[1]
|
Zhang, Y. and Ye, A. (2021) Would the Obtainable Gross Primary Productivity (GPP) Products Stand up? A Critical Assessment of 45 Global GPP Products. Science of The Total Environment, 783, Article 146965. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001, 25(4): 414-419.
|
[3]
|
Li, X., Liang, S., Yu, G., Yuan, W., Cheng, X., Xia, J., et al. (2013) Estimation of Gross Primary Production over the Terrestrial Ecosystems in China. Ecological Modelling, 261, 80-92. [Google Scholar] [CrossRef]
|
[4]
|
Paulay, G. (1994) Biodiversity on Oceanic Islands: Its Origin and Extinction. American Zoologist, 34, 134-144. [Google Scholar] [CrossRef]
|
[5]
|
池源, 石洪华, 王晓丽, 等. 庙岛群岛南五岛生态系统净初级生产力空间分布及其影响因子[J]. 生态学报, 2015, 35(24): 8094-8106.
|
[6]
|
石洪华, 郑伟, 丁德文, 等. 典型海岛生态系统服务及价值评估[J]. 海洋环境科学, 2009, 28(6): 743-748.
|
[7]
|
符传博, 丹利, 佟金鹤, 等. 海南岛臭氧污染时空变化及敏感性特征[J]. 环境科学, 2023, 44(9): 4799-4808.
|
[8]
|
Corlett, R.T. (2016) The Impacts of Droughts in Tropical Forests. Trends in Plant Science, 21, 584-593. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Kothandaraman, S., Dar, J.A., Sundarapandian, S., Dayanandan, S. and Khan, M.L. (2020) Ecosystem-Level Carbon Storage and Its Links to Diversity, Structural and Environmental Drivers in Tropical Forests of Western Ghats, India. Scientific Reports, 10, Article No. 13444. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Ren, H., Li, L., Liu, Q., Wang, X., Li, Y., Hui, D., et al. (2014) Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China. PLOS ONE, 9, e108163. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Wu, L., Guo, E., An, Y., Xiong, Q., Shi, X., Zhang, X., et al. (2023) Evaluating the Losses and Recovery of GPP in the Subtropical Mangrove Forest Directly Attacked by Tropical Cyclone: Case Study in Hainan Island. Remote Sensing, 15, Article 2094. [Google Scholar] [CrossRef]
|
[12]
|
侯静惟, 方伟华, 程锰, 等. 基于Copula函数的海南热带气旋风雨联合概率特征分析[J]. 自然灾害学报, 2019, 28(3): 54-64.
|
[13]
|
王晓丽, 王嫒, 石洪华, 等. 海岛陆地生态系统固碳估算方法[J]. 生态学报, 2014, 34(1): 88-96.
|
[14]
|
Ren, H., Chen, H., Li, L., Li, P., Hou, C., Wan, H., et al. (2013) Spatial and Temporal Patterns of Carbon Storage from 1992 to 2002 in Forest Ecosystems in Guangdong, Southern China. Plant and Soil, 363, 123-138. [Google Scholar] [CrossRef]
|
[15]
|
王克清, 王鹤松, 孙建新. 遥感GPP模型在中国地区多站点的应用与比较[J]. 植物生态学报, 2017, 41(3): 337-347.
|
[16]
|
Costa, G.B., Mendes, K.R., Viana, L.B., Almeida, G.V., Mutti, P.R., e Silva, C.M.S., et al. (2022) Seasonal Ecosystem Productivity in a Seasonally Dry Tropical Forest (Caatinga) Using Flux Tower Measurements and Remote Sensing Data. Remote Sensing, 14, Article 3955. [Google Scholar] [CrossRef]
|
[17]
|
Maselli, F., Papale, D., Puletti, N., Chirici, G. and Corona, P. (2009) Combining Remote Sensing and Ancillary Data to Monitor the Gross Productivity of Water-Limited Forest Ecosystems. Remote Sensing of Environment, 113, 657-667. [Google Scholar] [CrossRef]
|
[18]
|
Sri Rahayu Romadhoni, L., As-syakur, A.R., Hidayah, Z., Budi Wiyanto, D., Safitri, R., Yusuf Satriyana Utama, R., et al. (2022) Annual Characteristics of Gross Primary Productivity (GPP) in Mangrove Forest during 2016-2020 as Revealed by Sentinel-2 Remote Sensing Imagery. IOP Conference Series: Earth and Environmental Science, 1016, Article 012051. [Google Scholar] [CrossRef]
|
[19]
|
Kanniah, K.D., Kang, C.S., Sharma, S. and Amir, A.A. (2021) Remote Sensing to Study Mangrove Fragmentation and Its Impacts on Leaf Area Index and Gross Primary Productivity in the South of Peninsular Malaysia. Remote Sensing, 13, Article 1427. [Google Scholar] [CrossRef]
|
[20]
|
Deng, M., Meng, X., Lu, Y., Li, Z., Zhao, L., Niu, H., et al. (2022) The Response of Vegetation to Regional Climate Change on the Qinghai-Xizang Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing, 14, Article 3337. [Google Scholar] [CrossRef]
|
[21]
|
安映荷, 张润卿, 刘文杰, 等. 海南岛橡胶林区域不同SIF产品的差异性分析及其对GPP估算的影响[J]. 热带生物学报, 2023, 14(4): 412-423.
|
[22]
|
Houghton, R.A. (2005) Aboveground Forest Biomass and the Global Carbon Balance. Global Change Biology, 11, 945-958. [Google Scholar] [CrossRef]
|
[23]
|
高述超, 陈毅青, 陈宗铸, 等. 海南岛森林生态系统碳储量及其空间分布特征[J]. 生态学报, 2023, 43(9): 3558-3570.
|
[24]
|
宾昕, 蒋贤玲, 任晓玥. 近51年海南岛极端气温事件分析[J]. 热带气象学报, 2023, 39(3): 424-432.
|
[25]
|
雷金睿, 陈宗铸, 陈毅青, 等. 海南省湿地生态系统健康评价体系构建与应用[J]. 湿地科学, 2020, 18(5): 555-563.
|
[26]
|
刘强, 杨众养, 陈毅青, 等. 基于CA-Markov多情景模拟的海南岛土地利用变化及其生态环境效应[J]. 生态环境学报, 2021, 30(7): 1522-1531.
|
[27]
|
Teubner, I.E., Forkel, M., Wild, B., Mösinger, L. and Dorigo, W. (2021) Impact of Temperature and Water Availability on Microwave-Derived Gross Primary Production. Biogeosciences, 18, 3285-3308. [Google Scholar] [CrossRef]
|
[28]
|
Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., et al. (2017) A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000-2016. Scientific Data, 4, Article No. 170165. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., et al. (2020) Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982-2017. Earth System Science Data, 12, 2725-2746. [Google Scholar] [CrossRef]
|
[30]
|
赵宝山, 严程明, 苏俊波, 等. 1960-2020年海南岛气温、降水及参考作物蒸散量变化趋势[J]. 节水灌溉, 2023(10): 83-90.
|
[31]
|
张春花, 董立就, 吴俞, 等. 海南岛中部山地地形对天气气候的影响[J]. 气象科技进展, 2020, 10(4): 70-73.
|
[32]
|
Wang, W., Wu, Y., Wang, S., Yin, H., Li, W. and Zhao, S. (2022) Seasonal Variations of Ecosystem Water Use Efficiency and Their Responses to Climate Factors in Inner Mongolia of China. Atmosphere, 13, Article 2085. [Google Scholar] [CrossRef]
|
[33]
|
Green, J.K., Berry, J., Ciais, P., Zhang, Y. and Gentine, P. (2020) Amazon Rainforest Photosynthesis Increases in Response to Atmospheric Dryness. Science Advances, 6, eabb7232. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
牛忠恩, 闫慧敏, 陈静清, 等. 基于VPM与MOD17产品的中国农田生态系统总初级生产力估算比较[J]. 农业工程学报, 2016, 32(4): 191-198.
|
[35]
|
陈静清, 闫慧敏, 王绍强, 等. 中国陆地生态系统总初级生产力VPM遥感模型估算[J]. 第四纪研究, 2014, 34(4): 732-742.
|
[36]
|
Yuan, W., Liu, S., Dong, W., Liang, S., Zhao, S., Chen, J., et al. (2014) Differentiating Moss from Higher Plants Is Critical in Studying the Carbon Cycle of the Boreal Biome. Nature Communications, 5, Article No. 4270. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., et al. (2020) Scaling Carbon Fluxes from Eddy Covariance Sites to Globe: Synthesis and Evaluation of the FLUXCOM Approach. Biogeosciences, 17, 1343-1365. [Google Scholar] [CrossRef]
|
[38]
|
雷济舟, 崔嵬, 朱济帅, 等. 海南岛近20年GPP变化格局及驱动因素分析[J]. 热带生物学报, 2024, 15(1): 42-51.
|
[39]
|
Han, N., Hu, K., Yu, M., Jia, P. and Zhang, Y. (2022) Incorporating Ecological Constraints into the Simulations of Tropical Urban Growth Boundaries: A Case Study of Sanya City on Hainan Island, China. Applied Sciences, 12, Article 6409. [Google Scholar] [CrossRef]
|
[40]
|
王宁, 田家, 田庆久. 基于MODIS日地表反射率产品的长时序日分辨率EVI重建方法[J]. 遥感学报, 2024, 28(4): 969-980.
|