[1]
|
NCD Risk Factor Collaboration (NCD-RisC) (2024) Worldwide Trends in Diabetes Prevalence and Treatment from 1990 to 2022: A Pooled Analysis of 1108 Population-Representative Studies with 141 Million Participants. The Lancet, 404, 2077-2093.
|
[2]
|
Xu, Y., Lu, J., Li, M., Wang, T., Wang, K., Cao, Q., et al. (2024) Diabetes in China Part 1: Epidemiology and Risk Factors. The Lancet Public Health, 9, e1089-e1097. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Jin, Q. and Ma, R.C.W. (2021) Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies. Cells, 10, Article 2832. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Huynh, K., Bernardo, B.C., McMullen, J.R. and Ritchie, R.H. (2014) Diabetic Cardiomyopathy: Mechanisms and New Treatment Strategies Targeting Antioxidant Signaling Pathways. Pharmacology & Therapeutics, 142, 375-415. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Seferović, P.M., Paulus, W.J., Rosano, G., Polovina, M., Petrie, M.C., Jhund, P.S., et al. (2024) Diabetic Myocardial Disorder. a Clinical Consensus Statement of the Heart Failure Association of the ESC and the ESC Working Group on Myocardial & Pericardial Diseases. European Journal of Heart Failure, 26, 1893-903. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Chavali, V., Tyagi, S.C. and Mishra, P.K. (2013) Predictors and Prevention of Diabetic Cardiomyopathy. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 151-160. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Peters, M.N., Pollock, J.S. and Rajagopalan, S. (2016) Unraveling the Association of Heart Failure from Drug and Disease: Insights from Recent Cardiovascular Trials in Type 2 Diabetes Mellitus. Journal of Diabetes and its Complications, 30, 189-191. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Tian, Y., Qiu, Z., Wang, F., Deng, S., Wang, Y., Wang, Z., et al. (2024) Associations of Diabetes and Prediabetes with Mortality and Life Expectancy in China: A National Study. Diabetes Care, 47, 1969-1977. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
郝蕊. 丹参-黄芪调节自噬防治糖尿病心肌病的lncRNA-mRNA转录网络研究[J]. 中国中药杂志, 2024, 55(15): 1234-1240.
|
[10]
|
叶加虎, 孙虹, 朱平. 糖尿病心肌病的药物治疗进展[J]. 中华老年心脑血管病杂志, 2020, 22(5): 551-552.
|
[11]
|
曹际云. 木槿花多糖的超声波辅助热水浸提工艺优化及抗氧化活性研究[J]. 粮油食品科技, 2019, 27(5): 55-60.
|
[12]
|
杨少宗, 陈家龙, 柳新红, 等. 不同品系食用木槿花瓣营养、功能成分组成及营养价值评价[J]. 食品科学, 2018, 39(22): 213-219.
|
[13]
|
刘海涛. 几种食用花卉的食用价值及文化[J]. 花卉, 2015(12): 32-35.
|
[14]
|
Ziyanok-Demirtas, S. (2024) Therapeutic Potentials of Hibiscus Trionum: Antioxidant, Anti-Lipid Peroxidative, Hypoglycemic, and Hepatoprotective Effects in Type 1 Diabetic Rats. Biomedicine & Pharmacotherapy, 175, Article 116630. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Molagoda, I.M.N., Lee, K.T., Choi, Y.H. and Kim, G. (2020) Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants, 9, Article 42. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Xu, X.Y., Tran, T.H.M., Perumalsamy, H., Sanjeevram, D. and Kim, Y. (2021) Biosynthetic Gold Nanoparticles of Hibiscus syriacus L. Callus Potentiates Anti-Inflammation Efficacy via an Autophagy-Dependent Mechanism. Materials Science and Engineering: C, 124, Article 112035. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Karunarathne, W.A.H.M., Lee, K.T., Choi, Y.H., Jin, C. and Kim, G. (2020) Anthocyanins Isolated from Hibiscus syriacus L. Attenuate Lipopolysaccharide-Induced Inflammation and Endotoxic Shock by Inhibiting the TLR4/MD2-Mediated NF-κB Signaling Pathway. Phytomedicine, 76, Article 153237. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
孟磊, 张玉婷. 木槿花多糖改善Ⅱ型糖尿病作用机制研究[J]. 锦州医科大学学报, 2021, 42(2): 28-34.
|
[19]
|
Kim, H., Jang, Y., Ryu, J., Seo, D., Lee, S., Choi, S., et al. (2023) The Dipeptide Gly-Pro (GP), Derived from Hibiscus Sabdariffa, Exhibits Potent Antifibrotic Effects by Regulating the TGF-β1-ATF4-Serine/Glycine Biosynthesis Pathway. International Journal of Molecular Sciences, 24, Article 13616. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
侯正嘉. 黄芪多糖提取纯化、结构鉴定及复方产品开发[D]: [硕士学位论文]. 成都: 西华大学, 2024.
|
[21]
|
胡元红. 一杯黄芪水: 开启元气养生局[J]. 家庭医学, 2025(4): 54-55.
|
[22]
|
江远玲, 冯楠, 邵欣宇, 等. 黄芪的现代药理作用研究进展[J]. 西南医科大学学报, 2023, 46(5): 456-460+463.
|
[23]
|
Piao, Y. and Liang, X. (2014) Astragalus membranaceus Injection Combined with Conventional Treatment for Viral Myocarditis: A Systematic Review of Randomized Controlled Trials. Chinese Journal of Integrative Medicine, 20, 787-791. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
武洁, 刘旭光, 冯晓辞, 等. 黄芪多糖调控Wnt1信号对糖尿病大鼠糖脂代谢紊乱影响机制研究[J]. 辽宁中医药大学学报, 2024, 26(11): 43-51.
|
[25]
|
Sun, S., Yang, S., Dai, M., Jia, X., Wang, Q., Zhang, Z., et al. (2017) The Effect of Astragalus Polysaccharides on Attenuation of Diabetic Cardiomyopathy through Inhibiting the Extrinsic and Intrinsic Apoptotic Pathways in High Glucose-Stimulated H9C2 Cells. BMC Complementary and Alternative Medicine, 17, Article No. 310. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Sun, S., Yang, S., An, N., Wang, G., Xu, Q., Liu, J., et al. (2019) Astragalus Polysaccharides Inhibits Cardiomyocyte Apoptosis during Diabetic Cardiomyopathy via the Endoplasmic Reticulum Stress Pathway. Journal of Ethnopharmacology, 238, Article 111857. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Sun, S., Yang, S., Zhang, N., Yu, C., Liu, J., Feng, W., et al. (2023) Astragalus Polysaccharides Alleviates Cardiac Hypertrophy in Diabetic Cardiomyopathy via Inhibiting the Bmp10-Mediated Signaling Pathway. Phytomedicine, 109, Article 154543. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
韩学俭. 木槿清热利湿润燥[J]. 家庭医学, 2014(9): 53.
|
[29]
|
吕守礼, 黄健, 王海涛, 等. 王洪京主任医师应用解毒类对药治疗脾胃病的临床经验[J]. 光明中医, 2017, 32(5): 639-640.
|
[30]
|
曹佳蕾, 梁绿圆, 刘宜杭, 等. 基于“病-药-量”探索黄芪古代用药规律[J]. 中国中药杂志, 2025, 50(3): 798-811.
|
[31]
|
孟庆雯, 刘华江, 丁顺, 等. 基于网络药理学探讨黄芪治疗糖尿病心肌病的作用机制及初步验证研究[J]. 海南医学院学报, 2022, 28(19): 1463-1471+1478.
|
[32]
|
孙玉凤, 葛卓琦, 李银洛, 等. 基于网络药理学和分子对接技术探讨黄芪治疗糖尿病心肌病的作用机制[J]. 现代药物与临床, 2023, 38(8): 1910-1918.
|
[33]
|
樊一波, 文颖娟. 糖尿病心肌病中医药治疗刍议[J]. 陕西中医药大学学报, 2018, 41(4): 123-125, 130.
|
[34]
|
李嘉钰, 闫康, 赵泉霖. 芪归药对治疗糖尿病心肌病的理论探讨[J]. 辽宁中医杂志, 2021, 48(2): 69-71.
|
[35]
|
王艳蕾, 颜旭, 杨军辉. 从《血证论》气血水理论谈慢性心力衰竭的中医辨证[J]. 四川中医, 2022, 40(3): 36-39.
|
[36]
|
程昌琴, 张莲琴, 李志勇, 等. 杜仲木脂素对糖尿病脑病大鼠的治疗作用及机制研究[J]. 中华老年心脑血管病杂志, 2023, 25(12): 1378-1382.
|
[37]
|
Yuan, Y., Zhang, J., Li, H., Yuan, F., Cui, Q., Wu, D., et al. (2025) Scopoletin Alleviates Acetaminophen-Induced Hepatotoxicity through Modulation of NLRP3 Inflammasome Activation and Nrf2/HMGB1/TLR4/NF-κB Signaling Pathway. International Immunopharmacology, 148, Article 114132. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Li, S., Zhan, J., Wang, Y., Oduro, P.K., Owusu, F.B., Zhang, J., et al. (2023) Suxiao Jiuxin Pill Attenuates Acute Myocardial Ischemia via Regulation of Coronary Artery Tone. Frontiers in Pharmacology, 14, Article ID: 1104243. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Zhang, J., Yuan, Y., Gao, X., Li, H., Yuan, F., Wu, D., et al. (2025) Scopoletin Ameliorates Hyperlipidemia and Hepatic Steatosis via AMPK, Nrf2/HO-1 and NF-κB Signaling Pathways. Biochemical Pharmacology, 231, Article 116639. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
何依津, 张鹏志, 田海月, 等. 槲皮素通过MAPK/ERK1/2信号途径对H9C2细胞抗缺氧损伤的作用[J]. 第三军医大学学报, 2021, 43(20): 2220-2225.
|
[41]
|
Yue, Z., Zhang, Y., Zhang, W., Zheng, N., Wen, J., Ren, L., et al. (2025) Kaempferol Alleviates Myocardial Ischemia Injury by Reducing Oxidative Stress via the HDAC3-Mediated Nrf2 Signaling Pathway. Journal of Advanced Research, 75, 755-764. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Ren, J., Ding, Y., Li, S. and Lei, M. (2023) Predicting the Anti-Inflammatory Mechanism of Radix Astragali Using Network Pharmacology and Molecular Docking. Medicine, 102, e34945. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Du, L., Wang, J., Chen, Y., Li, X., Wang, L., Li, Y., et al. (2020) Novel Biphenyl Diester Derivative AB-38b Inhibits NLRP3 Inflammasome through Nrf2 Activation in Diabetic Nephropathy. Cell Biology and Toxicology, 36, 243-260. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Liu, J., Liu, C., Chen, H., Cen, H., Yang, H., Liu, P., et al. (2023) Tongguan Capsule for Treating Myocardial Ischemia-Reperfusion Injury: Integrating Network Pharmacology and Mechanism Study. Pharmaceutical Biology, 61, 437-448. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Mak, D., Ryan, K.A. and Han, J.C. (2021) Review of Insulin Resistance in Dilated Cardiomyopathy and Implications for the Pediatric Patient Short Title: Insulin Resistance DCM and Pediatrics. Frontiers in Pediatrics, 9, Article ID: 756593. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Zhang, Y., Wang, D., Zhao, Z., Liu, L., Xia, G., Ye, T., et al. (2022) Nephronectin Promotes Cardiac Repair Post Myocardial Infarction via Activating EGFR/JAK2/STAT3 Pathway. International Journal of Medical Sciences, 19, 878-892. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Song, S., Ding, Y., Dai, G., Zhang, Y., Xu, M., Shen, J., et al. (2021) Sirtuin 3 Deficiency Exacerbates Diabetic Cardiomyopathy via Necroptosis Enhancement and NLRP3 Activation. Acta Pharmacologica Sinica, 42, 230-241. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Gregorio, K.C.R., Laurindo, C.P. and Machado, U.F. (2021) Estrogen and Glycemic Homeostasis: The Fundamental Role of Nuclear Estrogen Receptors ESR1/ESR2 in Glucose Transporter GLUT4 Regulation. Cells, 10, Article 99. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Tsai, C., Chen, W., Hsieh, H., Chi, P., Hsiao, L. and Yang, C. (2014) TNF-α Induces Matrix Metalloproteinase-9-Dependent Soluble Intercellular Adhesion Molecule-1 Release via Traf2-Mediated MAPKs and NF-κB Activation in Osteoblast-Like MC3T3-E1 Cells. Journal of Biomedical Science, 21, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Ta, A., Chen, Y., Li, J., Salem, E. and Wang, P.H. (2023) 1626-P: Activation of Cardiac Mitochondrial Akt1 Enhanced Myocardial Fatty Acid Utilization, Protected against Diabetic Cardiomyopathy, and Improved Whole Body Fat Distribution. Diabetes, 72, 1626-P. [Google Scholar] [CrossRef]
|
[51]
|
梁国新, 唐红悦, 郭畅, 等. miR-224-5p调控PI3K/Akt/FoxO1轴抑制氧化应激减轻缺氧/复氧诱导的心肌细胞损伤[J]. 南方医科大学学报, 2024, 44(6): 1173-1181.
|
[52]
|
崔勤涛, 王俊华, 刘晓晨, 等. 丹酚酸A激活AKT/mTOR/4EBP1通路缓解脂多糖诱导的H9c2心肌细胞凋亡和氧化应激[J]. 中国药理学与毒理学杂志, 2020, 34(1): 16-23.
|
[53]
|
Yang, J., Deng, W., Chen, Y., Fan, W., Baldwin, K.M., Jope, R.S., et al. (2013) Impaired Translocation and Activation of Mitochondrial Akt1 Mitigated Mitochondrial Oxidative Phosphorylation Complex V Activity in Diabetic Myocardium. Journal of Molecular and Cellular Cardiology, 59, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Peng, M., Fu, Y., Wu, C., Zhang, Y., Ren, H. and Zhou, S. (2022) Signaling Pathways Related to Oxidative Stress in Diabetic Cardiomyopathy. Frontiers in Endocrinology, 13, Article ID: 907757. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Yu, M., Wen, S., Wang, M., Liang, W., Li, H., Long, Q., et al. (2013) TNF-α-Secreting B Cells Contribute to Myocardial Fibrosis in Dilated Cardiomyopathy. Journal of Clinical Immunology, 33, 1002-1008. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Zand, H., Morshedzadeh, N. and Naghashian, F. (2017) Signaling Pathways Linking Inflammation to Insulin Resistance. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 11, S307-S309. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Costantino, S., Akhmedov, A., Melina, G., Mohammed, S.A., Othman, A., Ambrosini, S., et al. (2019) Obesity-Induced Activation of Jund Promotes Myocardial Lipid Accumulation and Metabolic Cardiomyopathy. European Heart Journal, 40, 997-1008. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Qi, S., Yi, G., Yu, K., Feng, C. and Deng, S. (2022) The Role of HSP90 Inhibitors in the Treatment of Cardiovascular Diseases. Cells, 11, Article 3444. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
黄家喜, 鲍翠玉, 李晶. PI3K/Akt通路在糖尿病心肌病中的研究进展[J]. 中国药理学通报, 2019, 35(9): 1202-1205.
|
[60]
|
常晓, 李惠林, 楚淑芳, 等. 黄芪多糖介导NRG-1/ErbB信号通路对糖尿病心肌细胞凋亡的作用[J]. 中国中医基础医学杂志, 2016, 22(9): 1192-1195+1218.
|
[61]
|
Wang, Y., Luo, W., Han, J., Khan, Z.A., Fang, Q., Jin, Y., et al. (2020) MD2 Activation by Direct AGE Interaction Drives Inflammatory Diabetic Cardiomyopathy. Nature Communications, 11, Article No. 2148. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Chao, H., Cheng, T., Chen, C., Liu, J., Chen, J. and Sung, L. (2025) Hibiscus syriacus L. Exhibits Cardioprotective Activity via Anti-Inflammatory and Antioxidant Mechanisms in an in Vitro Model of Heart Failure. Life, 15, Article 1229. [Google Scholar] [CrossRef]
|
[63]
|
Liu, X., Liu, X., Luo, S., Chen, D., Lin, J., Xiong, M., et al. (2025) Quercetin Promotes Angiogenesis and Protects the Blood-Spinal Cord Barrier Structure after Spinal Cord Injury by Targeting the PI3K/Akt Signaling Pathway. Journal of Translational Medicine, 23, Article No. 958. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
向仲双, 申强. PI3K/AKT信号通路在心肌病中应用的研究进展[J]. 临床医学进展, 2024, 14(11): 51-56. [Google Scholar] [CrossRef]
|
[65]
|
谭鑫, 鲜维, 陈永锋, 等. 槲皮素治疗心力衰竭的分子机制: 基于网络药理学与分子对接方法[J]. 南方医科大学学报, 2021, 41(8): 1198-1206.
|