|
[1]
|
田肖, 王栋, 张海峰, 等. 纺织印染废水处理技术现状及研究进展[J]. 天津城建大学学报, 2024, 30(4): 281-289.
|
|
[2]
|
周国萍, 康成, 王士凡, 等. 纳米复合高分子重金属离子吸附材料的研究进展[J]. 水处理技术, 2021, 47(8): 26-31.
|
|
[3]
|
孙建财, 周丹丹, 王薇, 等. 生物炭改性及其对污染物吸附与降解行为的研究进展[J]. 环境化学, 2021, 40(5): 1503-1513.
|
|
[4]
|
许振民, 施利毅. 光催化去除水体中重金属离子的研究进展[J]. 上海大学学报(自然科学版), 2020, 26(4): 491-505.
|
|
[5]
|
张文海, 吉庆华, 兰华春, 等. ZnTiO3-TiO2复合光催化剂的制备及光催化降解有机污染物机制分析[J]. 环境科学, 2019, 40(2): 693-700.
|
|
[6]
|
Yaghi, O.M., Li, G. and Li, H. (1995) Selective Binding and Removal of Guests in a Microporous Metal-Organic Framework. Nature, 378, 703-706. [Google Scholar] [CrossRef]
|
|
[7]
|
Hasan, Z. and Jhung, S.H. (2015) Removal of Hazardous Organics from Water Using Metal-Organic Frameworks (MOFs): Plausible Mechanisms for Selective Adsorptions. Journal of Hazardous Materials, 283, 329-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
崔巍, 张卫, 刘淋, 等. 功能化金属有机骨架材料对水中痕量磺胺氯哒嗪的吸附行为及其机理[J]. 环境化学, 2020, 39(1): 80-88.
|
|
[9]
|
Hasan, Z., Choi, E. and Jhung, S.H. (2013) Adsorption of Naproxen and Clofibric Acid over a Metal-Organic Framework MIL-101 Functionalized with Acidic and Basic Groups. Chemical Engineering Journal, 219, 537-544. [Google Scholar] [CrossRef]
|
|
[10]
|
Lin, Z., Zheng, H., Zeng, Y., Wang, Y., Chen, J., Cao, G., et al. (2019) Effective and Selective Adsorption of Organoarsenic Acids from Water over a Zr-Based Metal-Organic Framework. Chemical Engineering Journal, 378, Article ID: 122196. [Google Scholar] [CrossRef]
|
|
[11]
|
Zhang, J., Li, F. and Sun, Q. (2018) Rapid and Selective Adsorption of Cationic Dyes by a Unique Metal-Organic Framework with Decorated Pore Surface. Applied Surface Science, 440, 1219-1226. [Google Scholar] [CrossRef]
|
|
[12]
|
Jun, B., Heo, J., Taheri-Qazvini, N., Park, C.M. and Yoon, Y. (2020) Adsorption of Selected Dyes on Ti3C2Tx Mxene and Al-Based Metal-Organic Framework. Ceramics International, 46, 2960-2968. [Google Scholar] [CrossRef]
|
|
[13]
|
Sarker, M., Song, J.Y. and Jhung, S.H. (2017) Adsorption of Organic Arsenic Acids from Water over Functionalized Metal-Organic Frameworks. Journal of Hazardous Materials, 335, 162-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yao, S., Xu, T., Zhao, N., Zhang, L., Huo, Q. and Liu, Y. (2017) An Anionic Metal-Organic Framework with Ternary Building Units for Rapid and Selective Adsorption of Dyes. Dalton Transactions, 46, 3332-3337. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
He, X., Chen, D. and Wang, W. (2020) Bimetallic Metal-Organic Frameworks (MOFs) Synthesized Using the Spray Method for Tunable CO2 Adsorption. Chemical Engineering Journal, 382, Article ID: 122825. [Google Scholar] [CrossRef]
|
|
[16]
|
Zhao, S., Chen, D., Wei, F., Chen, N., Liang, Z. and Luo, Y. (2017) Removal of Congo Red Dye from Aqueous Solution with Nickel-Based Metal-Organic Framework/graphene Oxide Composites Prepared by Ultrasonic Wave-Assisted Ball Milling. Ultrasonics Sonochemistry, 39, 845-852. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hazrati, M. and Safari, M. (2020) Cadmium‐Based Metal-Organic Framework for Removal of Dye from Aqueous Solution. Environmental Progress & Sustainable Energy, 39, e13411. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, Z., Liu, X., Jin, W., Hu, Q. and Zhao, Y. (2019) Adsorption Behavior of Arsenicals on MIL-101(Fe): The Role of Arsenic Chemical Structures. Journal of Colloid and Interface Science, 554, 692-704. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, X., Lustig, W.P. and Li, J. (2020) Functionalizing Luminescent Metal-Organic Frameworks for Enhanced Photoluminescence. ACS Energy Letters, 5, 2671-2680. [Google Scholar] [CrossRef]
|
|
[20]
|
Govindaraju, S., Arumugasamy, S.K., Chellasamy, G. and Yun, K. (2022) Zn-MOF Decorated Bio Activated Carbon for Photocatalytic Degradation, Oxygen Evolution and Reduction Catalysis. Journal of Hazardous Materials, 421, Article ID: 126720. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, Q. and Li, G. (2021) Bi(III) MOFs: Syntheses, Structures and Applications. Inorganic Chemistry Frontiers, 8, 572-589. [Google Scholar] [CrossRef]
|
|
[22]
|
Jing, H., Wang, C., Zhang, Y., Wang, P. and Li, R. (2014) Photocatalytic Degradation of Methylene Blue in ZIF-8. RSC Adv., 4, 54454-54462. [Google Scholar] [CrossRef]
|
|
[23]
|
Gao, Y., Li, S., Li, Y., Yao, L. and Zhang, H. (2017) Accelerated Photocatalytic Degradation of Organic Pollutant over Metal-Organic Framework MIL-53(Fe) under Visible LED Light Mediated by Persulfate. Applied Catalysis B: Environmental, 202, 165-174. [Google Scholar] [CrossRef]
|
|
[24]
|
Liang, Q., Zhang, M., Zhang, Z., Liu, C., Xu, S. and Li, Z. (2017) Zinc Phthalocyanine Coupled with UIO-66 (NH2) via a Facile Condensation Process for Enhanced Visible-Light-Driven Photocatalysis. Journal of Alloys and Compounds, 690, 123-130. [Google Scholar] [CrossRef]
|
|
[25]
|
穆寄林, 徐婕, 赵瑨云, 等. ZIF-8的制备及其光催化降解活性红研究[J]. 化工新型材料, 2022, 50(8): 219-222.
|
|
[26]
|
邹启超, 马岩, 池殿军, 等. 准MIL-53(Fe)光催化剂的合成及其可见光催化降解有机染料性能的提高(英文) [J]. 无机化学学报, 2021, 37(12): 2289-2297.
|
|
[27]
|
庄金亮, 刘湘粤, 张宇, 等. 室温水相制备MIL-100(Fe)纳米材料及其光降解有机染料性能研究[J]. 化工新型材料, 2019, 47(1): 259-263.
|
|
[28]
|
Liang, R., Jing, F., Shen, L., Qin, N. and Wu, L. (2015) MIL-53(Fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(VI) and Oxidation of Dyes. Journal of Hazardous Materials, 287, 364-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
王静, 娄娅娅, 王春梅. 铁基金属-有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(8): 126-131.
|
|
[30]
|
李庆, 陈灵辉, 李丹, 等. 金属-有机骨架光催化降解染料的研究进展[J]. 纺织学报, 2021, 42(12): 188-195.
|
|
[31]
|
Lv, H., Zhao, H., Cao, T., Qian, L., Wang, Y. and Zhao, G. (2015) Efficient Degradation of High Concentration Azo-Dye Wastewater by Heterogeneous Fenton Process with Iron-Based Metal-Organic Framework. Journal of Molecular Catalysis A: Chemical, 400, 81-89. [Google Scholar] [CrossRef]
|
|
[32]
|
陈莲芬, 吕慧婷, 康健. 卟啉MOFs制备、表征及光催化降解染料综合实验设计[J]. 肇庆学院学报, 2022, 43(5): 52-57.
|
|
[33]
|
卢林宇, 徐佳军, 黄恒, 等. Cu-BTC/nano-TiO2的制备及其可见光催化性能[J]. 印染, 2022, 48(9): 13-17.
|
|
[34]
|
刘莛予, 宫懿桐, 赵锦, 等. Co3O4/g-C3N4复合光催化剂降解罗丹明B的研究[J]. 工业水处理, 2020, 40(2): 92-95.
|
|
[35]
|
王雅, 李庆, 管斌斌, 等. 双功能Cu-MOF对染料的物理吸附及光化学降解[J]. 印染, 2019, 45(11): 17-22+42.
|
|
[36]
|
哈尔祺, 樊增禄, 李庆, 等. 染料的Zr-有机骨架吸附和光催化降解[J]. 印染, 2020, 46(9): 14-18.
|
|
[37]
|
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., et al. (2008) High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 319, 939-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Jusoh, N., Yeong, Y.F., Lau, K.K. and M. Shariff, A. (2017) Transport Properties of Mixed Matrix Membranes Encompassing Zeolitic Imidazolate Framework 8 (ZIF-8) Nanofiller and 6FDA-Durene Polymer: Optimization of Process Variables for the Separation of CO2 from CH4. Journal of Cleaner Production, 149, 80-95. [Google Scholar] [CrossRef]
|
|
[39]
|
Hu, M., Lou, H., Yan, X., Hu, X., Feng, R. and Zhou, M. (2018) In-Situ Fabrication of ZIF-8 Decorated Layered Double Oxides for Adsorption and Photocatalytic Degradation of Methylene Blue. Microporous and Mesoporous Materials, 271, 68-72. [Google Scholar] [CrossRef]
|
|
[40]
|
Dan-Hardi, M., Serre, C., Frot, T., Rozes, L., Maurin, G., Sanchez, C., et al. (2009) A New Photoactive Crystalline Highly Porous Titanium(IV) Dicarboxylate. Journal of the American Chemical Society, 131, 10857-10859. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
He, Y., Li, H., Wu, J., Liu, Z., Chen, Y., Guo, W., et al. (2022) In-Situ Formation of Au Nanoparticles with Surface Plasmon Resonance Confined in the Framework of Cu Ions Doped Nh2-Mil-125(Ti) to Enhance Photocatalytic Hydrogen Production and NO Removal. Applied Surface Science, 604, Article ID: 154641. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, X., Yue, K., Rao, R., Chen, J., Liu, Q., Yang, Y., et al. (2022) Synthesis of Acidic MIL-125 from Plastic Waste: Significant Contribution of N Orbital for Efficient Photocatalytic Degradation of Chlorobenzene and Toluene. Applied Catalysis B: Environmental, 310, Article ID: 121300. [Google Scholar] [CrossRef]
|
|
[43]
|
Kirchon, A., Zhang, P., Li, J., Joseph, E.A., Chen, W. and Zhou, H. (2020) Effect of Isomorphic Metal Substitution on the Fenton and Photo-Fenton Degradation of Methylene Blue Using Fe-Based Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 12, 9292-9299. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, Z., Liu, Z., Huang, J., Chen, Y., Su, R., He, J., et al. (2022) Zr6O8-Porphyrinic MOFs as Promising Catalysts for the Boosting Photocatalytic Degradation of Contaminants in High Salinity Wastewater. Chemical Engineering Journal, 440, Article ID: 135883. [Google Scholar] [CrossRef]
|
|
[45]
|
Jia, H., Ma, D., Zhong, S., Li, L., Li, L., Xu, L., et al. (2019) Boosting Photocatalytic Activity under Visible-Light by Creation of PCN-222/g-C3N4 Heterojunctions. Chemical Engineering Journal, 368, 165-174. [Google Scholar] [CrossRef]
|
|
[46]
|
Liang, F., Chen, Y., Huang, H., Chen, Y. and Huang, P. (2025) Waste-to-Resource Strategy through Green Synthesis of Pet-Derived Metal-Organic Frameworks for Efficient Photocatalytic Dye Degradation. Microporous and Mesoporous Materials, 384, Article ID: 113431. [Google Scholar] [CrossRef]
|
|
[47]
|
Özcan, E., Altun, A. and Zorlu, Y. (2024) Highly Effective Photocatalytic Removal of Astrazon Blue, Allura Red, and Brilliant Blue Dyes from Aqueous Media Using a Stable Zr(IV)‐Based Metal-Organic Frameworks. ChemistrySelect, 10, e202404363. [Google Scholar] [CrossRef]
|
|
[48]
|
Zhang, Z., Zhao, H., Jiang, X., Sun, F., Wu, Y. and Zhang, D. (2025) Efficient Adsorption and Photocatalytic Degradation of Cationic Dyes Based on Rod-Shaped Rare-Earth-Based MOFs. Journal of Water Process Engineering, 72, Article ID: 107598. [Google Scholar] [CrossRef]
|
|
[49]
|
Kumari, P. and Panda, T. (2024) Role of N-Rich Coordination Environment in Metal-Organic Frameworks for Enhanced Photocatalytic Dye Degradation. Crystal Growth & Design, 24, 4493-4500. [Google Scholar] [CrossRef]
|
|
[50]
|
Lee, J. and Kim, J. (2024) Heterostructured Photocatalytic Fabric Composed of Ag3PO4 Nanoparticle-Decorated NH2-MIL-88B (Co/Fe) Crystalline Wires for Rhodamine B Adsorption and Degradation. ACS Applied Nano Materials, 7, 8362-8375. [Google Scholar] [CrossRef]
|
|
[51]
|
Yin, Y., Zhang, X., Jiang, B., Wang, Z., Feng, Y. and Li, X. (2024) Catalytic Degradation of Rhodamine B by α-DMACoPc/TiO2/MIL-101(Fe) Enhanced Catalytic System. Journal of Nanoparticle Research, 26, Article No. 217. [Google Scholar] [CrossRef]
|
|
[52]
|
Mehrehjedy, A., Kumar, P., Ahmad, Z., Jankoski, P., Kshirsagar, A.S., Azoulay, J.D., et al. (2024) Fast and Facile Synthesis of Cobalt-Doped ZIF-8 and Fe3O4/MCC/Cobalt-Doped ZIF-8 for the Photodegradation of Organic Dyes under Visible Light. ACS Omega, 9, 49239-49248. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wu, F., Zhou, C., Tai, G., Ma, Y., Yang, X., Pan, Y., et al. (2023) ZIF-67/BiOCl Z-Scheme Heterojunction Photocatalyst for Photodegradation of Organic Dyes and Antibiotics. ACS Applied Nano Materials, 6, 17814-17825. [Google Scholar] [CrossRef]
|