成人发育性髋关节发育不良人工全髋关节置换术的挑战与应对策略
Challenges and Coping Strategies for Artificial Total Hip Arthroplasty in Adults with Developmental Hip Dysplasia
DOI: 10.12677/acm.2025.15102957, PDF, HTML, XML,   
作者: 王克克:济宁医学院临床医学院,山东 济宁;王 鹏:山东第一医科大学第一附属医院(山东省千佛山医院)骨科,山东 济南
关键词: 成人发育性髋关节发育不良人工全髋关节置换术髋臼重建股骨近端解剖异常Adult Developmental Hip Dysplasia Artificial Total Hip Arthroplasty Acetabular Reconstruction Anatomical Abnormality of the Proximal Femur
摘要: 发育性髋关节发育不良(Developmental Dysplasia of the Hip, DDH)是一种常见先天性髋关节畸形,成人未经干预者可进展为继发性骨关节炎,需行人工全髋关节置换术(Total Hip Arthroplasty, THA)。由于DDH患者存在髋臼骨缺损、股骨畸形及下肢不等长等解剖异常,导致THA面临假体定位困难、关节不稳及远期松动等风险。本文根据临床指南及最新研究,系统总结了三维术前规划对解剖标志识别的价值、多种技术手段在骨缺损修复中的应用、DDH分型指导下的个性化假体选择策略和Crowe IV型DDH患者不同方式的股骨截骨短缩术,以期为成人DDH的THA治疗提供一定的理论支持。
Abstract: Developmental Dysplasia of the Hip (DDH) is a common congenital hip deformity. Untreated cases in adults may progress to secondary osteoarthritis, ultimately requiring Total Hip Arthroplasty (THA). Due to anatomical abnormalities such as acetabular bone defects, femoral deformities, and limb length discrepancy in DDH patients, THA poses challenges, including difficult prosthesis positioning, joint instability, and long-term loosening risks. Based on clinical guidelines and recent research, this paper systematically reviews the value of three-dimensional preoperative planning in identifying anatomical landmarks, the application of various techniques for bone defect reconstruction, personalized prosthesis selection strategies guided by DDH classification, and different femoral shortening osteotomy approaches for Crowe type IV DDH patients. The aim is to provide a theoretical framework for THA treatment in adult DDH cases.
文章引用:王克克, 王鹏. 成人发育性髋关节发育不良人工全髋关节置换术的挑战与应对策略[J]. 临床医学进展, 2025, 15(10): 1869-1876. https://doi.org/10.12677/acm.2025.15102957

1. 引言

发育性髋关节发育不良(Developmental Dysplasia of the Hip, DDH)是以髋臼覆盖不全和股骨近端形态异常为特征的先天性关节畸形,其病理核心在于髋臼–股骨头匹配度丧失。影像学特征表现为髋臼和股骨头未能完全接触,从而使髋臼边缘承受过度的应力,导致应力异常分布并加速关节退变[1] [2],最终因病情进展至终末期而不得不接受全髋关节置换手术(Total Hip Arthroplasty, THA)。

相较于常规THA,DDH患者因存在髋臼骨缺损、股骨髓腔狭窄及软组织挛缩等复杂解剖变异,显著增加手术难度:髋臼假体覆盖不足易致早期松动,股骨柄异常应力易引发假体周围骨折,而肢体长度平衡与关节稳定性维持更需精细控制[3]。此外,术后神经损伤、关节脱位及双下肢不等长等并发症发生率可达常规手术的2~3倍。这些技术挑战要求术者需在三维空间精确重建髋关节生物力学轴线,同时兼顾骨缺损修复与软组织平衡。本文总结了髋臼重建和股骨侧处理的当前发展理论,为优化手术方案提供循证依据。

2. DDH分型对手术的指导意义

目前成人DDH最常用的分型方法依然是Crowe分型和Hartofilakidis分型。Crowe分型[4]通过三维空间定位评估脱位程度,精确量化股骨头脱位程度辅助假体选择,但存在对髋臼病理形态解剖学评估不足的局限。而Hartofilakidis分型[5]则是着重强调了髋臼形态发育异常与髋关节脱位程度的相关性,着重于解析髋臼病理解剖特征优化骨缺损修复策略。Mu等学者[6]对58例Crowe IV型-Hartofilakidis III型DDH患者的临床观察,发现采用双重分型体系进行联合评估具有重要临床价值。术后随访数据显示,患者Harris髋关节功能评分获得显著改善,中远期(平均98个月)假体存活率达到91.4%。这一结果表明,双分型系统的协同应用不仅有助于提升假体植入的精确性,更能有效增强术后假体的力学稳定性。

3. 髋臼重建

DDH患者行髋关节重建最为重要的髋臼侧处理是恢复髋臼解剖旋转中心(距泪滴垂直距 < 35 mm),实现假体骨性覆盖 ≥ 70%以获稳定固定[7] [8]。髋臼重建的核心目标在于恢复髋臼解剖结构的完整性,重建肢体长度及正常的解剖位置关系,从而确保假体获得长期稳定的生物学固定。

3.1. 确定髋臼旋转中心

准确识别髋臼位置并恢复正常髋关节中心是非常关键的。对于大多数Crowe I、II型DDH患者,在术前可应用Ranawat [9] [10]三角法,通过测量髓臼切迹、髋臼顶及横断面上的髂嵴这三个点的相对位置,临床医生能够精确定位人工髋关节的旋转中心,并确定假体的最佳植入位置,从而优化生物力学效果。另外,在术中可通过辨认卵圆窝、髋臼切迹或横韧带,明确真臼的下缘[11]。而Crowe III、IV型患者,严重的解剖畸形使髋臼重建成为THA的最大挑战,术中髋臼重建的位置定位较为困难,这对假体的植入角度及旋转中心的确定造成了影响[12]。同时,随着髋臼分型的复杂程度增加,可能伴随较大的潜在骨质缺损。目前,随着3D打印技术的兴起,越来越多的临床医师利用它评估骨盆形态解决DDH髋臼重建的难题。

术前3D打印技术可以精确复刻患者1:1比例的髋臼模型,为术前规划提供直观依据。据报道,术前采用3D打印髋臼模型不仅能够制定个性化的手术方案,还可模拟假体的植入过程,并设计针对性假体结构。研究表明,通过合理的术前规划和3D打印辅助手术,宿主骨的假体覆盖率可达到70%以上,并在术后通过骨整合实现长期的稳定性。这一技术尤其适用于复杂畸形和严重骨缺损患者,提高了手术的成功率和假体的生物力学稳定性。依靠此技术,临床医生根据髋臼重建的位置,手术技术可分为两类:解剖学髋关节中心(anatomical hip center, AHC)和高位髋臼位置(high hip center, HHC) [13]。其中解剖位重建(AHC)需行股骨短缩截骨(平均截骨量2~3 cm)缓解软组织张力[14],虽增加手术复杂度,但15年假体生存率达87%,松动率降低69%;而高位髋臼位置(HHC),患者旋转中心上移 ≤ 2 cm时可避免截骨,但导致髋关节外展肌力臂缩短23%~35%,髋关节接触应力增加1.8倍,脱位风险提升3.1倍[15] [16]。目前已有研究表明,旋转中心外移每增加5 mm,假体松动风险上升37%。因此,越来越多的临床医师优先选择AHC重建,仅在骨缺损 > 50%时考虑HHC联合结构性植骨[17]

3.2. 髋臼骨缺损处理

髋臼上外侧骨缺损的修复是髋臼重建中的关键环节,该区域的骨量不足可能导致髋臼杯无法完全被骨组织覆盖,导致假体外露,进而影响假体的初期固定效果[18]。对于Crowe II、III型的病例,髋臼的解剖结构存在显著变异,常伴随较大范围的骨缺损,因此需要术前通过影像学检查精确评估骨盆形态,以便制定个性化的手术方案[19]。值得注意的是,在Crowe IV患者由于股骨头长期处于完全脱位,真臼区域缺乏正常应力刺激,往往存在严重的骨量丢失,这种解剖特性在髋臼重建后可能导致骨–假体界面的应力分布不均,并显著增加假体松动的风险[20]。为了解决髋臼骨缺损,构建有效的骨整合界面,通过提升宿主骨覆盖面积重塑髋臼解剖形态,临床医师多采用髋臼植骨、带翼髋臼加强环及金属增强垫块等技术。首先,髋臼植骨方式依据移植物形态差异主要分为结构性植骨[21]与颗粒性植骨[22]两种,其材料选择涵盖了多种方案,如自体骨移植与同种异体骨移植。Gunes [21]研究团队回顾性分析了31例经自体股骨头移植治疗DDH继发的终末期髋关节骨关节炎,随访时间至少10年,24例髋实现了解剖学髋关节中心重建,其余髋臼杯与解剖旋转中心存在不同程度的偏差。仅有1例患者因松动需要翻修,10年生存率为96.8%,从而证明该种植骨方式可以为成人DDH患者提供长期且可靠的髋臼固定。Mozafari [22]等人纳入了71例DDH且髋臼覆盖率不足30%的患者,其中57例接受了颗粒性植骨,14例接受了结构性植骨,在平均92个月的随访中,两组患者的髋关节功能评分均有明显提升,颗粒性植骨的患者均实现了良好的骨整合,但16例患者出现异位骨化,结构性植骨则有1例髋臼杯松动。该研究得出如果髋臼杯能够在真臼中实现压配,那么使用打压植骨就足以保证中期稳定性。这项技术比结构性支撑植骨更简单,操作也更快,但其潜在的缺点是异位骨化发生率较高。当初始压配无法实现时,支撑植骨仍然是必要的。目前,螺钉固定是植骨块常用的固定方式[15],但由于易产生应力集中,可能导致植骨块吸收或塌陷等并发症[23]。针对髋臼重建中的生物力学问题,Totoribe研究团队[24]提出在严重髋臼骨缺损的DDH患者中使用带翼髋臼加强环固定,并通过有限元分析方法证实,该设计能够优化髋臼顶部应力分布,从而提高臼杯的初始稳定性。然而,研究也发现,随着植骨块体积的增大,植骨块与假体间的应力相应升高,进而可能增加塌陷和松动的发生率[25]。随着研究深入,金属增强垫块技术的应用为改善臼顶力学环境提供了新的解决方案,这种技术目前主要用于翻修手术以修复髋臼骨缺损[26]。Wang [27]等采用有限元分析方法对髋臼顶部重建中两种不同材料(金属垫块与植骨块)的生物力学特性进行了对比研究。其研究数据表明,在力学稳定性方面,金属垫块能够达到与植骨材料相当的水平。值得关注的是,3D打印多孔钽金属垫块因其独特的优势逐渐成为研究热点。这种个性化的金属垫块不仅能够满足DDH患者的复杂需求,还因其弹性模量与松质骨相近,可显著降低应力遮挡效应,从而减少对宿主骨的不良影响[26]。Kong [28]等将3D打印技术应用于髋关节翻修手术,采用多孔钽材料制作个性化补块进行髋臼缺损重建。术后结果显示患者均获得满意的临床疗效,影像学评估证实股骨头的髋臼覆盖面积显著增加,证实了该技术的可靠性和有效性。尽管个性化金属垫块在髋臼重建中的应用前景广阔,但针对臼杯与金属垫块接触面的处理以及其远期疗效等问题,仍需进一步深入研究和验证。

3.3. 髋臼杯假体的选择

在THA中,假体类型的选择对手术预后具有决定性影响。由于DDH患者髋臼骨量不足,传统方法常采用骨水泥型臼杯结合骨水泥进行固定。然而,这种技术在年轻DDH患者中可能增加未来翻修手术的复杂性。据Dapuzzo [29]等学者长期的随访研究,当骨水泥杯与自体骨移植物相结合时,其术后约10年的假体翻修率维持在较为理想的水平,但由于移植物塌陷或假体松动,这些翻修率在10年后急剧增加。目前,生物型髋臼假体广泛应用于Crowe I、II型患者,其在中长期随访中显示出较低的翻修率[30]。多项临床研究数据表明,在假体远期存留率方面,生物型假体较传统骨水泥型假体具有显著优势。生物型臼杯因其独特特性受到关注,包括高孔隙率、适宜孔径、低弹性模量以及粗糙的表面结构。这些特性不仅能够显著增强骨–假体界面的整合效果,还可优化生物固定效果,促进骨组织在假体表面的快速生长和深层长入,提高假体的长期稳定性[31]

4. 股骨侧处理

在DDH患者接受THA时,术者需全面掌握患者股骨解剖结构的异常情况,根据Crowe分类的不同程度采取针对性股骨侧处理。对于Crowe I、II和III型大多数患者,在成功重建理想的髋关节旋转中心后,通常无需进行股骨短缩截骨。但应选择合适的股骨假体类型和尺寸,以适应狭窄的髓腔,并可能通过调整假体颈长来恢复下肢长度。对于Crowe IV型患者,由于关节脱位的程度较为严重,通常需要实施股骨截骨术[32]

4.1. 股骨截骨短缩术

在DDH的治疗中,股骨截骨短缩术是一种广泛应用的技术,根据手术部位可分为股骨近端(大转子、小转子、股骨颈)、股骨远端及转子下截骨术。其中,转子下截骨术因其独特的优势成为DDH治疗的首选术式,主要术式包括横行截骨、“Z”形截骨(阶梯形截骨)、双“V”形截骨以及斜行截骨[33] (见图1)。不同的截骨方式在临床中的应用效果一直存有争议。对于髋关节高脱位患者,采用转子下横行截骨术后5年的骨愈合率与“Z”形截骨相当,且前者在术中更便于调整股骨前倾角[34]。双“V”形截骨术虽然在1995年由Becker [35]等人提出后被认为可有效矫正股骨前倾畸形,但其手术方案设计复杂,操作难度较高。针对这一问题,Li [36]等人对该技术进行了改良,通过先行横行截骨并纠正前倾角,在垂直对齐后,在先前横断截骨的部位再实施双“V”形截骨,显著简化了手术流程并提高了成功率。Atlihan [37]等人通过机械试验验证斜行45˚截骨是一种很好的截骨方式。首先,与横行截骨相比,斜行截骨在力学性能和骨结合能力上更优;其次,与“Z”形截骨相比,斜行截骨在轴向和扭转载荷下表现出更高的稳定性;此外,相较于双“V”形截骨,其设计更简洁,手术难度较低。然而,斜行截骨在负重情况下可能因剪切力作用导致位移,影响稳定性,同时对术中固定装置和操作精度要求较高。近年来,手术机器人和计算机辅助导航技术的应用在骨科领域引起了广泛关注。Zora [38]研究团队将40名DDH患者均分为机器人辅助THA组和传统手动THA组,在MAKO机器人手臂辅助系统中,术前通过将CT图像上传至虚拟环境进行详细的术前规划,以选择合适尺寸的假体组件,并确定髋臼和股骨组件的正确植入角度,术中使用MAKO机器人辅助系统检查组件角度、肢体长度和偏心距。研究结果指出两组患者在股骨短缩量、髋臼外展角和前倾角无显著差异,且机器人辅助THA组手术时间更长。在早期至中期的随访中,机器人辅助THA相对于传统手动THA并未带来显著的功能优势,但其在植入物放置的精确性方面可能对长期结局具有潜在优势,这需要在更长随访期的研究中进一步探究。随着科学技术的不断发展,希望在未来这些技术能克服截骨手术中创伤较大、手术复杂和学习曲线陡峭的难题,从而推动相关手术方法的进一步优化[39]

Figure 1. A: Transverse osteotomy; B: Oblique osteotomy; C: “Z-shaped” osteotomy; D: Double “V” osteotomy

1. A:横形截骨;B:斜行截骨;C:“Z”形截骨;D:双“V”形截骨

4.2. 股骨假体的选择

成人DDH患者因股骨过度前倾、髓腔狭窄及颈干短缩等解剖异常,需个体化选择股骨假体。骨水泥型假体在股骨侧展现出更优的初期稳定性[11],但需警惕截骨术中骨水泥渗漏风险[9]。对于复杂解剖(如Crowe Ⅳ型),为获得理想的假体匹配效果,临床上通常需要结合截骨技术并选用模块化假体来进行手术,如可调节前倾角功能的柱状假体S-ROM/SR/MP系列假体[40] [41]。此外,Wagner锥形柄假体因其独特的生物力学优势,不仅适用于圆柱形髓腔解剖结构,还可实现前倾角度的个性化调节,同时提供可靠的旋转稳定性[42]。随着THA患者群体的年轻化趋势日益显著,短柄假体在设计和临床应用方面获得了显著进展[43]。Yavari [44]研究团队通过对156例病例的对照研究证实,与标准柄相比,短柄假体可显著缩短手术时间,减少术中出血量,同时获得更好的术后Harris髋关节功能评分。对于股骨近端存在显著解剖畸形的复杂病例,个性化定制假体为临床治疗提供了有效的解决方案。然而,这类个性化假体仍存在诸多局限性:首先,高昂的制作成本限制了其临床应用范围;其次,临床效果的不确定性也影响了其推广价值。

5. 总结与展望

成人DDH患者的THA是极具挑战性的骨科手术,其核心难点在于髋臼骨缺损、股骨畸形及软组织失衡的个体化处理。基于现有证据,我们提出以下分层治疗建议:对于Crowe I~II型患者,应优先选择生物型臼杯并结合术前规划实现解剖旋转中心重建;Crowe III型建议结合结构性植骨或金属增强垫块恢复髋臼覆盖;Crowe IV型则常需联合股骨截骨短缩术(如斜行或“Z”形截骨),在恢复肢体长度与扭转对位的同时保障初始稳定性。尽管现有研究为DDH的THA提供了多种解决方案,仍存在明显空白与争议:首先,多数研究样本量小、随访时间短,缺乏高级别证据支持不同重建技术的长期优劣;其次,个性化金属垫块、3D打印假体等新技术虽初步显示良好效果,但其长期安全性与骨整合效能尚未明确;此外,机器人辅助手术的实际价值、成本效益比及学习曲线仍需进一步探讨。未来研究应聚焦于以下方向:开展多中心前瞻性对照研究,比较不同髋臼重建技术(如结构性植骨、金属垫块、加强环)在严重骨缺损(>50%)患者中的远期生存率和并发症差异;比较机器人辅助与传统手动截骨在双“V”形截骨中的精确性和骨愈合率的前瞻性研究;研发新型生物材料与仿生假体,结合有限元分析优化设计,减少应力遮挡并促进骨长入。随着精准医疗与智能技术的发展,有望在假体设计、手术导航及术后康复等方面实现突破,进一步提升患者生活质量和远期疗效。

参考文献

[1] de Courtivron, B., Brulefert, K., Portet, A. and Odent, T. (2022) Residual Acetabular Dysplasia in Congenital Hip Dysplasia. Orthopaedics & Traumatology: Surgery & Research, 108, Article ID: 103172. [Google Scholar] [CrossRef] [PubMed]
[2] Schmitz, M.R., Murtha, A.S. and Clohisy, J.C. (2020) Developmental Dysplasia of the Hip in Adolescents and Young Adults. Journal of the American Academy of Orthopaedic Surgeons, 28, 91-101. [Google Scholar] [CrossRef] [PubMed]
[3] Argenson, J., Ryembault, E., Flecher, X., Brassart, N., Parratte, S. and Aubaniac, J. (2005) Three-Dimensional Anatomy of the Hip in Osteoarthritis after Developmental Dysplasia. The Journal of Bone and Joint Surgery. British Volume, 87, 1192-1196. [Google Scholar] [CrossRef] [PubMed]
[4] Crowe, J.F., Mani, V.J. and Ranawat, C.S. (1979) Total Hip Replacement in Congenital Dislocation and Dysplasia of the Hip. The Journal of Bone & Joint Surgery, 61, 15-23. [Google Scholar] [CrossRef
[5] Hartofilakidis, G., Yiannakopoulos, C.K. and Babis, G.C. (2008) The Morphologic Variations of Low and High Hip Dislocation. Clinical Orthopaedics & Related Research, 466, 820-824. [Google Scholar] [CrossRef] [PubMed]
[6] Mu, W., Yang, D., Xu, B., Mamtimin, A., Guo, W. and Cao, L. (2016) Midterm Outcome of Cementless Total Hip Arthroplasty in Crowe IV-Hartofilakidis Type III Developmental Dysplasia of the Hip. The Journal of Arthroplasty, 31, 668-675. [Google Scholar] [CrossRef] [PubMed]
[7] Rogers, B.A., Garbedian, S., Kuchinad, R.A., Backstein, D., Safir, O. and Gross, A.E. (2012) Total Hip Arthroplasty for Adult Hip Dysplasia. Journal of Bone and Joint Surgery, 94, 1809-1821. [Google Scholar] [CrossRef] [PubMed]
[8] Nie, Y., Pei, F., Shen, B., Kang, P. and Li, Z. (2015) Implication of Acetabular Width on the Anteroposterior Pelvic Radiograph of Patients with Developmental Dysplasia of the Hip. The Journal of Arthroplasty, 30, 489-494. [Google Scholar] [CrossRef] [PubMed]
[9] Wang, Y. (2019) Current Concepts in Developmental Dysplasia of the Hip and Total Hip Arthroplasty. Arthroplasty, 1, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
[10] Ranawat, C.S., Dorr, L.D. and Inglis, A.E. (1980) Total Hip Arthroplasty in Protrusio Acetabuli of Rheumatoid Arthritis. The Journal of Bone & Joint Surgery, 62, 1059-1065. [Google Scholar] [CrossRef
[11] Papachristou, G.C., Pappa, E., Chytas, D., Masouros, P.T. and Nikolaou, V.S. (2021) Total Hip Replacement in Developmental Hip Dysplasia: A Narrative Review. Cureus, 13, e14763. [Google Scholar] [CrossRef] [PubMed]
[12] Qian, H., Wang, X., Wang, P., Zhang, G., Dang, X., Wang, K., et al. (2023) Total Hip Arthroplasty in Patients with Crowe III/IV Developmental Dysplasia of the Hip: Acetabular Morphology and Reconstruction Techniques. Orthopaedic Surgery, 15, 1468-1476. [Google Scholar] [CrossRef] [PubMed]
[13] Gao, Y., Chai, W., An, Z., Chen, X., Dong, Z., Zhang, Z., et al. (2022) Effect of Hip Joint Center on Multi‐Body Dynamics and Contact Mechanics of Hip Arthroplasty for Crowe IV Dysplasia. Orthopaedic Surgery, 14, 3061-3069. [Google Scholar] [CrossRef] [PubMed]
[14] Takao, M., Ohzono, K., Nishii, T., Miki, H., Nakamura, N. and Sugano, N. (2011) Cementless Modular Total Hip Arthroplasty with Subtrochanteric Shortening Osteotomy for Hips with Developmental Dysplasia. The Journal of Bone and Joint Surgery-American Volume, 93, 548-555. [Google Scholar] [CrossRef] [PubMed]
[15] Chen, M., Luo, Z., Wu, K., Zhang, X., Ling, X. and Shang, X. (2016) Cementless Total Hip Arthroplasty with a High Hip Center for Hartofilakidis Type B Developmental Dysplasia of the Hip: Results of Midterm Follow-Up. The Journal of Arthroplasty, 31, 1027-1034. [Google Scholar] [CrossRef] [PubMed]
[16] Georgiades, G., Babis, G.C., Kourlaba, G. and Hartofilakidis, G. (2010) Effect of Cementless Acetabular Component Orientation, Position, and Containment in Total Hip Arthroplasty for Congenital Hip Disease. The Journal of Arthroplasty, 25, 1143-1150. [Google Scholar] [CrossRef] [PubMed]
[17] Linde, F. and Jensen, J. (1988) Socket Loosening in Arthroplasty for Congenital Dislocation of the Hip. Acta Orthopaedica Scandinavica, 59, 254-257. [Google Scholar] [CrossRef] [PubMed]
[18] Li, H., Mao, Y., Oni, J.K., Dai, K. and Zhu, Z. (2013) Total Hip Replacement for Developmental Dysplasia of the Hip with More than 30% Lateral Uncoverage of Uncemented Acetabular Components. The Bone & Joint Journal, 95, 1178-1183. [Google Scholar] [CrossRef] [PubMed]
[19] Yang, Y., Zuo, J., Liu, T., Xiao, J., Liu, S. and Gao, Z. (2017) Morphological Analysis of True Acetabulum in Hip Dysplasia (Crowe Classes I-IV) via 3-D Implantation Simulation. Journal of Bone and Joint Surgery, 99, e92. [Google Scholar] [CrossRef] [PubMed]
[20] Mulroy, R.D. and Harris, W.H. (1990) Failure of Acetabular Autogenous Grafts in Total Hip Arthroplasty. Increasing Incidence. The Journal of Bone & Joint Surgery, 72, 1536-1540. [Google Scholar] [CrossRef
[21] Güneş, Z., Bekmez, Ş., Çağlar, Ö., Mazhar Tokgözoğlu, A. and Atilla, B. (2022) Anatomic Acetabular Reconstruction with Femoral Head Autograft for Developmental Dysplasia of the Hip (DDH) with a Minimum Follow-Up of 10 Years. HIP International, 33, 736-742. [Google Scholar] [CrossRef] [PubMed]
[22] Mozafari, J.K., Pisoudeh, K., Gharanizadeh, K., Ghazavi, M. and Abolghasemian, M. (2022) Impaction Grafting Is Sufficient to Address Acetabular Deficiency during Total Hip Arthroplasty of Most Dysplastic Hips with over 30% Bone Defect. The Journal of Arthroplasty, 37, 1302-1307. [Google Scholar] [CrossRef] [PubMed]
[23] Krishnan, K.M., Longstaff, L. and Partington, P. (2011) Acetabular Reconstruction Using Morcellised Bone with Ring Support-Medium-Term Results at Three to Nine Years. Acta Orthopaedica Belgica, 77, 61-67.
[24] Totoribe, K., Chosa, E., Yamako, G., Zhao, X., Ouchi, K., Hamada, H., et al. (2018) Acetabular Reinforcement Ring with Additional Hook Improves Stability in Three-Dimensional Finite Element Analyses of Dysplastic Hip Arthroplasty. Journal of Orthopaedic Surgery and Research, 13, Article No. 313. [Google Scholar] [CrossRef] [PubMed]
[25] Du, Y., Fu, J., Sun, J., Zhang, G., Chen, J., Ni, M., et al. (2020) Acetabular Bone Defect in Total Hip Arthroplasty for Crowe II or III Developmental Dysplasia of the Hip: A Finite Element Study. BioMed Research International, 2020, Article ID: 4809013. [Google Scholar] [CrossRef] [PubMed]
[26] Cassar-Gheiti, A.J., Mei, X.Y., Afenu, E.A., Safir, O.A., Gross, A.E. and Kuzyk, P.R.T. (2021) Midterm Outcomes after Reconstruction of Superolateral Acetabular Defects Using Flying Buttress Porous Tantalum Augments during Revision Total Hip Arthroplasty. The Journal of Arthroplasty, 36, 2936-2941. [Google Scholar] [CrossRef] [PubMed]
[27] Wang, Y., Wang, M., Li, C., Nakamura, Y., Deng, L., Yamako, G., et al. (2022) Biomechanical Effect of Metal Augment and Bone Graft on Cup Stability for Acetabular Reconstruction of Total Hip Arthroplasty in Hip Dysplasia: A Finite Element Analysis. BMC Musculoskeletal Disorders, 23, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
[28] Kong, K., Zhao, C., Chang, Y., Qiao, H., Hu, Y., Li, H., et al. (2022) Use of Customized 3D-Printed Titanium Augment with Tantalum Trabecular Cup for Large Acetabular Bone Defects in Revision Total Hip Arthroplasty: A Midterm Follow-Up Study. Frontiers in Bioengineering and Biotechnology, 10, Article 900905. [Google Scholar] [CrossRef] [PubMed]
[29] Dapuzzo, M.R. and Sierra, R.J. (2012) Acetabular Considerations during Total Hip Arthroplasty for Hip Dysplasia. Orthopedic Clinics of North America, 43, 369-375. [Google Scholar] [CrossRef] [PubMed]
[30] Sanchez-Sotelo, J., Berry, D.J., Trousdale, R.T. and Cabanela, M.E. (2002) Surgical Treatment of Developmental Dysplasia of the Hip in Adults: II. Arthroplasty Options. Journal of the American Academy of Orthopaedic Surgeons, 10, 334-344. [Google Scholar] [CrossRef] [PubMed]
[31] 雷超, 毛新展. 全髋关节置换术治疗成人发育性髋关节发育不良的难点及处理策略[J]. 生物骨科材料与临床研究, 2023, 20(4): 24-28.
[32] Bicanic, G. (2014) Current Concept in Dysplastic Hip Arthroplasty: Techniques for Acetabular and Femoral Reconstruction. World Journal of Orthopedics, 5, 412-424. [Google Scholar] [CrossRef] [PubMed]
[33] Muratli, K.S., Karatosun, V., Uzun, B. and Celik, S. (2014) Subtrochanteric Shortening in Total Hip Arthroplasty: Biomechanical Comparison of Four Techniques. The Journal of Arthroplasty, 29, 836-842. [Google Scholar] [CrossRef] [PubMed]
[34] Masonis, J.L., Patel, J.V., Miu, A., Bourne, R.B., McCalden, R., MacDonald, S.J., et al. (2003) Subtrochanteric Shortening and Derotational Osteotomy in Primary Total Hip Arthroplasty for Patients with Severe Hip Dysplasia: 5-Year Follow-Up. The Journal of Arthroplasty, 18, 68-73. [Google Scholar] [CrossRef] [PubMed]
[35] Becker, D.A. and Gustilo, R.B. (1995) Double-Chevron Subtrochanteric Shortening Derotational Femoral Osteotomy Combined with Total Hip Arthroplasty for the Treatment of Complete Congenital Dislocation of the Hip in the Adult. The Journal of Arthroplasty, 10, 313-318. [Google Scholar] [CrossRef] [PubMed]
[36] Li, X., Sun, J., Lin, X., Xu, S. and Tang, T. (2013) Cementless Total Hip Arthroplasty with a Double Chevron Subtrochanteric Shortening Osteotomy in Patients with Crowe Type-IV Hip Dysplasia. Acta Orthopaedica Belgica, 79, 287-292.
[37] Atlihan, D., Yildirim, C., Muratoglu, O.G., Muslu, D.C., Tokgözoğlu, M., Bayir, D., et al. (2020) An Oblique Osteotomy Is Better for Subtrochanteric Shortening in Total Hip Arthroplasty for High Hip Dislocation: A Mechanical Comparison of Four Techniques. HIP International, 32, 345-352. [Google Scholar] [CrossRef] [PubMed]
[38] Zora, H., Bayrak, G. and Bilgen, Ö.F. (2025) Robotically Assisted Vs. Manual Total Hip Arthroplasty in Developmental Hip Dysplasia: A Comparative Analysis of Radiological and Functional Outcomes. Journal of Clinical Medicine, 14, Article 509. [Google Scholar] [CrossRef] [PubMed]
[39] 吴尽言, 陈晓东. 青少年及成人发育性髋关节发育不良保髋治疗最新研究进展[J]. 中国修复重建外科杂志, 2021, 35(12): 1513-1518.
[40] Zhen, P., Liu, J., Lu, H., Chen, H., Li, X. and Zhou, S. (2017) Developmental Hip Dysplasia Treated by Total Hip Arthroplasty Using a Cementless Wagner Cone Stem in Young Adult Patients with a Small Physique. BMC Musculoskeletal Disorders, 18, Article No. 192. [Google Scholar] [CrossRef] [PubMed]
[41] Osman, K., Panagiotidou, A.P., Khan, M., Blunn, G. and Haddad, F.S. (2016) Corrosion at the Head-Neck Interface of Current Designs of Modular Femoral Components: Essential Questions and Answers Relating to Corrosion in Modular Head-Neck Junctions. The Bone & Joint Journal, 98, 579-584. [Google Scholar] [CrossRef] [PubMed]
[42] Faldini, C., Miscione, M.T., Chehrassan, M., Acri, F., Pungetti, C., d’Amato, M., et al. (2011) Congenital Hip Dysplasia Treated by Total Hip Arthroplasty Using Cementless Tapered Stem in Patients Younger than 50 Years Old: Results after 12-Years Follow-Up. Journal of Orthopaedics and Traumatology, 12, 213-218. [Google Scholar] [CrossRef] [PubMed]
[43] Kim, Y. and Park, J. (2019) Long-Term Outcomes of Ultra-Short Metaphyseal-Fitting Anatomic Cementless Femoral Stem in Total Hip Arthroplasty with Ceramic-On-Ceramic Articulation for Young Patients. The Journal of Arthroplasty, 34, 2427-2433. [Google Scholar] [CrossRef] [PubMed]
[44] Yavari, P., Baghchi, B., Tavassoli, M., et al. (2021) Comparison of Two Different Stems for Total Hip Arthroplasty. International Journal of Burns and Trauma, 11, 170-176.