[1]
|
Beth-Tasdogan, N.H., Mayer, B., Hussein, H., Zolk, O. and Peter, J.U. (2022) Interventions for Managing Medication-Related Osteonecrosis of the Jaw. Cochrane Database of Systematic Reviews, 2022, CD012432. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
He, L., Sun, X., Liu, Z., Qiu, Y. and Niu, Y. (2020) Pathogenesis and Multidisciplinary Management of Medication-Related Osteonecrosis of the Jaw. International Journal of Oral Science, 12, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Struckmeier, A., Wehrhan, F., Preidl, R., Mike, M., Mönch, T., Eilers, L., et al. (2023) Alterations in Macrophage Polarization in the Craniofacial and Extracranial Skeleton after Zoledronate Application and Surgical Interventions—An in Vivo Experiment. Frontiers in Immunology, 14, Article 1204188. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Wang, C., Ma, C., Gong, L., Guo, Y., Fu, K., Zhang, Y., et al. (2021) Macrophage Polarization and Its Role in Liver Disease. Frontiers in Immunology, 12, Article 803037. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Geng, K., Ma, X., Jiang, Z., Gu, J., Huang, W., Wang, W., et al. (2022) WDR74 Facilitates TGF-β/Smad Pathway Activation to Promote M2 Macrophage Polarization and Diabetic Foot Ulcer Wound Healing in Mice. Cell Biology and Toxicology, 39, 1577-1591. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Shi, Y., Li, J., Chen, H., Hu, Y., Tang, L., Zhou, X., et al. (2022) Pharmacologic Inhibition of Histone Deacetylase 6 Prevents the Progression of Chlorhexidine Gluconate-Induced Peritoneal Fibrosis by Blockade of M2 Macrophage Polarization. Frontiers in Immunology, 13, Article 899140. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Zhang, W., Gao, L., Ren, W., Li, S., Zheng, J., Li, S., et al. (2021) The Role of the Immune Response in the Development of Medication-Related Osteonecrosis of the Jaw. Frontiers in Immunology, 12, Article 606043. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Soundia, A., Elzakra, N., Hadaya, D., Gkouveris, I., Bezouglaia, O., Dry, S., et al. (2024) Macrophage Polarization during MRONJ Development in Mice. Journal of Dental Research, 103, 899-907. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Cai, G., Lu, Y., Zhong, W., Wang, T., Li, Y., Ruan, X., et al. (2023) Piezo1‐Mediated M2 Macrophage Mechanotransduction Enhances Bone Formation through Secretion and Activation of Transforming Growth Factor‐β1. Cell Proliferation, 56, e13440. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Garabuczi, É., Tarban, N., Fige, É., Patsalos, A., Halász, L., Szendi-Szatmári, T., et al. (2023) Nur77 and PPARγ Regulate Transcription and Polarization in Distinct Subsets of M2-Like Reparative Macrophages during Regenerative Inflammation. Frontiers in Immunology, 14, Article 1139204. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Wang, L., Lu, Q., Gao, W. and Yu, S. (2021) Recent Advancement on Development of Drug-Induced Macrophage Polarization in Control of Human Diseases. Life Sciences, 284, Article 119914. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Pérez, S. and Rius-Pérez, S. (2022) Macrophage Polarization and Reprogramming in Acute Inflammation: A Redox Perspective. Antioxidants, 11, Article 1394. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Abramowitz, L.K. and Hanover, J.A. (2022) Chronically Elevated O-GlcNAcylation Limits Nitric Oxide Production and Deregulates Specific Pro-Inflammatory Cytokines. Frontiers in Immunology, 13, Article 802336. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Fan, W., Qu, Y., Yuan, X., Shi, H. and Liu, G. (2024) Loureirin B Accelerates Diabetic Wound Healing by Promoting TGFβ/Smad-Dependent Macrophage M2 Polarization: A Concerted Analytical Approach through Single-Cell RNA Sequencing and Experimental Verification. Phytotherapy Research. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Giarratana, A.O., Prendergast, C.M., Salvatore, M.M. and Capaccione, K.M. (2024) TGF-β Signaling: Critical Nexus of Fibrogenesis and Cancer. Journal of Translational Medicine, 22, Article No. 594. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Mirzaei, H. and Faghihloo, E. (2018) Viruses as Key Modulators of the TGF-β Pathway; a Double-Edged Sword Involved in Cancer. Reviews in Medical Virology, 28, e1967. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Liu, J., Jin, J., Liang, T. and Feng, X. (2022) To Ub or Not to Ub: A Regulatory Question in TGF-β Signaling. Trends in Biochemical Sciences, 47, 1059-1072. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Kamato, D., Do, B.H., Osman, N., Ross, B.P., Mohamed, R., Xu, S., et al. (2020) Smad Linker Region Phosphorylation Is a Signalling Pathway in Its Own Right and Not Only a Modulator of Canonical TGF-β Signalling. Cellular and Molecular Life Sciences, 77, 243-251. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
de Ceuninck van Capelle, C., Spit, M. and ten Dijke, P. (2020) Current Perspectives on Inhibitory SMAD7 in Health and Disease. Critical Reviews in Biochemistry and Molecular Biology, 55, 691-715. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Turati, M., Mousset, A., Issa, N., Turtoi, A. and Ronca, R. (2023) TGF-β Mediated Drug Resistance in Solid Cancer. Cytokine & Growth Factor Reviews, 71, 54-65. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Chen, B., Huang, S., Su, Y., Wu, Y., Hanna, A., Brickshawana, A., et al. (2019) Macrophage Smad3 Protects the Infarcted Heart, Stimulating Phagocytosis and Regulating Inflammation. Circulation Research, 125, 55-70. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Frangogiannis, N.G. (2020) Transforming Growth Factor-β in Tissue Fibrosis. Journal of Experimental Medicine, 217, e20190103. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Yin, X., Choudhury, M., Kang, J.H., Schaefbauer, K.J., Jung, M., Andrianifahanana, M., et al. (2019) Hexokinase 2 Couples Glycolysis with the Profibrotic Actions of TGF-β. Science Signaling, 12, eaax4067. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Xie, F., Zhou, X., Li, H., Su, P., Liu, S., Li, R., et al. (2022) USP8 Promotes Cancer Progression and Extracellular Vesicle-Mediated CD8+ T Cell Exhaustion by Deubiquitinating the TGF-β Receptor TβRII. The EMBO Journal, 41, e108791. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Ali, I.E. and Sumita, Y. (2022) Medication-Related Osteonecrosis of the Jaw: Prosthodontic Considerations. Japanese Dental Science Review, 58, 9-12. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Sim, I.W., Borromeo, G.L., Tsao, C., Hardiman, R., Hofman, M.S., Papatziamos Hjelle, C., et al. (2020) Teriparatide Promotes Bone Healing in Medication-Related Osteonecrosis of the Jaw: A Placebo-Controlled, Randomized Trial. Journal of Clinical Oncology, 38, 2971-2980. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Hayashida, S., Soutome, S., Yanamoto, S., Fujita, S., Hasegawa, T., Komori, T., et al. (2017) Evaluation of the Treatment Strategies for Medication-Related Osteonecrosis of the Jaws (MRONJ) and the Factors Affecting Treatment Outcome: A Multicenter Retrospective Study with Propensity Score Matching Analysis. Journal of Bone and Mineral Research, 32, 2022-2029. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
On, S.W., Cho, S.W., Byun, S.H. and Yang, B.E. (2021) Various Therapeutic Methods for the Treatment of Medication-Related Osteonecrosis of the Jaw (MRONJ) and Their Limitations: A Narrative Review on New Molecular and Cellular Therapeutic Approaches. Antioxidants, 10, Article 680. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Li, J., Yue, S., Fang, J., Zeng, J., Chen, S., Tian, J., et al. (2022) MicroRNA-10a/b Inhibit TGF-β/Smad-Induced Renal Fibrosis by Targeting TGF-β Receptor 1 in Diabetic Kidney Disease. Molecular Therapy—Nucleic Acids, 28, 488-499. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Lu, S., Kim, H.S., Cao, Y., Bedi, K., Zhao, L., Narayanan, I.V., et al. (2023) KMT2d Links TGF-β Signaling to Noncanonical Activin Pathway and Regulates Pancreatic Cancer Cell Plasticity. International Journal of Cancer, 153, 552-570. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Ma, J., Kong, F., Yang, D., Yang, H., Wang, C., Cong, R., et al. (2021) LncRNA MIR210HG Promotes the Progression of Endometrial Cancer by Sponging miR-337-3p/137 via the HMGA2-TGF-β/Wnt Pathway. Molecular Therapy—Nucleic Acids, 24, 905-922. [Google Scholar] [CrossRef] [PubMed]
|