[1]
|
Ostrom, Q.T., Patil, N., Cioffi, G., Waite, K., Kruchko, C. and Barnholtz-Sloan, J.S. (2020) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017. Neuro-Oncology, 22, iv1-iv96. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Louis, D.N., Perry, A., Wesseling, P., Brat, D.J., Cree, I.A., Figarella-Branger, D., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., et al. (2022) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. Neuro-Oncology, 24, v1-v95. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Stupp, R., Mason, W.P., van den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J.B., et al. (2005) Radiotherapy Plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Redman, J.M., Gibney, G.T. and Atkins, M.B. (2016) Advances in Immunotherapy for Melanoma. BMC Medicine, 14, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Dagher, O.K., Schwab, R.D., Brookens, S.K. and Posey, A.D. (2023) Advances in Cancer Immunotherapies. Cell, 186, 1814-1814.e1. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Sampson, J.H., Gunn, M.D., Fecci, P.E. and Ashley, D.M. (2019) Brain Immunology and Immunotherapy in Brain Tumours. Nature Reviews Cancer, 20, 12-25. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Todo, T., Ito, H., Ino, Y., Ohtsu, H., Ota, Y., Shibahara, J., et al. (2022) Intratumoral Oncolytic Herpes Virus G47∆ for Residual or Recurrent Glioblastoma: A Phase 2 Trial. Nature Medicine, 28, 1630-1639. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Mahmoud, A.B., Ajina, R., Aref, S., Darwish, M., Alsayb, M., Taher, M., et al. (2022) Advances in Immunotherapy for Glioblastoma Multiforme. Frontiers in Immunology, 13, Article 944452. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Rong, L., Li, N. and Zhang, Z. (2022) Emerging Therapies for Glioblastoma: Current State and Future Directions. Journal of Experimental & Clinical Cancer Research, 41, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Korman, A.J., Garrett-Thomson, S.C. and Lonberg, N. (2022) The Foundations of Immune Checkpoint Blockade and the Ipilimumab Approval Decennial. Nature Reviews Drug Discovery, 21, 509-528. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Ott, P.A., Hodi, F.S. and Robert, C. (2013) CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients. Clinical Cancer Research, 19, 5300-5309. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Han, Y., Liu, D. and Li, L. (2020) PD-1/PD-L1 Pathway: Current Researches in Cancer. American Journal of Cancer Research, 10, 727-742.
|
[14]
|
Berger, K.N. and Pu, J.J. (2018) PD-1 Pathway and Its Clinical Application: A 20 Year Journey after Discovery of the Complete Human PD-1 Gene. Gene, 638, 20-25. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Taube, J.M., Klein, A., Brahmer, J.R., Xu, H., Pan, X., Kim, J.H., et al. (2014) Association of PD-1, PD-1 Ligands, and Other Features of the Tumor Immune Microenvironment with Response to Anti-PD-1 Therapy. Clinical Cancer Research, 20, 5064-5074. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Reardon, D.A., Brandes, A.A., Omuro, A., Mulholland, P., Lim, M., Wick, A., et al. (2020) Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The Check Mate 143 Phase 3 Randomized Clinical Trial. JAMA Oncology, 6, 1003-1010. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Omuro, A., Brandes, A.A., Carpentier, A.F., Idbaih, A., Reardon, D.A., Cloughesy, T., et al. (2023) Radiotherapy Combined with Nivolumab or Temozolomide for Newly Diagnosed Glioblastoma with Unmethylated MGMT Promoter: An International Randomized Phase III Trial. Neuro-Oncology, 25, 123-134. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Lim, M., Weller, M., Idbaih, A., Steinbach, J., Finocchiaro, G., Raval, R.R., et al. (2022) Phase III Trial of Chemoradiotherapy with Temozolomide Plus Nivolumab or Placebo for Newly Diagnosed Glioblastoma with Methylated MGMT Promoter. Neuro-Oncology, 24, 1935-1949. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Lukas, R.V., Rodon, J., Becker, K., Wong, E.T., Shih, K., Touat, M., et al. (2018) Clinical Activity and Safety of Atezolizumab in Patients with Recurrent Glioblastoma. Journal of Neuro-Oncology, 140, 317-328. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Cloughesy, T.F., Mochizuki, A.Y., Orpilla, J.R., Hugo, W., Lee, A.H., Davidson, T.B., et al. (2019) Neoadjuvant Anti-PD-1 Immunotherapy Promotes a Survival Benefit with Intratumoral and Systemic Immune Responses in Recurrent Glioblastoma. Nature Medicine, 25, 477-486. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Lee, A.H., Sun, L., Mochizuki, A.Y., Reynoso, J.G., Orpilla, J., Chow, F., et al. (2021) Neoadjuvant PD-1 Blockade Induces T Cell and cDC1 Activation but Fails to Overcome the Immunosuppressive Tumor Associated Macrophages in Recurrent Glioblastoma. Nature Communications, 12, Article No. 6938. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Cunto-Amesty, G., Monzavi-Karbassi, B., Luo, P., Jousheghany, F. and Kieber-Emmons, T. (2003) Strategies in cancer vaccines development. International Journal for Parasitology, 33, 597-613. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Li, L., Zhou, J., Dong, X., Liao, Q., Zhou, D. and Zhou, Y. (2022) Dendritic Cell Vaccines for Glioblastoma Fail to Complete Clinical Translation: Bottlenecks and Potential Countermeasures. International Immunopharmacology, 109, Article 108929. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Weller, M., Kaulich, K., Hentschel, B., Felsberg, J., Gramatzki, D., Pietsch, T., et al. (2014) Assessment and Prognostic Significance of the Epidermal Growth Factor Receptor VIII Mutation in Glioblastoma Patients Treated with Concurrent and Adjuvant Temozolomide Radiochemotherapy. International Journal of Cancer, 134, 2437-2447. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Huang, P.H., Mukasa, A., Bonavia, R., Flynn, R.A., Brewer, Z.E., Cavenee, W.K., et al. (2007) Quantitative Analysis of EGFRvIII Cellular Signaling Networks Reveals a Combinatorial Therapeutic Strategy for Glioblastoma. Proceedings of the National Academy of Sciences, 104, 12867-12872. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Schuster, J., Lai, R.K., Recht, L.D., Reardon, D.A., Paleologos, N.A., Groves, M.D., et al. (2015) A Phase II, Multicenter Trial of Rindopepimut (CDX-110) in Newly Diagnosed Glioblastoma: The ACT III Study. Neuro-Oncology, 17, 854-861. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Weller, M., Butowski, N., Tran, D.D., Recht, L.D., Lim, M., Hirte, H., et al. (2017) Rindopepimut with Temozolomide for Patients with Newly Diagnosed, EGFRvIII-Expressing Glioblastoma (ACT IV): A Randomised, Double-Blind, International Phase 3 Trial. The Lancet Oncology, 18, 1373-1385. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Reardon, D.A., Desjardins, A., Vredenburgh, J.J., O’Rourke, D.M., Tran, D.D., Fink, K.L., et al. (2020) Rindopepimut with Bevacizumab for Patients with Relapsed EGFRvIII-Expressing Glioblastoma (ReACT): Results of a Double-Blind Randomized Phase II Trial. Clinical Cancer Research, 26, 1586-1594. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Choi, B.D., O’Rourke, D.M. and Maus, M.V. (2017) Engineering Chimeric Antigen Receptor T cells to Treat Glioblastoma. Journal of Targeted Therapy in Cancer, 6, 22-25.
|
[30]
|
Del Baldo, G., Del Bufalo, F., Pinacchio, C., Carai, A., Quintarelli, C., De Angelis, B., et al. (2023) The Peculiar Challenge of Bringing CAR-T Cells into the Brain: Perspectives in the Clinical Application to the Treatment of Pediatric Central Nervous System Tumors. Frontiers in Immunology, 14, Article 1142597. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Luksik, A.S., Yazigi, E., Shah, P. and Jackson, C.M. (2023) CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers, 15, Article 1414. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Ramapriyan, R., Vykunta, V.S., Vandecandelaere, G., Richardson, L.G.K., Sun, J., Curry, W.T., et al. (2024) Altered Cancer Metabolism and Implications for Next-Generation CAR T-Cell Therapies. Pharmacology & Therapeutics, 259, Article 108667. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Majzner, R.G., Ramakrishna, S., Yeom, K.W., Patel, S., Chinnasamy, H., Schultz, L.M., et al. (2022) GD2-CAR T Cell Therapy for H3K27M-Mutated Diffuse Midline Gliomas. Nature, 603, 934-941. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Choi, B.D., Maus, M.V., June, C.H. and Sampson, J.H. (2019) Immunotherapy for Glioblastoma: Adoptive T-Cell Strategies. Clinical Cancer Research, 25, 2042-2048. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Choi, B.D., Yu, X., Castano, A.P., Bouffard, A.A., Schmidts, A., Larson, R.C., et al. (2019) CAR-T Cells Secreting Bites Circumvent Antigen Escape without Detectable Toxicity. Nature Biotechnology, 37, 1049-1058. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Jain, M.D., Smith, M. and Shah, N.N. (2023) How I Treat Refractory CRS and ICANS Following CAR T-Cell Therapy. Blood, 141, 2430-2442. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Morris, E.C., Neelapu, S.S., Giavridis, T. and Sadelain, M. (2022) Cytokine Release Syndrome and Associated Neurotoxicity in Cancer Immunotherapy. Nature Reviews Immunology, 22, 85-96. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Kalaitsidou, M., Kueberuwa, G., Schütt, A. and Gilham, D.E. (2015) CAR T-Cell Therapy: Toxicity and the Relevance of Preclinical Models. Immunotherapy, 7, 487-497. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Wollmann, G., Ozduman, K. and van den Pol, A.N. (2012) Oncolytic Virus Therapy for Glioblastoma Multiforme: Concepts and Candidates. The Cancer Journal, 18, 69-81. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Liu, T.C., Galanis, E. and Kirn, D. (2007) Clinical Trial Results with Oncolytic Virotherapy: A Century of Promise, a Decade of Progress. Nature Clinical Practice Oncology, 4, 101-117. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Biederer, C., Ries, S., Brandts, C.H. and McCormick, F. (2002) Replication-Selective Viruses for Cancer Therapy. Journal of Molecular Medicine, 80, 163-175. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Auffinger, B., Ahmed, A.U. and Lesniak, M.S. (2013) Oncolytic Virotherapy for Malignant Glioma: Translating Laboratory Insights into Clinical Practice. Frontiers in Oncology, 3, Article 32. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Bridle, B.W., Stephenson, K.B., Boudreau, J.E., Koshy, S., Kazdhan, N., Pullenayegum, E., et al. (2010) Potentiating Cancer Immunotherapy Using an Oncolytic Virus. Molecular Therapy, 18, 1430-1439. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Russell, S.J., Peng, K. and Bell, J.C. (2012) Oncolytic Virotherapy. Nature Biotechnology, 30, 658-670. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Asija, S., Chatterjee, A., Goda, J.S., Yadav, S., Chekuri, G. and Purwar, R. (2023) Oncolytic Immunovirotherapy for High-Grade Gliomas: A Novel and an Evolving Therapeutic Option. Frontiers in Immunology, 14, Article 1118246. [Google Scholar] [CrossRef] [PubMed]
|