1. 引言
铁是生命体必需的微量元素,但过量的Fe3+会对环境和健康造成严重危害[1]。长期暴露于高水平Fe3+与神经退行性疾病(如阿尔茨海默症和帕金森症)、心血管疾病以及肝脏损伤密切相关[2]。在环境层面,过量的Fe3+会破坏水生态系统平衡,降低水体质量,从而威胁饮用水安全和农田灌溉[3]。因此,建立高效、快速且灵敏的Fe3+检测方法具有重要的环境和生物学意义。
与传统的仪器分析方法相比,基于荧光响应的传感器具有更高的能效和时间效率,同时在经济上也更具可行性[4]。因此,它们因其无损性和高灵敏度而受到广泛关注。其中,基于发光镧系化合物的传感器尤为突出,尤其是在发射猝灭型响应传感方面[5]。这主要归因于Ln3+特有的发射优势,包括激发态寿命长、发射带窄以及较大的Stokes位移[6]。
据我们所知,尽管近年来基于Ln-MOF的发光传感器在Fe3+检测领域取得了显著进展,但能够实现低于微摩尔检测限的报道仍然十分有限[3] [7] [8]。已有研究表明,通过合理设计有机配体结构、优化能量传递过程以及调控框架孔道环境,可以有效提升探针的灵敏度,从而突破传统微摩尔水平的检测瓶颈[9]。然而,大多数已报道的传感器虽然在检测限方面有所改善,但在响应速度上仍存在明显不足,往往难以满足实际环境中污染物快速监测的迫切需求[10]。尤其是在复杂水体系中,如何兼顾超高灵敏度与快速响应仍是该领域亟待解决的关键科学问题[11]。因此,开发具有低纳摩尔检测限并同时具备超快响应特性的高性能Ln-MOF发光探针,已成为近年来稀土基传感材料研究的重要方向和挑战。
Scheme 1. Structure of ligand H3L
方案1. 配体H3L的结构式
鉴于此,本文报道了一种配合物Tb-L的合成、发光性能及其机理探讨。该材料是通过采用一种均三甲苯为中心带有三个芳环的三足芳香羧酸配体H3L构筑而成,其结构式如方案1所示。荧光传感性能研究表明,该配合物具有亮绿色的Tb特征发光,且可在水环境中快速(<15 s)灵敏地检测Fe3+。
2. 实验
2.1. 实验方法
将 0.03 mmol (13.9 mg)的4,4’,4’’-(((2,4,6-三甲基苯-1,3,5-三基)三(亚甲基))三(氧基))三苯甲酸和0.06 mmol (27.18 mg)的Tb(NO3)3∙6H2O溶解于8 mL水与0.5 mL N,N-二甲基甲酰胺(DMF)的混合溶剂中,经超声处理30 min以确保充分混合。随后,将所得溶液在120℃下回流反应48 h,并自然冷却至室温。最终,所得产物通过过滤分离,得到配合物Tb-L,产率为59.72%。在365 nm激发的手持紫外灯下可明显观察到亮绿色的发光。
2.2. 测试与表征
所有化学品均来自商业来源,无需进一步纯化即可使用。将Tb4O7溶解在浓硝酸和双氧水中,蒸发结晶制备了Tb(NO3)3∙6H2O。取1 mg Tb-L配合物加入2 mL水中制备悬浮液,并使用日本日立公司F-7000荧光分光光度计对其发射光谱进行测试,以开展荧光传感实验。
3. 结果与讨论
3.1. Tb-L的荧光性能研究
对稀土配合物Tb-L的固态荧光性质进行了系统研究。如图1所示,在298 nm激发下,样品清晰展现出Tb3+的特征发射峰,表明三足芳香羧酸配体能够有效发挥“天线效应”,促进Tb3+的发光。进一步观察发现,在365 nm紫外光照射下,Tb-L发出明亮的绿色荧光,其CIE坐标为(0.2794, 0.5815)。这些结果充分证明了Tb-L卓越的稀土发光性能,显示其在荧光传感领域的应用潜力。
Figure 1. (a) Solid-state excitation and emission spectra of Tb-L at room temperature; (b) CIE chromaticity diagram of Tb-L
图1. (a) 固态Tb-L在室温下的激发与发射光谱;(b) Tb-L的CIE色坐标图
3.2. Tb-L的传感性能研究
我们研究了Tb-L在水介质中对金属阳离子的传感性能。配制了浓度为1 × 10⁻2 M的X(NO3)n水溶液(其中X = Mg2+、Ag+、K+、Na+、Hg2+、Co2+、Ca2+、Pb2+、Cd2+、Al3+、Ni2+、Zn2+、Cu2+和Fe3+)。随后,将2 mL Tb-L水悬浮液加入石英比色皿中,并依次加入9 μL各阳离子水溶液,同时记录荧光光谱。荧光实验结果如图2(a)所示:大多数金属阳离子对Tb-L的荧光发射几乎没有影响,而Fe3+则显著猝灭了Tb-L水悬浮液的发光。这一结果清晰地表明,Tb-L能够选择性地识别金属阳离子中的Fe3+。依据公式(1)计算,Fe3+对Tb-L发光的猝灭效率达95.88%,进一步证明Tb-L可作为在水介质中检测Fe3+的高灵敏荧光传感器。
公式(1):(1 − I/I0) × 100% (I0和I分别为加入Fe3+前后545 nm处的发射强度)
如图2(b)所示,在365 nm紫外灯照射下,Tb-L的明亮绿色发光仅被Fe3+完全猝灭,表明Tb-LMOF具有作为Fe3+可视化传感平台的潜力。当向Tb-L水悬浮液中加入Fe3+及其他干扰金属离子时,其可见颜色也发生了变化。此外,这种选择性猝灭响应不会受到包括Mg2+、Ag+、K+、Na+、Hg2+、Co2+、Ca2+、Pb2+、Cd2+、Al3+、Ni2+、Zn2+和Cu2+等其他金属离子的影响(图2(c))。
Figure 2. Emission spectra excited at 298 nm (a) and visual response images under excitation from a 365 nm handheld UV light (b) of Tb-L water suspension upon addition of various metal cations (c) quenching efficiency of the Tb-L suspension towards Fe3+ in the presence of various cation interferences
图2. (a) 在298 nm激发下Tb-L水悬浮液的发射光谱;(b) 在365 nm手持紫外光照射下,Tb-L水悬浮液加入不同金属阳离子后的可视响应图像;(c) 在存在多种干扰阳离子的条件下,Tb-L悬浮液对Fe3+的猝灭效率
通过滴定实验(图3(a))评估了Tb-L对Fe3+的灵敏度,以探究其痕量检测能力。在Fe3+浓度范围为0~50 μM时,观察到线性猝灭响应,线性相关系数为R2 = 0.9840。因此,计算得到KSV值为4.401 × 104 M−1,检测限(LOD)为0.725 Μm (3σ法,σ = 0.01) (图3(b)) [7],其中σ为空白样品在1小时内测量十次发光强度的标准偏差。该检测性能在已报道的所有MOFs中属于中等水平(表1),但远低于美国环境保护署发布的饮用水中Fe3+允许限(5.35 mM)。
Table 1. Comparative analysis of reported luminescent Ln-MOFs for Fe3+ detection
表1. 已报道的用于Fe3+检测的发光Ln-MOFs的对比分析
材料 |
KSV/M–1 |
LOD/μM |
检测媒介 |
响应时间 |
Ref. |
NIIC-1-Tb |
3.83 × 105 |
0.0086 |
Water |
45 s |
[1] |
Tb-L |
4.401 × 104 |
0.725 |
Water |
15 s |
本工作 |
Eu2(L2)2(HCOO)2(H2O)4∙H2O |
5.23 × 103 |
1.000 |
Water |
– |
[12] |
Eu2(L1)6(H2O)4∙3DMF |
9.69 × 104 |
1.000 |
– |
CUST-623 |
2.44 × 104 |
1.170 |
Water |
– |
[13] |
CUST-624 |
2.44 × 104 |
1.310 |
9 s |
[Eu(BCB)(DMF)]·(DMF)1.5(H2O)2 |
2.35 × 104 |
1.780 |
Water |
– |
[14] |
{[Na@Eu9(EDTA)6(H2O)27]∙(ClO4)4·xH2O}n |
3.23 × 103 |
2.310 |
EtOH |
– |
[15] |
[Eu(ADBA)(HCOO)(DMF)] |
1.75 × 103 |
3.130 |
Water |
30 s |
[16] |
Eu(btc) MOFs |
2.90 × 103 |
3.130 |
Water |
– |
[17] |
[Tb-(C14H8O6)(C7O3H4)∙2H2O]∙4(H2O) |
7.10 × 103 |
36.00 |
Water |
– |
[18] |
Eu-MOF@TOCNF |
7.93 × 103 |
- |
Water |
– |
[19] |
值得注意的是,Tb-L对Fe3+的响应很快,在加入Fe3+后在15 s内观察到最大猝灭(图3(c))。此外,Tb-L可通过离心和去离子水洗涤多次循环轻松回收(图3(d))。
Figure 3. (a) Emission spectra of the Tb-L aqueous suspension upon the addition of Fe3+ (0~120 µM); (b) relationship between the ratio of initial to final emission intensity (I0/I) of Tb-L and the concentration of Fe3+; (c) the time dependent emission spectrum of Tb-L aqueous suspension containing 120 µM Fe3+; (d) quenching and recovery tests of Tb-L for Fe3+
图3. (a) Tb-L水悬浮液在加入Fe3+ (0~120 µM)后的发射光谱;(b) Tb-L初始发射强度与最终发射强度之比(I0/I)与Fe3+浓度的关系;(c) 含120 µM Fe3+的Tb-L水悬浮液的时间依赖性发射光谱;(d) Tb-L对Fe3+的猝灭及可循环测试
3.3. 机理探讨
为研究Fe3+、MG、DCN和4-NP对Tb-L发光的猝灭作用,进行了相关实验和DFT计算。发光猝灭的常见机制包括:(i) 结构破坏或塌陷(DC);(ii) 竞争吸收机制(CAM):源于传感体与分析物吸收光谱的重叠;(iii) 内滤效应(IFE):由于传感体发射光谱与分析物吸收光谱重叠,导致发射信号被转化为吸收信号,是一种静态现象;(iv) Förster共振能量转移(FRET):在供体与受体距离小于10 nm且偶极取向合适的条件下,实现激发态供体向受体的非辐射能量转移,从而引起荧光猝灭。
Figure 4. Powder X-ray diffraction (PXRD) analysis of Tb-L before and after the addition of Fe3+
图4. Tb-L加入Fe3+前后粉末X射线衍射(PXRD)分析
首先,对用于检测Fe3+的Tb-L样品进行了过滤、水洗及干燥处理,随后进行了PXRD测试。如图4所示,Fe3+处理后的Tb-L样品的PXRD谱图峰位与原始样品基本一致,表明荧光猝灭并非由Tb-L配位聚合物结构的塌陷引起。
图5展示了在上述传感实验中,各金属阳离子水溶液的紫外吸收光谱,以及Tb-L水悬浮液的激发光谱和紫外吸收光谱。可以明显看出,Tb-L的吸收光谱与Fe3+水溶液的吸收光谱高度重叠,而与其他金属阳离子的吸收光谱几乎没有重叠;同时,Tb-L的激发光谱也与Fe3+水溶液的吸收光谱显著重叠。这表明,能量竞争吸收与内滤效应的协同作用是导致Tb-L荧光被Fe3+猝灭的主要原因。
Figure 5. UV-vis absorption spectra of 1 mM aqueous metal ion solution and excitation spectra and UV-vis absorption spectra of Tb-L
图5. UV-vis吸收光谱:1 mM金属离子水溶液,以及Tb-L的激发光谱和UV-vis吸收光谱
4. 结论
通过上述研究,我们成功制备了稀土配合物Tb-L,并系统评估了其在水介质中对Fe3+的检测性能。结果表明,Tb-L对Fe3+具有优异的灵敏度、良好的选择性及可重复使用性。结合实验观察与理论计算,Tb-L的检测限达到724.8 nM,其发光猝灭机理主要源于能量竞争吸收。整体来看,Tb-L展现出作为水环境中Fe3+荧光传感器的潜在应用价值。本研究不仅为Fe3+的高效检测提供了新的方法,也为稀土配合物在化学传感器领域的进一步开发和应用提供了有益参考。