[1]
|
Datta, A.K., Campbell, S., Diaz-Fernandez, R. and Nargund, G. (2024) Livebirth Rates Are Influenced by an Interaction between Male and Female Partners’ Age: Analysis of 59 951 Fresh IVF/ICSI Cycles with and without Male Infertility. Human Reproduction, 39, 2491-2500. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Mutia, K., Wiweko, B., Abinawanto, A., Dwiranti, A. and Bowolaksono, A. (2023) MicroRNAs as a Biomarker to Predict Embryo Quality Assessment in in Vitro Fertilization. International Journal of Fertility & Sterility, 17, 85-91.
|
[3]
|
Kamijo, S., Hamatani, T., Sasaki, H., Suzuki, H., Abe, A., Inoue, O., et al. (2022) MicroRNAs Secreted by Human Preimplantation Embryos and IVF Outcome. Reproductive Biology and Endocrinology, 20, Article No. 130. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Harton, G.L., Munné, S., Surrey, M., Grifo, J., Kaplan, B., McCulloh, D.H., et al. (2013) Diminished Effect of Maternal Age on Implantation after Preimplantation Genetic Diagnosis with Array Comparative Genomic Hybridization. Fertility and Sterility, 100, 1695-1703. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Maxwell, S.M. and Grifo, J.A. (2018) Should Every Embryo Undergo Preimplantation Genetic Testing for Aneuploidy? A Review of the Modern Approach to in Vitro Fertilization. Best Practice & Research Clinical Obstetrics & Gynaecology, 53, 38-47. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Hawke, D.C., Watson, A.J. and Betts, D.H. (2021) Extracellular Vesicles, microRNA and the Preimplantation Embryo: Non-Invasive Clues of Embryo Well-Being. Reproductive BioMedicine Online, 42, 39-54. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Huang, L., Bogale, B., Tang, Y., Lu, S., Xie, X.S. and Racowsky, C. (2019) Noninvasive Preimplantation Genetic Testing for Aneuploidy in Spent Medium May Be More Reliable than Trophectoderm Biopsy. Proceedings of the National Academy of Sciences, 116, 14105-14112. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
del Arco de la Paz, A., Giménez-Rodríguez, C., Selntigia, A., Meseguer, M. and Galliano, D. (2024) Advancements and Challenges in Preimplantation Genetic Testing for Aneuploidies: In the Pathway to Non-Invasive Techniques. Genes, 15, Article No. 1613. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Fang, F., Li, Z., Yu, J., Long, Y., Zhao, Q., Ding, X., et al. (2021) MicroRNAs Secreted by Human Embryos Could Be Potential Biomarkers for Clinical Outcomes of Assisted Reproductive Technology. Journal of Advanced Research, 31, 25-34. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Rødgaard, T., Heegaard, P.M.H. and Callesen, H. (2015) Non-Invasive Assessment of In-Vitro Embryo Quality to Improve Transfer Success. Reproductive BioMedicine Online, 31, 585-592. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Rosenbluth, E.M., Shelton, D.N., Wells, L.M., Sparks, A.E.T. and Van Voorhis, B.J. (2014) Human Embryos Secrete microRNAs into Culture Media—A Potential Biomarker for Implantation. Fertility and Sterility, 101, 1493-1500. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Capalbo, A., Ubaldi, F.M., Cimadomo, D., Noli, L., Khalaf, Y., Farcomeni, A., et al. (2016) MicroRNAs in Spent Blastocyst Culture Medium Are Derived from Trophectoderm Cells and Can Be Explored for Human Embryo Reproductive Competence Assessment. Fertility and Sterility, 105, 225-235.e3. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Omes, C., Conti, A., Benedetti, L., Tomasoni, V., De Marchi, D., Nappi, R.E., et al. (2024) Expression of miRNA from Spent Pre-Implantation Embryos Culture Media. Reproductive Biology, 24, Article ID: 100847. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Abu-Halima, M., Khaizaran, Z.A., Ayesh, B.M., Fischer, U., Khaizaran, S.A., Al-Battah, F., et al. (2020) MicroRNAs in Combined Spent Culture Media and Sperm Are Associated with Embryo Quality and Pregnancy Outcome. Fertility and Sterility, 113, 970-980.e2. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Liu, Y., Mei, Q., Yang, J., Shen, Q., Zou, M., Li, J., et al. (2022) hsa-miR-320a-3p and hsa-miR-483-5p Levels in Human Granulosa Cells: Promising Bio-Markers of Live Birth after IVF/ICSI. Reproductive Biology and Endocrinology, 20, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Xu, J., Fang, R., Chen, L., Chen, D., Xiao, J., Yang, W., et al. (2016) Noninvasive Chromosome Screening of Human Embryos by Genome Sequencing of Embryo Culture Medium for in Vitro Fertilization. Proceedings of the National Academy of Sciences, 113, 11907-11912. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Magli, M.C., Pomante, A., Cafueri, G., Valerio, M., Crippa, A., Ferraretti, A.P., et al. (2016) Preimplantation Genetic Testing: Polar Bodies, Blastomeres, Trophectoderm Cells, or Blastocoelic Fluid? Fertility and Sterility, 105, 676-683.e5. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Grabuschnig, S., Bronkhorst, A.J., Holdenrieder, S., Rosales Rodriguez, I., Schliep, K.P., Schwendenwein, D., et al. (2020) Putative Origins of Cell-Free DNA in Humans: A Review of Active and Passive Nucleic Acid Release Mechanisms. International Journal of Molecular Sciences, 21, Article No. 8062. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Stigliani, S., Anserini, P., Venturini, P.L. and Scaruffi, P. (2013) Mitochondrial DNA Content in Embryo Culture Medium Is Significantly Associated with Human Embryo Fragmentation. Human Reproduction, 28, 2652-2660. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Zhang, Y., Li, N., Wang, L., Sun, H., Ma, M., Wang, H., et al. (2016) Molecular Analysis of DNA in Blastocoele Fluid Using Next-Generation Sequencing. Journal of Assisted Reproduction and Genetics, 33, 637-645. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Domingo-Muelas, A., Skory, R.M., Moverley, A.A., Ardestani, G., Pomp, O., Rubio, C., et al. (2023) Human Embryo Live Imaging Reveals Nuclear DNA Shedding during Blastocyst Expansion and Biopsy. Cell, 186, 3166-3181.e18. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Chen, Y., Gao, Y., Jia, J., Chang, L., Liu, P., Qiao, J., et al. (2021) DNA Methylome Reveals Cellular Origin of Cell-Free DNA in Spent Medium of Human Preimplantation Embryos. Journal of Clinical Investigation, 131, e146051. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Bolton, H., Graham, S.J.L., Van der Aa, N., Kumar, P., Theunis, K., Fernandez Gallardo, E., et al. (2016) Mouse Model of Chromosome Mosaicism Reveals Lineage-Specific Depletion of Aneuploid Cells and Normal Developmental Potential. Nature Communications, 7, Article No. 11165. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Victor, A.R., Tyndall, J.C., Brake, A.J., Lepkowsky, L.T., Murphy, A.E., Griffin, D.K., et al. (2019) One Hundred Mosaic Embryos Transferred Prospectively in a Single Clinic: Exploring When and Why They Result in Healthy Pregnancies. Fertility and Sterility, 111, 280-293. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Palini, S., Galluzzi, L., De Stefani, S., Bianchi, M., Wells, D., Magnani, M., et al. (2013) Genomic DNA in Human Blastocoele Fluid. Reproductive BioMedicine Online, 26, 603-610. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Hammond, E.R., Shelling, A.N. and Cree, L.M. (2016) Nuclear and Mitochondrial DNA in Blastocoele Fluid and Embryo Culture Medium: Evidence and Potential Clinical Use. Human Reproduction, 31, 1653-1661. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Rubio, C., Navarro-Sánchez, L., García-Pascual, C.M., Ocali, O., Cimadomo, D., Venier, W., et al. (2020) Multicenter Prospective Study of Concordance between Embryonic Cell-Free DNA and Trophectoderm Biopsies from 1301 Human Blastocysts. American Journal of Obstetrics and Gynecology, 223, 751.e1-751.e13. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Kuznyetsov, V., Madjunkova, S., Abramov, R., Antes, R., Ibarrientos, Z., Motamedi, G., et al. (2020) Minimally Invasive Cell-Free Human Embryo Aneuploidy Testing (miPGT-A) Utilizing Combined Spent Embryo Culture Medium and Blastocoel Fluid—Towards Development of a Clinical Assay. Scientific Reports, 10, Article No. 7244. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Rubio, C., Rienzi, L., Navarro-Sánchez, L., Cimadomo, D., García-Pascual, C.M., Albricci, L., et al. (2019) Embryonic Cell-Free DNA versus Trophectoderm Biopsy for Aneuploidy Testing: Concordance Rate and Clinical Implications. Fertility and Sterility, 112, 510-519. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Jiao, J., Shi, B., Sagnelli, M., Yang, D., Yao, Y., Li, W., et al. (2019) Minimally Invasive Preimplantation Genetic Testing Using Blastocyst Culture Medium. Human Reproduction, 34, 1369-1379. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Yeung, Q.S.Y., Zhang, Y.X., Chung, J.P.W., Lui, W.T., Kwok, Y.K.Y., Gui, B., et al. (2019) A Prospective Study of Non-Invasive Preimplantation Genetic Testing for Aneuploidies (NiPGT-A) Using Next-Generation Sequencing (NGS) on Spent Culture Media (SCM). Journal of Assisted Reproduction and Genetics, 36, 1609-1621. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Shamonki, M.I., Jin, H., Haimowitz, Z. and Liu, L. (2016) Proof of Concept: Preimplantation Genetic Screening without Embryo Biopsy through Analysis of Cell-Free DNA in Spent Embryo Culture Media. Fertility and Sterility, 106, 1312-1318. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Vera-Rodriguez, M., Diez-Juan, A., Jimenez-Almazan, J., Martinez, S., Navarro, R., Peinado, V., et al. (2018) Origin and Composition of Cell-Free DNA in Spent Medium from Human Embryo Culture during Preimplantation Development. Human Reproduction, 33, 745-756. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Hammond, E.R., McGillivray, B.C., Wicker, S.M., Peek, J.C., Shelling, A.N., Stone, P., et al. (2017) Characterizing Nuclear and Mitochondrial DNA in Spent Embryo Culture Media: Genetic Contamination Identified. Fertility and Sterility, 107, 220-228.e5. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Kirkegaard, K., Ahlström, A., Ingerslev, H.J. and Hardarson, T. (2015) Choosing the Best Embryo by Time Lapse versus Standard Morphology. Fertility and Sterility, 103, 323-332. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Montag, M., Liebenthron, J. and Köster, M. (2011) Which Morphological Scoring System Is Relevant in Human Embryo Development? Placenta, 32, S252-S256. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Mandawala, A.A., Harvey, S.C., Roy, T.K. and Fowler, K.E. (2016) Time-Lapse Embryo Imaging and Morphokinetic Profiling: Towards a General Characterisation of Embryogenesis. Animal Reproduction Science, 174, 2-10. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Meseguer, M., Herrero, J., Tejera, A., Hilligsoe, K.M., Ramsing, N.B. and Remohi, J. (2011) The Use of Morphokinetics as a Predictor of Embryo Implantation. Human Reproduction, 26, 2658-2671. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Apter, S., Ebner, T., Freour, T., Guns, Y., Kovacic, B., Le Clef, N., et al. (2020) Good Practice Recommendations for the Use of Time-Lapse Technology. Human Reproduction Open, 2020, hoaa008. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Sacks, G.C., Mozes, H., Ronn, R., Elder-Geva, T., Schonberger, O., Ben-Ami, I., et al. (2024) Time-Lapse Incubation for Embryo Culture-Morphokinetics and Environmental Stability May Not Be Enough: Results from a Pilot Randomized Controlled Trial. Journal of Clinical Medicine, 13, Article No. 1701. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Pribenszky, C., Nilselid, A. and Montag, M. (2017) Time-Lapse Culture with Morphokinetic Embryo Selection Improves Pregnancy and Live Birth Chances and Reduces Early Pregnancy Loss: A Meta-Analysis. Reproductive BioMedicine Online, 35, 511-520. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
高洋, 刘军霞, 朱家红, 等. 时差成像系统对囊胚培养及妊娠结局的影响[J]. 生殖医学杂志, 2020, 29(9): 1198-1203.
|
[43]
|
Paternot, G., Wetsels, A.M., Thonon, F., Vansteenbrugge, A., Willemen, D., Devroe, J., et al. (2011) Intra-and Interobserver Analysis in the Morphological Assessment of Early Stage Embryos during an IVF Procedure: A Multicentre Study. Reproductive Biology and Endocrinology, 9, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Glatstein, I., Chavez-Badiola, A. and Curchoe, C.L. (2023) New Frontiers in Embryo Selection. Journal of Assisted Reproduction and Genetics, 40, 223-234. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J.E., Toschi, M., Zisimopoulos, P., et al. (2019) Deep Learning Enables Robust Assessment and Selection of Human Blastocysts after in Vitro Fertilization. NPJ Digital Medicine, 2, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Bormann, C.L., Kanakasabapathy, M.K., Thirumalaraju, P., Gupta, R., Pooniwala, R., Kandula, H. and Shafiee, H. (2020) Performance of a Deep Learning Based Neural Network in the Selection of Human Blastocysts for Implantation. elife, 9, e55301.
|
[47]
|
Dirvanauskas, D., Maskeliunas, R., Raudonis, V. and Damasevicius, R. (2019) Embryo Development Stage Prediction Algorithm for Automated Time Lapse Incubators. Computer Methods and Programs in Biomedicine, 177, 161-174. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Boucret, L., Tramon, L., Riou, J., Ferré-L’Hôtellier, V., Bouet, P. and May-Panloup, P. (2022) Influence of Diminished Ovarian Reserve on Early Embryo Morphokinetics during in Vitro Fertilization: A Time-Lapse Study. Journal of Clinical Medicine, 11, Article No. 7173. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Tsui, W.H.A., Ding, S.C., Jiang, P. and Lo, Y.M.D. (2025) Artificial Intelligence and Machine Learning in Cell-Free-DNA-Based Diagnostics. Genome Research, 35, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Tu, J.V. (1996) Advantages and Disadvantages of Using Artificial Neural Networks versus Logistic Regression for Predicting Medical Outcomes. Journal of Clinical Epidemiology, 49, 1225-1231. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Rudin, C. and Radin, J. (2019) Why Are We Using Black Box Models in AI When We Don’t Need to? A Lesson from an Explainable AI Competition. Harvard Data Science Review, 1, 1-9. [Google Scholar] [CrossRef]
|
[52]
|
Kulkarni, S., Seneviratne, N., Baig, M.S. and Khan, A.H.A. (2020) Artificial Intelligence in Medicine: Where Are We Now? Academic Radiology, 27, 62-70. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
李建军, 王添. 人类胚胎基因编辑研究引发的伦理争辩[J]. 科学与社会, 2016, 6(3): 32-41.
|