|
[1]
|
Leslie, H.A., van Velzen, M.J.M., Brandsma, S.H., Vethaak, A.D., Garcia-Vallejo, J.J. and Lamoree, M.H. (2022) Discovery and Quantification of Plastic Particle Pollution in Human Blood. Environment International, 163, Article ID: 107199. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Duis, K. and Coors, A. (2016) Microplastics in the Aquatic and Terrestrial Environment: Sources (with a Specific Focus on Personal Care Products), Fate and Effects. Environmental Sciences Europe, 28, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kreider, M.L., Panko, J.M., McAtee, B.L., Sweet, L.I. and Finley, B.L. (2010) Physical and Chemical Characterization of Tire-Related Particles: Comparison of Particles Generated Using Different Methodologies. Science of the Total Environment, 408, 652-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Thorpe, A. and Harrison, R.M. (2008) Sources and Properties of Non-Exhaust Particulate Matter from Road Traffic: A Review. Science of the Total Environment, 400, 270-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kole, P.J., Löhr, A.J., Van Belleghem, F. and Ragas, A. (2017) Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. International Journal of Environmental Research and Public Health, 14, Article No. 1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T. and Reemtsma, T. (2018) Tire Wear Particles in the Aquatic Environment—A Review on Generation, Analysis, Occurrence, Fate and Effects. Water Research, 139, 83-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wik, A. and Dave, G. (2009) Occurrence and Effects of Tire Wear Particles in the Environment—A Critical Review and an Initial Risk Assessment. Environmental Pollution, 157, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cole, M., Lindeque, P., Halsband, C. and Galloway, T.S. (2011) Microplastics as Contaminants in the Marine Environment: A Review. Marine Pollution Bulletin, 62, 2588-2597. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Persson, B.N.J. (2006) Contact Mechanics for Randomly Rough Surfaces. Surface Science Reports, 61, 201-227. [Google Scholar] [CrossRef]
|
|
[10]
|
Burwell, J.T. (1957) Survey of Possible Wear Mechanisms. Wear, 1, 119-141. [Google Scholar] [CrossRef]
|
|
[11]
|
张庆, 侯德华, 史纪村. 橡胶沥青的微观表征方法及其微观特性综述[J]. 材料导报, 2019, 33(S2): 247-253.
|
|
[12]
|
Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F.J., Dominguez, A.O., et al. (2019) Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
焦萌, 曹秉帝, 张涛. 环境中的轮胎磨损颗粒: 从路面到海洋[J]. 环境科学学报, 2020, 40(12): 4263-4278.
|
|
[14]
|
Panko, J.M., Hitchcock, K.M., Fuller, G.W. and Green, D. (2019) Evaluation of Tire Wear Contribution to PM2.5 in Urban Environments. Atmosphere, 10, Article No. 99. [Google Scholar] [CrossRef]
|
|
[15]
|
Fomba, K.W., van Pinxteren, D., Müller, K., Spindler, G. and Herrmann, H. (2018) Assessment of Trace Metal Levels in Size-Resolved Particulate Matter in the Area of Leipzig. Atmospheric Environment, 176, 60-70. [Google Scholar] [CrossRef]
|
|
[16]
|
Unice, K.M., Kreider, M.L. and Panko, J.M. (2013) Comparison of Tire and Road Wear Particle Concentrations in Sediment for Watersheds in France, Japan, and the United States by Quantitative Pyrolysis GC/MS Analysis. Environmental Science & Technology, 47, 8138-8147. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
刘发欣, 程文, 任杰辉. 污水处理厂中微塑料的赋存、迁移及归趋研究进展[J]. 环境污染与防治, 2022, 44(6): 793-800.
|
|
[18]
|
许霞, 侯青桐, 薛银刚, 等. 污水厂中微塑料的污染及迁移特征研究进展[J]. 中国环境科学, 2018, 38(11): 4393-4400.
|
|
[19]
|
Estahbanati, S. and Fahrenfeld, N.L. (2016) Influence of Wastewater Treatment Plant Discharges on Microplastic Concentrations in Surface Water. Chemosphere, 162, 277-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wright, S.L., Thompson, R.C. and Galloway, T.S. (2013) The Physical Impacts of Microplastics on Marine Organisms: A Review. Environmental Pollution, 178, 483-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ni, X., Zhou, H., Liu, Y., Zhan, J., Meng, Q., Song, H., et al. (2023) Toxic Effects of Tire Wear Particles and the Leachate on the Chinese Mitten Crab (Eriocheir sinensis). Environmental Pollution, 335, Article ID: 122354. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Gaspar, T.R., Chi, R.J., Parrow, M.W. and Ringwood, A.H. (2018) Cellular Bioreactivity of Micro-and Nano-Plastic Particles in Oysters. Frontiers in Marine Science, 5, Article No. 345. [Google Scholar] [CrossRef]
|
|
[23]
|
Banerjee, S., Mandal, A. and Rooby, J. (2016) Studies on Mechanical Properties of Tyre Rubber Concrete. International Journal of Civil Engineering, 3, 18-21. [Google Scholar] [CrossRef]
|
|
[24]
|
Kole, P.J., Löhr, A.J., Van Belleghem, F. and Ragas, A. (2017) Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. International Journal of Environmental Research and Public Health, 14, Article No. 1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Halle, L.L., Palmqvist, A., Kampmann, K. and Khan, F.R. (2020) Ecotoxicology of Micronized Tire Rubber: Past, Present and Future Considerations. Science of The Total Environment, 706, Article ID: 135694. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Alves, C.A., Vicente, A.M.P., Calvo, A.I., Baumgardner, D., Amato, F., Querol, X., et al. (2020) Physical and Chemical Properties of Non-Exhaust Particles Generated from Wear between Pavements and Tyres. Atmospheric Environment, 224, Article ID: 117252. [Google Scholar] [CrossRef]
|
|
[27]
|
吴琳, 张新峰, 门正宇, 等. 机动车轮胎磨损颗粒物化学组分特征研究[J]. 中国环境科学, 2020, 40(4): 1486-1492.
|
|
[28]
|
Xu, Z., Li, Z., Liao, Z., Gao, S., Hua, L., Ye, X., et al. (2019) PM2.5 Induced Pulmonary Fibrosis in Vivo and in Vitro. Ecotoxicology and Environmental Safety, 171, 112-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Skjolding, L.M., Sørensen, S.N., Hartmann, N.B., Hjorth, R., Hansen, S.F. and Baun, A. (2016) Aquatic Ecotoxicity Testing of Nanoparticles—The Quest to Disclose Nanoparticle Effects. Angewandte Chemie International Edition, 55, 15224-15239. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lee, G., Lee, B. and Kim, K. (2021) Mechanisms and Effects of Zinc Oxide Nanoparticle Transformations on Toxicity to Zebrafish Embryos. Environmental Science: Nano, 8, 1690-1700. [Google Scholar] [CrossRef]
|
|
[31]
|
Zheng, J., Chen, X., Peng, L., Wang, D., Zhu, Q., Li, J., et al. (2022) Particles Rather than Released Zn2+ from ZnO Nanoparticles Aggravate Microplastics Toxicity in Early Stages of Exposed Zebrafish and Their Unexposed Offspring. Journal of Hazardous Materials, 424, Article ID: 127589. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zheng, J., Chen, X., Peng, L., Wang, D., Zhu, Q., Li, J., et al. (2022) Particles Rather than Released Zn2+ from ZnO Nanoparticles Aggravate Microplastics Toxicity in Early Stages of Exposed Zebrafish and Their Unexposed Offspring. Journal of Hazardous Materials, 424, Article ID: 127589. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
易先亮, 严明, 游奎. 轮胎磨损颗粒渗滤液对海蜇螅状体的毒性鉴别评价研究[J]. 海洋环境科学, 2023, 42(3): 354-361.
|
|
[34]
|
Luo, Z., Zhou, X., Su, Y., Wang, H., Yu, R., Zhou, S., et al. (2021) Environmental Occurrence, Fate, Impact, and Potential Solution of Tire Microplastics: Similarities and Differences with Tire Wear Particles. Science of the Total Environment, 795, Article ID: 148902. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
阮秀秀, 杜巍萌, 郭凡可, 等. 环境持久性自由基的环境化学行为[J]. 环境化学, 2018, 37(8): 1780-1788.
|
|
[36]
|
Panko, J.M., Kreider, M.L., McAtee, B.L. and Marwood, C. (2012) Chronic Toxicity of Tire and Road Wear Particles to Water-and Sediment-Dwelling Organisms. Ecotoxicology, 22, 13-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
万青云, 黄燕平, 秦嘉, 等. 环境中微塑料检测分析方法研究进展[J]. 环境监测管理与技术, 2024, 36(2): 1-6.
|
|
[38]
|
Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N. and Sorooshian, A. (2017) Investigation of Microrubbers, Microplastics and Heavy Metals in Street Dust: A Study in Bushehr City, Iran. Environmental Earth Sciences, 76, Article No. 798. [Google Scholar] [CrossRef]
|
|
[39]
|
Eisentraut, P., Dümichen, E., Ruhl, A.S., Jekel, M., Albrecht, M., Gehde, M., et al. (2018) Two Birds with One Stone—Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear. Environmental Science & Technology Letters, 5, 608-613. [Google Scholar] [CrossRef]
|
|
[40]
|
Klöckner, P., Reemtsma, T., Eisentraut, P., Braun, U., Ruhl, A.S. and Wagner, S. (2019) Tire and Road Wear Particles in Road Environment—Quantification and Assessment of Particle Dynamics by Zn Determination after Density Separation. Chemosphere, 222, 714-721. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Weyrauch, S., Seiwert, B., Voll, M., Wagner, S. and Reemtsma, T. (2023) Accelerated Aging of Tire and Road Wear Particles by Elevated Temperature, Artificial Sunlight and Mechanical Stress—A Laboratory Study on Particle Properties, Extractables and Leachables. Science of the Total Environment, 904, Article ID: 166679. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhou, X., Luo, Z., Wang, H., Luo, Y., Yu, R., Zhou, S., et al. (2023) Machine Learning Application in Forecasting Tire Wear Particles Emission in China under Different Potential Socioeconomic and Climate Scenarios with Tire Microplastics Context. Journal of Hazardous Materials, 441, Article ID: 129878. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kim, G. and Lee, S. (2018) Characteristics of Tire Wear Particles Generated by a Tire Simulator under Various Driving Conditions. Environmental Science & Technology, 52, 12153-12161. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Oroumiyeh, F. and Zhu, Y. (2021) Brake and Tire Particles Measured from On-Road Vehicles: Effects of Vehicle Mass and Braking Intensity. Atmospheric Environment: X, 12, Article ID: 100121. [Google Scholar] [CrossRef]
|
|
[45]
|
Rødland, E.S., Lind, O.C., Reid, M.J., Heier, L.S., Okoffo, E.D., Rauert, C., et al. (2022) Occurrence of Tire and Road Wear Particles in Urban and Peri-Urban Snowbanks, and Their Potential Environmental Implications. Science of the Total Environment, 824, Article ID: 153785. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Chang, X., Huang, H., Jiao, R. and Liu, J. (2020) Experimental Investigation on the Characteristics of Tire Wear Particles under Different Non-Vehicle Operating Parameters. Tribology International, 150, Article ID: 106354. [Google Scholar] [CrossRef]
|
|
[47]
|
Cho, M., Jo, Y., Son, J.A., Kim, I., Oh, C. and Yook, S. (2021) Deposition Characteristics of Soot and Tire-Wear Particles on Urban Tree Leaves. Journal of Aerosol Science, 155, Article ID: 105768. [Google Scholar] [CrossRef]
|
|
[48]
|
李运晴, 谭雨青, 陈垚, 等. 雨水径流中微塑料的赋存迁移与控制研究进展[J]. 环境科学与技术, 2023, 46(2): 215-224.
|
|
[49]
|
Madhani, J.T., Madhani, S. and Brown, R.J. (2011) A Literature Review on Research Methodologies of Gross Pollutant Traps. Queensland University of Technology, 145-150.
|
|
[50]
|
Alam, M.Z., Anwar, A.H.M.F., Sarker, D.C., Heitz, A. and Rothleitner, C. (2017) Characterising Stormwater Gross Pollutants Captured in Catch Basin Inserts. Science of the Total Environment, 586, 76-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lange, K., Österlund, H., Viklander, M. and Blecken, G. (2022) Occurrence and Concentration of 20-100 μm Sized Microplastic in Highway Runoff and Its Removal in a Gross Pollutant Trap—Bioretention and Sand Filter Stormwater Treatment Train. Science of the Total Environment, 809, Article ID: 151151. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pramanik, B.K., Roychand, R., Monira, S., Bhuiyan, M. and Jegatheesan, V. (2020) Fate of Road-Dust Associated Microplastics and Per-and Polyfluorinated Substances in Stormwater. Process Safety and Environmental Protection, 144, 236-241. [Google Scholar] [CrossRef]
|
|
[53]
|
沈惠, 陈前火. PM2.5的来源、现状、危害及防控措施[C]//2014中国环境科学学会学术年会论文集. 2014: 1-6.
|
|
[54]
|
Yang, Z., Zhen, Y., Feng, Y., Jiang, X., Qin, Z., Yang, W., et al. (2023) Polyacrylonitrile@TiO2 Nanofibrous Membrane Decorated by MOF for Efficient Filtration and Green Degradation of PM2.5. Journal of Colloid and Interface Science, 635, 598-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
刘瑜, 陈亢利. 微塑料对环境的影响及其去除技术的研究进展[J]. 塑料工业, 2022, 50(6): 70-78, 184.
|
|
[56]
|
Lapointe, M., Farner, J.M., Hernandez, L.M. and Tufenkji, N. (2020) Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation. Environmental Science & Technology, 54, 8719-8727. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Meseguer-Lloret, S., Torres-Cartas, S., Gómez-Benito, C. and Herrero-Martínez, J.M. (2022) Magnetic Molecularly Imprinted Polymer for the Simultaneous Selective Extraction of Phenoxy Acid Herbicides from Environmental Water Samples. Talanta, 239, Article ID: 123082. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Guo, Z., Lin, Y., Xu, B., Huang, H., Zhang, T., Tian, F., et al. (2016) Degradation of Chlortoluron during UV Irradiation and Uv/Chlorine Processes and Formation of Disinfection By-Products in Sequential Chlorination. Chemical Engineering Journal, 283, 412-419. [Google Scholar] [CrossRef]
|
|
[59]
|
Perren, W., Wojtasik, A. and Cai, Q. (2018) Removal of Microbeads from Wastewater Using Electrocoagulation. ACS Omega, 3, 3357-3364. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wang, Q., Zhang, Y., Wangjin, X., Wang, Y., Meng, G. and Chen, Y. (2020) The Adsorption Behavior of Metals in Aqueous Solution by Microplastics Effected by UV Radiation. Journal of Environmental Sciences, 87, 272-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Russell, J.R., Huang, J., Anand, P., Kucera, K., Sandoval, A.G., Dantzler, K.W., et al. (2011) Biodegradation of Polyester Polyurethane by Endophytic Fungi. Applied and Environmental Microbiology, 77, 6076-6084. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Dvořák, L., Svojitka, J., Wanner, J. and Wintgens, T. (2013) Nitrification Performance in a Membrane Bioreactor Treating Industrial Wastewater. Water Research, 47, 4412-4421. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
朱仁成, 陈宏飞, 王运静, 等. 一种非尾气颗粒物采样装置[P]. 中国, CN115950692A. 2023-04-11.
|
|
[64]
|
Truong, X.T., Muresan, B., Lumiere, L., Liu, Y. and Cerezo, V. (2025) Morphological and Textural Characteristics of Tire-Road Wear Particles Linked to Different Wear Mechanisms. Wear, 571, Article ID: 205818. [Google Scholar] [CrossRef]
|
|
[65]
|
Cheng, C.P.H., Richardson, H., Anderson, S.L., et al. (2021) Particulate Collecting Device. WO2021152331(A1), 2021-08-05.
|
|
[66]
|
Barber, T.R., Ribeiro, F., Claes, S., Kawamura, Y., Yeung, J., Byrne, H.A., et al. (2025) The Identification and Quantification of Tire and Road Wear Particles in Osaka Bay, Japan, by Two Analytical Methods. Marine Pollution Bulletin, 211, Article ID: 117363. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Müller, A., Kocher, B., Altmann, K. and Braun, U. (2022) Determination of Tire Wear Markers in Soil Samples and Their Distribution in a Roadside Soil. Chemosphere, 294, Article ID: 133653. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Takagi, S., Sakai, H. and Yanagihara, M. (2023) Elucidation of the Actual State of Existence of Tire-Derived Microplastics at Intersections. Japanese Journal of JSCE, 79, Article ID: 23-25050. [Google Scholar] [CrossRef]
|
|
[69]
|
Wik, A. and Dave, G. (2009) Occurrence and Effects of Tire Wear Particles in the Environment—A Critical Review and an Initial Risk Assessment. Environmental Pollution, 157, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Unice, K.M., Kreider, M.L. and Panko, J.M. (2012) Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment. International Journal of Environmental Research and Public Health, 9, 4033-4055. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Yakovenko, N., Carvalho, A. and ter Halle, A. (2020) Emerging Use Thermo-Analytical Method Coupled with Mass Spectrometry for the Quantification of Micro(nano)plastics in Environmental Samples. TrAC Trends in Analytical Chemistry, 131, Article ID: 115979. [Google Scholar] [CrossRef]
|
|
[72]
|
Rødland, E.S., Heier, L.S., Lind, O.C. and Meland, S. (2023) High Levels of Tire Wear Particles in Soils along Low Traffic Roads. Science of the Total Environment, 903, Article ID: 166470. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Ma, Y., Rødland, E.S., Li, J., Chen, W. and Lin, Y. (2025) Revealing Region-Specific Drivers of Tire and Road Wear Particle Composition and Sources in Road Dust from Two Western Chinese Cities. Journal of Hazardous Materials, 496, Article ID: 139410. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
De Oliveira, T., Dang, D.P.T., Chaillou, M., Roy, S., Caubrière, N., Guillon, M., et al. (2024) Tire and Road Wear Particles in Infiltration Pond Sediments: Occurrence, Spatial Distribution, Size Fractionation and Correlation with Metals. Science of the Total Environment, 955, Article ID: 176855. [Google Scholar] [CrossRef] [PubMed]
|