[1]
|
Cyphert, E.L., Kanagasegar, N., Zhang, N., Learn, G.D. and von Recum, H.A. (2022) PMMA Bone Cement Composite Functions as an Adjuvant Chemotherapeutic Platform for Localized and Multi-Window Release during Bone Reconstruction. Macromolecular Bioscience, 22, e2100415. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Huang, Q., Xu, Y., Lu, Y., Ren, C., Liu, L., Li, M., et al. (2022) Acute Shortening and Re-Lengthening versus Antibiotic Calcium Sulfate-Loaded Bone Transport for the Management of Large Segmental Tibial Defects after Trauma. Journal of Orthopaedic Surgery and Research, 17, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Bohner, M., Santoni, B.L.G. and Döbelin, N. (2020) β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. Acta Biomaterialia, 113, 23-41. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Fan, L., Chen, S., Yang, M., Liu, Y. and Liu, J. (2024) Metallic Materials for Bone Repair. Advanced Healthcare Materials, 13, e2302132. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Dec, P., Modrzejewski, A. and Pawlik, A. (2022) Existing and Novel Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 529. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Giannoudis, P.V., Einhorn, T.A. and Marsh, D. (2007) Fracture Healing: The Diamond Concept. Injury, 38, S3-S6. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Lun, D., Li, S., Li, N., Mou, L., Li, H., Zhu, W., et al. (2024) Limitations and Modifications in the Clinical Application of Calcium Sulfate. Frontiers in Surgery, 11, Article ID: 1278421. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Chinnasami, H., Dey, M.K. and Devireddy, R. (2023) Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering, 10, Article 759. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Pokharel, R.K., Paudel, S. and Lakhey, R.B. (2022) Iliac Crest Bone Graft Harvesting: Modified Technique for Reduction of Complications. Journal of Nepal Medical Association, 60, 325-328. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Häusner, S., Kolb, A., Übelmesser, K., Hölscher-Doht, S., Jordan, M.C., Jauković, A., et al. (2025) It Is Not Waste If It Is Therapy: Cellular, Secretory and Functional Properties of Reamer-Irrigator-Aspirator (Ria)-Derived Autologous Bone Grafts. Journal of Orthopaedics and Traumatology, 26, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Dawson, J., Kiner, D., Gardner, W., Swafford, R. and Nowotarski, P.J. (2014) The Reamer-Irrigator-Aspirator as a Device for Harvesting Bone Graft Compared with Iliac Crest Bone Graft. Journal of Orthopaedic Trauma, 28, 584-590. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Laubach, M., Bessot, A., McGovern, J., Saifzadeh, S., Gospos, J., Segina, D.N., et al. (2023) An in Vivo Study to Investigate an Original Intramedullary Bone Graft Harvesting Technology. European Journal of Medical Research, 28, Article No. 349. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Sawauchi, K., Fukui, T., Oe, K., Kumabe, Y., Oda, T., Yoshikawa, R., et al. (2022) Low-Intensity Pulsed Ultrasound Promotes Osteogenic Differentiation of Reamer-Irrigator-Aspirator Graft-Derived Cells in Vitro. Ultrasound in Medicine & Biology, 48, 313-322. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Wang, G., Zhu, Z., Lu, S., Wang, L., Gao, H., Fu, C., et al. (2023) A Case Report of Membrane Induction Combined with RIA Technique for the Repair of Distal Humerus Segmentary Bone Defect. Frontiers in Endocrinology, 14, Article ID: 1150029. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Nitai, K., Eran, K. and Yaniv, K. (2022) Radial Diaphysis Infected Non-Union Treated with Combination of Masquelet Technique and Autologous Bone Grafting Harvested by RIA: A Case Report. Trauma Case Reports, 39, Article 100621. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Schmitz, N., Gehweiler, D., Wähnert, D., Zderic, I., Grünwald, L., Richards, G., et al. (2020) Influence of the Reamer-Irrigator-Aspirator Diameter on Femoral Bone Strength and Amount of Harvested Bone Graft—A Biomechanical Cadaveric Study. Injury, 51, 2846-2850. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Gehweiler, D., Schmitz, N., Gueorguiev, B., Zderic, I., Grünwald, L., Richards, G., et al. (2021) 3D Geometry of Femoral Reaming for Bone Graft Harvesting. Scientific Reports, 11, Article No. 17153. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Giannoudis, P.V., Tzioupis, C. and Green, J. (2009) Surgical Techniques: How I Do It? the Reamer/Irrigator/Aspirator (RIA) System. Injury, 40, 1231-1236. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Schmidmaier, G., Herrmann, S., Green, J., Weber, T., Scharfenberger, A., Haas, N.P., et al. (2006) Quantitative Assessment of Growth Factors in Reaming Aspirate, Iliac Crest, and Platelet Preparation. Bone, 39, 1156-1163. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Zhou, L., Wang, J. and Mu, W. (2023) BMP-2 Promotes Fracture Healing by Facilitating Osteoblast Differentiation and Bone Defect Osteogenesis. American Journal of Translational Research, 15, 6751-6759.
|
[21]
|
Li, Y., Fu, G., Gong, Y., et al. (2022) BMP-2 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells by Enhancing Mitochondrial Activity. Journal of Musculoskeletal Neuronal Interactions, 22, 123-131.
|
[22]
|
Wu, L., Zhang, G., Guo, C. and Pan, Y. (2020) Intracellular Ca2+ Signaling Mediates IGF-1-Induced Osteogenic Differentiation in Bone Marrow Mesenchymal Stem Cells. Biochemical and Biophysical Research Communications, 527, 200-206. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
de Oliveira, G.P., de Andrade, D.C., Nascimento, A.L.R., Cortez, E., de Carvalho, S.N., Stumbo, A.C., et al. (2021) Insulin-Like Growth Factor-1 Short-Period Therapy Stimulates Bone Marrow Cells in Obese Swiss Mice. Cell and Tissue Research, 384, 721-734. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Toosi, S., Naderi-Meshkin, H., Kalalinia, F., et al. (2016) Comparative Characteristics of Mesenchymal Stem Cells de-Rived from Reamer-Irrigator-Aspirator, Iliac Crest Bone Marrow, and Adipose Tissue. Cellular and Molecular Biology, 62, 68-74.
|
[25]
|
van de Wall, B.J.M., Beeres, F.J.P., Rompen, I.F., Link, B.C., Babst, R., Schoeneberg, C., et al. (2022) RIA versus Iliac Crest Bone Graft Harvesting: A Meta-Analysis and Systematic Review. Injury, 53, 286-293. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Rodham, P., Panteli, M., Qin, C., Harwood, P. and Giannoudis, P.V. (2023) Long-Term Outcomes of Lower Limb Post-Traumatic Osteomyelitis. European Journal of Trauma and Emergency Surgery, 49, 539-549. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Jacobson, E., Schieve, B.C., Klahs, K.J., Macias, R.A., Abdelgawad, A. and Thabet, A.M. (2024) Reamer Irrigator Aspirator (RIA) Reduces Risk of Fat Embolism in Bilateral Pediatric Femur Shaft Fractures: A Case Report. Journal of Surgical Case Reports, 2024, rjae042. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Niikura, T., Oe, K., Fukui, T., Hayashi, S., Matsumoto, T., Matsushita, T., et al. (2021) Clinical Experience of the Use of Reamer Irrigator Aspirator in Japanese Patients: A Report of the First 42 Cases. Journal of Orthopaedic Science, 26, 459-465. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Laubach, M., Weimer, L.P., Bläsius, F.M., Hildebrand, F., Kobbe, P. and Hutmacher, D.W. (2022) Complications Associated Using the Reamer-Irrigator-Aspirator (RIA) System: A Systematic Review and Meta-Analysis. Archives of Orthopaedic and Trauma Surgery, 143, 3823-3843. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Laubach, M., Bessot, A., Saifzadeh, S., Savi, F.M., Hildebrand, F., Bock, N., et al. (2024) In Vivo Study to Assess Fat Embolism Resulting from the Reamer-Irrigator-Aspirator 2 System Compared to a Novel Aspirator-Based Concept for Intramedullary Bone Graft Harvesting. Archives of Orthopaedic and Trauma Surgery, 144, 1535-1546. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Martella, A., Schumaier, A.P., Sirignano, M.N., Sagi, H.C., Wyrick, J.D. and Archdeacon, M.T. (2022) Reamer Irrigator Aspirator versus Iliac Crest Bone Grafting and Proximal Tibial Curettage: Is There a Difference in Blood Loss and Transfusion Rates? Journal of Orthopaedic Trauma, 36, 163-166. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Vetter, P., Hübner, C., Heining, S., Hierholzer, C. and Pape, H. (2024) Secondary Removal of Intramedullary Metal Debris from a Defective Reamer-Irrigator-Aspirator (RIA) Reamer Head: A Case Report. Trauma Case Reports, 54, Article 101112. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Oliva, F., Migliorini, F., Cuozzo, F., Torsiello, E., Hildebrand, F. and Maffulli, N. (2021) Outcomes and Complications of the Reamer Irrigator Aspirator versus Traditional Iliac Crest Bone Graft Harvesting: A Systematic Review and Meta-analysis. Journal of Orthopaedics and Traumatology, 22, Article No. 50. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Dehghan, N. and Schemitsch, E.H. (2017) Extended Applications of the Reamer-Irrigator-Aspirator (RIA) System. Injury, 48, S47-S51. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Kelly, M., Schuck, J., Gardner, A. and Newman, J. (2025) Autologous Bone Graft Harvest Technique Using Reamer-Irrigator-Aspirator for 2-Stage Revision Anterior Cruciate Ligament Reconstruction. Arthroscopy Techniques, 14, Article 103236. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Bidolegui, F., Pereira, S., Irigoyen, C. and Pires, R.E. (2022) Safety and Efficacy of a Novel Retrograde Route for Femoral Bone Graft Harvesting by Reamer-Irrigator-Aspirator: A Pilot Study on 24 Patients. Patient Safety in Surgery, 16, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Mathieu, L., Mourtialon, R., Durand, M., de Rousiers, A., de l’Escalopier, N. and Collombet, J. (2022) Masquelet Technique in Military Practice: Specificities and Future Directions for Combat-Related Bone Defect Reconstruction. Military Medical Research, 9, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Maruccia, M., Vicenti, G., Carrozzo, M., Caizzi, G., Di Summa, P.G., Moretti, B., et al. (2022) The Free Tissue Transfer-Masquelet-Reamer-Irrigator-Aspirator Bone Graft Orthoplastic Approach for Lower Extremity Reconstruction. Plastic & Reconstructive Surgery, 149, 1203e-1208e. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Fung, B., Hoit, G., Schemitsch, E., Godbout, C. and Nauth, A. (2020) The Induced Membrane Technique for the Management of Long Bone Defects. The Bone & Joint Journal, 102, 1723-1734. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Hübner, C.T., Veenstra, A., Klingebiel, F.K., Bayer, T., Landre, V., Heining, S., et al. (2025) Use of Personalized Graft Cage and RIA Bone Graft in a Case of Acute Infection Following a Grade 2 Open Tibial Shaft Fracture: A New Option for Bone Grafting in Patients with Critical Size Segmental Bone Defects. Journal of Surgical Case Reports, 2025, rjaf493. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Kobbe, P., Laubach, M., Hutmacher, D.W., Alabdulrahman, H., Sellei, R.M. and Hildebrand, F. (2020) Convergence of Scaffold-Guided Bone Regeneration and RIA Bone Grafting for the Treatment of a Critical-Sized Bone Defect of the Femoral Shaft. European Journal of Medical Research, 25, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Laubach, M., Suresh, S., Herath, B., Wille, M., Delbrück, H., Alabdulrahman, H., et al. (2022) Clinical Translation of a Patient-Specific Scaffold-Guided Bone Regeneration Concept in Four Cases with Large Long Bone Defects. Journal of Orthopaedic Translation, 34, 73-84. [Google Scholar] [CrossRef] [PubMed]
|