. (2015) Interleukin-10 Paradox: A Potent Immunoregulatory Cytokine That Has Been Difficult to Harness for Immunotherapy. Cytokine, 74, 27-34. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Doss C G, P. (2014) TNF/TNFR: Drug Target for Autoimmune Diseases and Immune-Mediated Inflammatory Diseases. Frontiers in Bioscience, 19, 1028-1040. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Cunningham, K.S. and Gotlieb, A.I. (2005) The Role of Shear Stress in the Pathogenesis of Atherosclerosis. Laboratory Investigation, 85, 9-23. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Fossiez, F., Djossou, O., Chomarat, P., Flores-Romo, L., Ait-Yahia, S., Maat, C., et al. (1996) T Cell Interleukin-17 Induces Stromal Cells to Produce Proinflammatory and Hematopoietic Cytokines. The Journal of Experimental Medicine, 183, 2593-2603. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Huang, J., Lee, H., Zhao, X., Han, J., Su, Y., Sun, Q., et al. (2021) Interleukin-17d Regulates Group 3 Innate Lymphoid Cell Function through Its Receptor Cd93. Immunity, 54, 673-686.e4. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Krueger, J.G. (2012) Hiding under the Skin: A Welcome Surprise in Psoriasis. Nature Medicine, 18, 1750-1751. [Google Scholar] [CrossRef] [PubMed]
|