[1]
|
Kalluri, R. (2016) The Biology and Function of Exosomes in Cancer. Journal of Clinical Investigation, 126, 1208-1215. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Kahlert, C., Melo, S.A., Protopopov, A., Tang, J., Seth, S., Koch, M., et al. (2014) Identification of Double-Stranded Genomic DNA Spanning All Chromosomes with Mutated KRAS and P53 DNA in the Serum Exosomes of Patients with Pancreatic Cancer. Journal of Biological Chemistry, 289, 3869-3875. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
李兰兰, 李宏, 成敏. 间充质干细胞源性外泌体miRNAs参与损伤心血管细胞修复的研究进展[J]. 生理科学进展, 2021, 52(2): 151-154.
|
[4]
|
葛丽特, 寻成峰, 卓毅, 等. 人嗅黏膜间充质干细胞来源外泌体的分离鉴定及生物学特性研究[J]. 中国生物化学与分子生物学报, 2019, 35(10): 1128-1134.
|
[5]
|
邱煜程, 周显玉, 刘菲, 等. 间充质干细胞及其外泌体在移植中的应用进展[J]. 组织工程与重建外科, 2023, 19(2): 184-188.
|
[6]
|
Cho, B., Kim, J., Ha, D. and Yi, Y. (2019) Exosomes Derived from Mesenchymal Stem Cells Alleviate Atopic Dermatitis by Suppressing Inflammation and Improving Skin Barrier Function. Cytotherapy, 21, e4. [Google Scholar] [CrossRef]
|
[7]
|
Heo, J.S. and Kim, S. (2022) Human Adipose Mesenchymal Stem Cells Modulate Inflammation and Angiogenesis through Exosomes. Scientific Reports, 12, Article No. 2776.
|
[8]
|
Huang, J., Cao, H., Cui, B., Ma, X., Gao, L., Yu, C., et al. (2022) Mesenchymal Stem Cells-Derived Exosomes Ameliorate Ischemia/Reperfusion Induced Acute Kidney Injury in a Porcine Model. Frontiers in Cell and Developmental Biology, 10, Article 899869. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Wang, Z., Wei, H., Li, Y., Chen, W., Lin, Z., Lai, Y., et al. (2024) Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Effectively Ameliorate the Outcomes of Rats with Acute Graft-versus-Host Disease. The FASEB Journal, 38, e23751.
|
[10]
|
Zhang, H., Han, K., Li, H., Zhang, J., Zhao, Y., Wu, Y., et al. (2023) hPMSCS Regulate the Level of TNF-α and IL-10 in Th1 Cells and Improve Hepatic Injury in a GVHD Mouse Model via CD73/ADO/Fyn/Nrf2 Axis. Inflammation, 47, 244-263. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Matsuoka, T., Takanashi, K., Dan, K., et al. (2021) Effects of Mesenchymal Stem Cell-Derived Exosomes on Oxidative Stress Responses in Skin Cells. Molecular Biology Reports, 48, 4527-4535.
|
[12]
|
Yuan, C., Chen, X., Shen, C., Chen, L., Zhao, Y., Wang, X., et al. (2022) Follicular Fluid Exosomes Regulate Oxidative Stress Resistance, Proliferation, and Steroid Synthesis in Porcine Theca Cells. Theriogenology, 194, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Liu, H., Jiang, C., La, B., Cao, M., Ning, S., Zhou, J., et al. (2021) Human Amnion-Derived Mesenchymal Stem Cells Improved the Reproductive Function of Age-Related Diminished Ovarian Reserve in Mice through Ampk/FoxO3a Signaling Pathway. Stem Cell Research & Therapy, 12, Article No. 317. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
刘维宏, 邵娜, 于艺. 间充质干细胞及其外泌体对卵巢早衰颗粒细胞调控作用的研究进展[J]. 中国优生与遗传杂志, 2024, 32(3): 659-665.
|
[15]
|
Wu, J., Chen, L., Sun, S., Li, Y. and Ran, X. (2022) Mesenchymal Stem Cell-Derived Exosomes: The Dawn of Diabetic Wound Healing. World Journal of Diabetes, 13, 1066-1095. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Waseem, A., Haque, R., Janowski, M. and Raza, S.S. (2023) Mesenchymal Stem Cell-Derived Exosomes: Shaping the Next Era of Stroke Treatment. Neuroprotection, 1, 99-116. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Li, Z., Liu, Y., Tian, Y., Li, Q., Shi, W., Zhang, J., et al. (2023) Human Umbilical Cord Mesenchymal Stem Cell‑Derived Exosomes Improve Ovarian Function in Natural Aging by Inhibiting Apoptosis. International Journal of Molecular Medicine, 52, Article No. 94. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Chen, J., Chen, J., Cheng, Y., Fu, Y., Zhao, H., Tang, M., et al. (2020) Mesenchymal Stem Cell-Derived Exosomes Protect Beta Cells against Hypoxia-Induced Apoptosis via miR-21 by Alleviating ER Stress and Inhibiting P38 MAPK Phosphorylation. Stem Cell Research & Therapy, 11, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Li, Z., Zhang, M., Zheng, J., Tian, Y., Zhang, H., Tan, Y., et al. (2021) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Frontiers in Endocrinology, 12, Article 711902. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Ding, C., Zhu, L., Shen, H., Lu, J., Zou, Q., Huang, C., et al. (2020) Exosomal miRNA-17-5p Derived from Human Umbilical Cord Mesenchymal Stem Cells Improves Ovarian Function in Premature Ovarian Insufficiency by Regulating SIRT7. Stem Cells, 38, 1137-1148. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Yang, Y., Tang, L., Xiao, Y., Huang, W., Gao, M., Xie, J., et al. (2024) miR-21-5p-Loaded Bone Mesenchymal Stem Cell-Derived Exosomes Repair Ovarian Function in Autoimmune Premature Ovarian Insufficiency by Targeting Msx1. Reproductive BioMedicine Online, 48, Article 103815. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Xie, Q., Hong, W., Li, Y., Ling, S., Zhou, Z., Dai, Y., et al. (2023) Chitosan Oligosaccharide Improves Ovarian Granulosa Cells Inflammation and Oxidative Stress in Patients with Polycystic Ovary Syndrome. Frontiers in Immunology, 14, Article 1086232. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Zhao, Y., Pan, S. and Wu, X. (2022) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Inhibit Ovarian Granulosa Cells Inflammatory Response through Inhibition of NF-κB Signaling in Polycystic Ovary Syndrome. Journal of Reproductive Immunology, 152, Article 103638. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Cao, M., Zhao, Y., Chen, T., Zhao, Z., Zhang, B., Yuan, C., et al. (2022) Adipose Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Ameliorate Polycystic Ovary Syndrome by Protecting against Metabolic Disturbances. Biomaterials, 288, Article 121739. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Teng, X., Wang, Z. and Wang, X. (2024) Enhancing Angiogenesis and Inhibiting Apoptosis: Evaluating the Therapeutic Efficacy of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in a DHEA-Induced PCOS Mouse Model. Journal of Ovarian Research, 17, Article No. 121. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Sun, L., Li, D., Song, K., Wei, J., Yao, S., Li, Z., et al. (2017) Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect against Cisplatin-Induced Ovarian Granulosa Cell Stress and Apoptosis in Vitro. Scientific Reports, 7, Article No. 2552. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Park, H., Seok, J., Cetin, E., Ghasroldasht, M.M., Liakath Ali, F., Mohammed, H., et al. (2024) Fertility Protection: A Novel Approach Using Pretreatment with Mesenchymal Stem Cell Exosomes to Prevent Chemotherapy-Induced Ovarian Damage in a Mouse Model. American Journal of Obstetrics and Gynecology, 231, 111.e1-111.e18. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Yang, M., Lin, L., Sha, C., Li, T., Zhao, D., Wei, H., et al. (2020) Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miR-144-5p Improves Rat Ovarian Function after Chemotherapy-Induced Ovarian Failure by Targeting PTEN. Laboratory Investigation, 100, 342-352. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Zhou, Y., Huang, J., Zeng, L., Yang, Q., Bai, F., Mai, Q., et al. (2024) Human Mesenchymal Stem Cells Derived Exosomes Improve Ovarian Function in Chemotherapy-Induced Premature Ovarian Insufficiency Mice by Inhibiting Ferroptosis through Nrf2/GPX4 Pathway. Journal of Ovarian Research, 17, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Yang, G., Zhang, B., Xu, M., Wu, M., Lin, J., Luo, Z., et al. (2024) Improving Granulosa Cell Function in Premature Ovarian Failure with Umbilical Cord Mesenchymal Stromal Cell Exosome-Derived Hsa_circ_0002021. Tissue Engineering and Regenerative Medicine, 21, 897-914. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
许培扬. miRNA治疗早发性卵巢功能不全的新挑战与机遇[EB/OL]. https://blog.sciencenet.cn/blog-280034-1493916.html, 2025-07-16.
|