[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Okeke, E., Davwar, P.M., Roberts, L., Sartorius, K., Spearman, W., Malu, A., et al. (2020) Epidemiology of Liver Cancer in Africa: Current and Future Trends. Seminars in Liver Disease, 40, 111-123. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Singal, A.G. and El-Serag, H.B. (2015) Hepatocellular Carcinoma from Epidemiology to Prevention: Translating Knowledge into Practice. Clinical Gastroenterology and Hepatology, 13, 2140-2151. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Zhou, Y., Song, K., Chen, Y., Zhang, Y., Dai, M., Wu, D., et al. (2024) Burden of Six Major Types of Digestive System Cancers Globally and in China. Chinese Medical Journal, 137, 1957-1964. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Look, A.T., Ashmun, R.A., Shapiro, L.H. and Peiper, S.C. (1989) Human Myeloid Plasma Membrane Glycoprotein CD13 (gp150) Is Identical to Aminopeptidase N. Journal of Clinical Investigation, 83, 1299-1307. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Feracci, H. and Maroux, S. (1980) Rabbit Intestinal Aminopeptidase N. Purification and Molecular Properties. Biochimica et Biophysica Acta (BBA)-Biomembranes, 599, 448-463. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Barnieh, F.M., Loadman, P.M. and Falconer, R.A. (2021) Is Tumour-Expressed Aminopeptidase N (APN/CD13) Structurally and Functionally Unique? Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1876, Article 188641. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
李丹丹. CD33和CD13表达与多发性骨髓瘤患者预后的关系[D]: [硕士学位论文]. 合肥: 安徽医科大学, 2022.
|
[9]
|
Mina-Osorio, P. (2008) The Moonlighting Enzyme CD13: Old and New Functions to Target. Trends in Molecular Medicine, 14, 361-371. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Dixon, J., Kaklamanis, L., Turley, H., Hickson, I.D., Leek, R.D., Harris, A.L., et al. (1994) Expression of Aminopeptidase-N (CD 13) in Normal Tissues and Malignant Neoplasms of Epithelial and Lymphoid Origin. Journal of Clinical Pathology, 47, 43-47. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Rutenburg, A.M., Goldbarg, J.A. and Pineda, E.P. (1958) Leucine Aminopeptidase Activity. New England Journal of Medicine, 259, 469-472. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Nohara, S., Kato, K., Fujiwara, D., Sakuragi, N., Yanagihara, K., Iwanuma, Y., et al. (2016) Aminopeptidase N (APN/CD13) as a Target Molecule for Scirrhous Gastric Cancer. Clinics and Research in Hepatology and Gastroenterology, 40, 494-503. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Pang, L., Zhang, N., Xia, Y., Wang, D., Wang, G. and Meng, X. (2016) Serum APN/CD13 as a Novel Diagnostic and Prognostic Biomarker of Pancreatic Cancer. Oncotarget, 7, 77854-77864. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Yamanaka, C., Wada, H., Eguchi, H., Hatano, H., Gotoh, K., Noda, T., et al. (2017) Clinical Significance of CD13 and Epithelial Mesenchymal Transition (EMT) Markers in Hepatocellular Carcinoma. Japanese Journal of Clinical Oncology, 48, 52-60. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
马玉倩, 邢晓燕, 葛彬彬, 等. APN/CD13抑制剂乌苯美司: 一个抗肿瘤化疗药物分子伴侣[J]. 中国药理学通报, 2021, 37(11): 1497-1502.
|
[16]
|
Fiddler, C.A., Parfrey, H., Cowburn, A.S., Luo, D., Nash, G.B., Murphy, G., et al. (2016) The Aminopeptidase CD13 Induces Homotypic Aggregation in Neutrophils and Impairs Collagen Invasion. PLOS ONE, 11, e0160108. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Domínguez, J.M., Pérez-Chacón, G., Guillén, M.J., Muñoz-Alonso, M.J., Somovilla-Crespo, B., Cibrián, D., et al. (2020) CD13 as a New Tumor Target for Antibody-Drug Conjugates: Validation with the Conjugate Mi130110. Journal of Hematology & Oncology, 13, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
张朝阳, 杨子, 李洪涛, 等. CD13在胃癌中的表达与临床病理参数的关系及其对远期预后的预测价值[J]. 中华全科医学, 2023, 21(12): 2018-2021.
|
[19]
|
汤小龙, 向正国, 陈旭峰, 等. CD13和FUT8在胃癌组织中的表达及与淋巴结转移的关系[J]. 生物医学工程与临床, 2025, 29(2): 250-255.
|
[20]
|
Liu, X., Guo, Q., Jing, F., Zhou, C., Xiu, T., Shi, Y., et al. (2021) Ubenimex Suppresses the Ability of Migration and Invasion in Gastric Cancer Cells by Alleviating the Activity of the CD13/NAB1/MAPK Pathway. Cancer Management and Research, 13, 4483-4495. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Ha, Y.J., Shin, Y.J., Tak, K.H., Park, J.L., Kim, J.H., Lee, J.L., et al. (2023) Reduced Expression of Alanyl Aminopeptidase Is a Robust Biomarker of Non-Familial Adenomatous Polyposis and Non-Hereditary Nonpolyposis Colorectal Cancer Syndrome Early‐Onset Colorectal Cancer. Cancer Medicine, 12, 10091-10104. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Hashida, H., Takabayashi, A., Kanai, M., Adachi, M., Kondo, K., Kohno, N., et al. (2002) Aminopeptidase N Is Involved in Cell Motility and Angiogenesis: Its Clinical Significance in Human Colon Cancer. Gastroenterology, 122, 376-386. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Saxena, A., Chumanevich, A., Fletcher, E., Larsen, B., Lattwein, K., Kaur, K., et al. (2012) Adiponectin Deficiency: Role in Chronic Inflammation Induced Colon Cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822, 527-536. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Lukanova, A., Söderberg, S., Kaaks, R., Jellum, E. and Stattin, P. (2006) Serum Adiponectin Is Not Associated with Risk of Colorectal Cancer. Cancer Epidemiology, Biomarkers & Prevention, 15, 401-402. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
翟梦颖. 氨肽酶N激活BCKDK-ERK信号轴促进肝细胞癌转移和增殖的机制研究[D]: [博士学位论文]. 天津: 天津医科大学, 2020.
|
[26]
|
Zhao, Y., Wu, H., Xing, X., Ma, Y., Ji, S., Xu, X., et al. (2020) CD13 Induces Autophagy to Promote Hepatocellular Carcinoma Cell Chemoresistance through the P38/Hsp27/CREB/ATG7 Pathway. The Journal of Pharmacology and Experimental Therapeutics, 374, 512-520. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Yamashita, M., Wada, H., Eguchi, H., Ogawa, H., Yamada, D., Noda, T., et al. (2016) A CD13 Inhibitor, Ubenimex, Synergistically Enhances the Effects of Anticancer Drugs in Hepatocellular Carcinoma. International Journal of Oncology, 49, 89-98. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Slavik, J.M., Hutchcroft, J.E. and Bierer, B.E. (1999) CD28/CTLA-4 and CD80/CD86 Families. Immunologic Research, 19, 1-24. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Sharpe, A.H. and Freeman, G.J. (2002) The B7-CD28 Superfamily. Nature Reviews Immunology, 2, 116-126. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
June, C.H., Bluestone, J.A., Nadler, L.M. and Thompson, C.B. (1994) The B7 and CD28 Receptor Families. Immunology Today, 15, 321-331. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Kornbluth, J. (1995) Potential Role of CD28-B7 Interactions in the Growth of Myeloma Plasma Cells. In: Current Topics in Microbiology and Immunology, Springer Berlin Heidelberg, 43-49. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Krummel, M.F. and Allison, J.P. (1995) CD28 and CTLA-4 Have Opposing Effects on the Response of T Cells to Stimulation. The Journal of Experimental Medicine, 182, 459-465. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Walunas, T.L., Lenschow, D.J., Bakker, C.Y., Linsley, P.S., Freeman, G.J., Green, J.M., et al. (1994) CTLA-4 Can Function as a Negative Regulator of T Cell Activation. Immunity, 1, 405-413. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Njau, M.N. and Jacob, J. (2013) The CD28/B7 Pathway: A Novel Regulator of Plasma Cell Function. In: Katsikis, P., Schoenberger, S. and Pulendran, B., Eds., Advances in Experimental Medicine and Biology, Springer, 67-75. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Frauwirth, K.A., Riley, J.L., Harris, M.H., Parry, R.V., Rathmell, J.C., Plas, D.R., et al. (2002) The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity, 16, 769-777. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Broux, B., Markovic-Plese, S., Stinissen, P. and Hellings, N. (2012) Pathogenic Features of CD4+CD28– T Cells in Immune Disorders. Trends in Molecular Medicine, 18, 446-453. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Li, N., Gao, L., Ge, Y., Zhao, L., Bai, C. and Wang, Y. (2023) Prognostic and Predictive Significance of Circulating Biomarkers in Patients with Advanced Upper Gastrointestinal Cancer Undergoing Systemic Chemotherapy. Frontiers in Oncology, 13, Article 1195848. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Hsu, P., Yang, T., Kao, J., Cheng, K., Lee, Y., Wang, Y., et al. (2010) Increased PD-1 and Decreased CD28 Expression in Chronic Hepatitis B Patients with Advanced Hepatocellular Carcinoma. Liver International, 30, 1379-1386. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Esensten, J.H., Helou, Y.A., Chopra, G., Weiss, A. and Bluestone, J.A. (2016) CD28 Costimulation: From Mechanism to Therapy. Immunity, 44, 973-988. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Sam, J., Hofer, T., Kuettel, C., Claus, C., Thom, J., Herter, S., et al. (2024) CD19-CD28: An Affinity-Optimized CD28 Agonist for Combination with Glofitamab (CD20-TCB) as off-the-Shelf Immunotherapy. Blood, 143, 2152-2165. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Qin, L., Jing, X., Qiu, Z., Cao, W., Jiao, Y., Routy, J., et al. (2016) Aging of Immune System: Immune Signature from Peripheral Blood Lymphocyte Subsets in 1068 Healthy Adults. Aging, 8, 848-859. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Li, T. and Xiang, P. (2019) Therapeutic Effects of Endoscopic Mucosal Resection on the Recovery and Prognosis of Early Gastric Cancer. Journal of B.U.ON., 24, 1087-1091.
|
[43]
|
Maki, A., Matsuda, M., Asakawa, M., Kono, H., Fujii, H. and Matsumoto, Y. (2004) Decreased Expression of CD28 Coincides with the Down-Modulation of Cd3ζ and Augmentation of Caspase-3 Activity in T Cells from Hepatocellular Carcinoma-Bearing Patients and Hepatitis C Virus-Infected Patients. Journal of Gastroenterology and Hepatology, 19, 1348-1356. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
李素燕, 安黎云, 张会峰, 等. PD-1在原发性肝细胞癌组织中的表达及意义[J]. 药学研究, 2024, 43(9): 913-917.
|
[45]
|
刘晓光, 金秀国, 刘波, 等. 结肠癌患者外周血淋巴细胞CD8和CD28的表达[J]. 肿瘤学杂志, 2007(1): 68-69.
|
[46]
|
Kucukhuseyin, O., Turan, S., Yanar, K., et al. (2015) Individual and Combined Effects of CTLA4-CD28 Variants and Oxidant-Antioxidant Status on the Development of Colorectal Cancer. Anticancer Research, 35, 5391-5400.
|
[47]
|
Mao, Y., Wang, C., Meng, F., Kong, J., Cao, S., Jiang, Y., et al. (2018) Polymorphisms in the ICOS/CD28-ICOSL Pathway Are Related to Capecitabine-Based Chemotherapy Response in Advanced Colon Cancer Patients. Molecular Immunology, 96, 78-82. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Dzik, J.M. (2014) Evolutionary Roots of Arginase Expression and Regulation. Frontiers in Immunology, 5, Article No. 544. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Dizikes, G.J., Grody, W.W., Kern, R.M. and Cederbaum, S.D. (1986) Isolation of Human Liver Arginase cDNA and Demonstration of Nonhomology between the Two Human Arginase Genes. Biochemical and Biophysical Research Communications, 141, 53-59. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Ash, D.E. (2004) Structure and Function of Arginases. The Journal of Nutrition, 134, 2760S-2764S. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Caldwell, R.W., Rodriguez, P.C., Toque, H.A., Narayanan, S.P. and Caldwell, R.B. (2018) Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiological Reviews, 98, 641-665. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Satriano, J. (2004) Arginine Pathways and the Inflammatory Response: Interregulation of Nitric Oxide and Polyamines: Review Article. Amino Acids, 26, 321-329. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Deignan, J.L., Cederbaum, S.D. and Grody, W.W. (2008) Contrasting Features of Urea Cycle Disorders in Human Patients and Knockout Mouse Models. Molecular Genetics and Metabolism, 93, 7-14. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Yang, Z. and Ming, X. (2014) Functions of Arginase Isoforms in Macrophage Inflammatory Responses: Impact on Cardiovascular Diseases and Metabolic Disorders. Frontiers in Immunology, 5, Article No. 533. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
周丽英, 王宁宁, 张瑜, 等. 宫颈癌中IL-38表达及与肿瘤相关巨噬细胞因子关系[J]. 中华肿瘤防治杂志, 2020, 27(22): 1809-1814.
|
[56]
|
Wu, C., Wang, S., Chang, T., Lin, E., Chang, K., Huang, M., et al. (1989) Content of Glucocorticoid Receptor and Arginase in Gastric Cancer and Normal Gastric Mucosal Tissues. Cancer, 64, 2552-2556. [Google Scholar] [CrossRef]
|
[57]
|
曹梦, 高广甫. GPC-3和Arg-1在肝细胞性肝癌中的表达及其诊断价值[J]. 河南医学研究, 2022, 31(20): 3699-3703.
|
[58]
|
Cheng, P.N.M., Liu, A.M., Bessudo, A. and Mussai, F. (2021) Safety, PK/PD and Preliminary Anti-Tumor Activities of Pegylated Recombinant Human Arginase 1 (BCT-100) in Patients with Advanced Arginine Auxotrophic Tumors. Investigational New Drugs, 39, 1633-1640. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Martinenaite, E., Lecoq, I., Aaboe-Jørgensen, M., Ahmad, S.M., Perez-Penco, M., Glöckner, H.J., et al. (2025) Arginase-1-Specific T Cells Target and Modulate Tumor-Associated Macrophages. Journal for ImmunoTherapy of Cancer, 13, e009930. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Liu, Y., Yu, Y., Hu, C., Jiang, M., Zhao, C., Li, X., et al. (2025) ZEB2 Upregulation Modulates the Polarization of Tams toward the Immunosuppressive State in EGFR-TKI-Resistant NSCLC. Cancer Drug Resistance, 8, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
郑威强, 王向阳. 胃癌患者癌组织中精氨酸酶-1的表达及预后价值[J]. 华中科技大学学报(医学版), 2021, 50(4): 504-508.
|
[62]
|
李雪, 莫翠毅, 陈嘉嘉, 等. 早期胃癌肿瘤浸润深度与癌组织PD-L1、Arg-1表达的关系[J]. 临床和实验医学杂志, 2023, 22(1): 19-23.
|
[63]
|
Pegg, A.E. (1988) Polyamine Metabolism and Its Importance in Neoplastic Growth and a Target for Chemotherapy. Cancer Research, 48, 759-774.
|
[64]
|
Gao, Y., Li, X., Yang, M., Zhao, Q., Liu, X., Wang, G., et al. (2013) Colitis-Accelerated Colorectal Cancer and Metabolic Dysregulation in a Mouse Model. Carcinogenesis, 34, 1861-1869. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
Ma, Z., Lian, J., Yang, M., Wuyang, J., Zhao, C., Chen, W., et al. (2019) Overexpression of Arginase-1 Is an Indicator of Poor Prognosis in Patients with Colorectal Cancer. Pathology-Research and Practice, 215, Article 152383. [Google Scholar] [CrossRef] [PubMed]
|
[66]
|
Wang, X., Xiang, H., Toyoshima, Y., Shen, W., Shichi, S., Nakamoto, H., et al. (2023) Arginase-1 Inhibition Reduces Migration Ability and Metastatic Colonization of Colon Cancer Cells. Cancer & Metabolism, 11, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
[67]
|
王斌生. 精氨酸酶1在原发性肝癌及肝转移癌鉴别中的作用[J]. 癌变.畸变.突变, 2014, 26(2): 113-116.
|
[68]
|
Atta, I.S. (2021) Efficacy of Expressions of Arg-1, Hep Par-1, and CK19 in the Diagnosis of the Primary Hepatocellular Carcinoma Subtypes and Exclusion of the Metastases. Histol Histopathol, 36, 981-993.
|
[69]
|
Sang, W., Zhang, W., Cui, W., Li, X., Abulajiang, G. and Li, Q. (2015) Arginase-1 Is a More Sensitive Marker than Heppar-1 and AFP in Differential Diagnosis of Hepatocellular Carcinoma from Nonhepatocellular Carcinoma. Tumor Biology, 36, 3881-3886. [Google Scholar] [CrossRef] [PubMed]
|