[1]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Evans L, Rhodes A, Alhazzani W, et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181‐1247.
|
[4]
|
Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., et al. (2019) Metabolic Regulation of Gene Expression by Histone Lactylation. Nature, 574, 575-580. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Fang, C., Ren, P., Bian, G., Wang, J., Bai, J., Huang, J., et al. (2023) Enhancing Spns2/S1P in Macrophages Alleviates Hyperinflammation and Prevents Immunosuppression in Sepsis. EMBO Reports, 24, e56635. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Sangsuwan, R., Thuamsang, B., Pacifici, N., Tachachartvanich, P., Murphy, D., Ram, A., et al. (2025) Identification of Signaling Networks Associated with Lactate Modulation of Macrophages and Dendritic Cells. Heliyon, 11, e42098. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Wang, Y., Wei, A., Su, Z., Shi, Y., Li, X. and He, L. (2025) Characterization of Lactylation-Based Phenotypes and Molecular Biomarkers in Sepsis-Associated Acute Respiratory Distress Syndrome. Scientific Reports, 15, Article No. 13831. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Sun, Z., Song, Y., Li, J., Li, Y., Yu, Y. and Wang, X. (2023) Potential Biomarker for Diagnosis and Therapy of Sepsis: Lactylation. Immunity, Inflammation and Disease, 11, e1042. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Liu, S., Yang, T., Jiang, Q., Zhang, L., Shi, X., Liu, X., et al. (2024) Lactate and Lactylation in Sepsis: A Comprehensive Review. Journal of Inflammation Research, 17, 4405-4417. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Gong, F., Zheng, X., Xu, W., Xie, R., Liu, W., Pei, L., et al. (2025) H3k14la Drives Endothelial Dysfunction in Sepsis‐induced ARDS by Promoting SLC40A1/Transferrin-Mediated Ferroptosis. MedComm, 6, e70049. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Ma, N., Wang, L., Meng, M., Wang, Y., Huo, R., Chang, G., et al. (2025) D-Sodium Lactate Promotes the Activation of Nf-κB Signaling Pathway Induced by Lipopolysaccharide via Histone Lactylation in Bovine Mammary Epithelial Cells. Microbial Pathogenesis, 199, Article 107198. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Li, J., Shi, X., Xu, J., Wang, K., Hou, F., Luan, X., et al. (2025) Aldehyde Dehydrogenase 2 Lactylation Aggravates Mitochondrial Dysfunction by Disrupting PHB2 Mediated Mitophagy in Acute Kidney Injury. Advanced Science, 12, e2411943. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Li, S., Shen, Y., Wang, C., Yang, J., Chen, M. and Hu, Y. (2024) Exploring the Prognostic and Diagnostic Value of Lactylation-Related Genes in Sepsis. Scientific Reports, 14, Article No. 23130. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Qiao, J., Tan, Y., Liu, H., Yang, B., Zhang, Q., Liu, Q., et al. (2024) Histone H3K18 and Ezrin Lactylation Promote Renal Dysfunction in Sepsis-Associated Acute Kidney Injury. Advanced Science, 11, e2307216. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Wu, D., Spencer, C.B., Ortoga, L., Zhang, H. and Miao, C. (2024) Histone Lactylation-Regulated METTL3 Promotes Ferroptosis via m6A-Modification on ACSL4 in Sepsis-Associated Lung Injury. Redox Biology, 74, Article 103194. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Gong, T., Wang, Q., Loughran, P.A., Li, Y., Scott, M.J., Billiar, T.R., et al. (2024) Mechanism of Lactic Acidemia-Promoted Pulmonary Endothelial Cells Death in Sepsis: Role for CIRP-ZBP1-Panoptosis Pathway. Military Medical Research, 11, Article No. 71. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Li, Z., Bu, Y., Wang, C., Yu, Y., Han, L., Liu, C., et al. (2025) Extracellular Vesicle-Packaged GBP2 from Macrophages Aggravates Sepsis-Induced Acute Lung Injury by Promoting Ferroptosis in Pulmonary Vascular Endothelial Cells. Redox Biology, 82, Article 103614. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Lu, Z., Fang, P., Li, S., Xia, D., Zhang, J., Wu, X., et al. (2024) Lactylation of Histone H3k18 and Egr1 Promotes Endothelial Glycocalyx Degradation in Sepsis-Induced Acute Lung Injury. Advanced Science, 12, e2407064. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
An, S., Yao, Y., Hu, H., Wu, J., Li, J., Li, L., et al. (2023) PDHA1 Hyperacetylation-Mediated Lactate Overproduction Promotes Sepsis-Induced Acute Kidney Injury via Fis1 Lactylation. Cell Death & Disease, 14, Article No. 457. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Wu, Z., Liu, W.Q., Tang, L., Yuan, Q., Li, Y., Hu, H., et al. (2024) Lactate-Mitochondrial Crosstalk: A New Direction in the Treatment of Sepsis-Induced Acute Kidney Injury. Cell Biology International, 48, 1621-1624. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Li, L. and Lu, Y. (2021) The Regulatory Role of High-Mobility Group Protein 1 in Sepsis-Related Immunity. Frontiers in Immunology, 11, Article ID: 601815. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Wei, S., Dai, Z., Wu, L., Xiang, Z., Yang, X., Jiang, L., et al. (2025) Lactate-Induced Macrophage HMGB1 Lactylation Promotes Neutrophil Extracellular Trap Formation in Sepsis-Associated Acute Kidney Injury. Cell Biology and Toxicology, 41, Article No. 78. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Zuo, L., Prather, E.R., Stetskiv, M., Garrison, D.E., Meade, J.R., Peace, T.I., et al. (2019) Inflammaging and Oxidative Stress in Human Diseases: From Molecular Mechanisms to Novel Treatments. International Journal of Molecular Sciences, 20, Article 4472. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Jang, H.M., Lee, J.Y., An, H.S., Ahn, Y.J., Jeong, E.A., Shin, H.J., et al. (2022) LCN2 Deficiency Ameliorates Doxorubicin-Induced Cardiomyopathy in Mice. Biochemical and Biophysical Research Communications, 588, 8-14. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Huang, Y., Zhang, N., Xie, C., You, Y., Guo, L., Ye, F., et al. (2022) Lipocalin-2 in Neutrophils Induces Ferroptosis in Septic Cardiac Dysfunction via Increasing Labile Iron Pool of Cardiomyocytes. Frontiers in Cardiovascular Medicine, 9, Article ID: 922534. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Li, Y., Li, L., Zhang, Y., Yun, Q., Du, R., Ye, H., et al. (2025) Lipocalin-2 Silencing Alleviates Sepsis-Induced Liver Injury through Inhibition of Ferroptosis. Annals of Hepatology, 30, Article 101756. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Hu, S., Yang, Z., Li, L., Yan, Q., Hu, Y., Zhou, F., et al. (2024) Salvianolic Acid B Alleviates Liver Injury by Regulating Lactate-Mediated Histone Lactylation in Macrophages. Molecules, 29, Article 236. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
He, L., Yin, R., Hang, W., Han, J., Chen, J., Wen, B., et al. (2024) Oxygen Glucose Deprivation-Induced Lactylation of H3K9 Contributes to M1 Polarization and Inflammation of Microglia through TNF Pathway. Biomedicines, 12, Article 2371. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Chung, H., Wickel, J., Hahn, N., Mein, N., Schwarzbrunn, M., Koch, P., et al. (2023) Microglia Mediate Neurocognitive Deficits by Eliminating C1q-Tagged Synapses in Sepsis-Associated Encephalopathy. Science Advances, 9, eabq7806. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Chen, L., Luo, S., Liu, T., Shuai, Z., Song, Y., Yang, Q., et al. (2025) Growth Differentiation Factor 15 Aggravates Sepsis-Induced Cognitive and Memory Impairments by Promoting Microglial Inflammatory Responses and Phagocytosis. Journal of Neuroinflammation, 22, Article No. 44. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Gao, S., Shen, R., Li, J., Jiang, Y., Sun, H., Wu, X., et al. (2024) N-Acetyltransferase 10 Mediates Cognitive Dysfunction through the Acetylation of Gababr1 mRNA in Sepsis-Associated Encephalopathy. Proceedings of the National Academy of Sciences, 121, e2410564121. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Li, H., Liu, Q., Zhu, C., Sun, X., Sun, C., Yu, C., et al. (2023) β-Nicotinamide Mononucleotide Activates NAD+/SIRT1 Pathway and Attenuates Inflammatory and Oxidative Responses in the Hippocampus Regions of Septic Mice. Redox Biology, 63, Article 102745. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Liao, Y., Niu, L., Ling, J., Cui, Y., Huang, Z., Xu, J., et al. (2025) Turning Sour into Sweet: Lactylation Modification as a Promising Target in Cardiovascular Health. Metabolism, 168, Article 156234. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Shi, Y., He, L., Ni, J., Zhou, Y., Yu, X., Du, Y., et al. (2025) Myeloid Deficiency of Z-DNA Binding Protein 1 Restricts Septic Cardiomyopathy via Promoting Macrophage Polarisation Towards the M2-Subtype. Clinical and Translational Medicine, 15, e70315. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Wang, F., Xue, P., Wang, J., Liu, Y., Han, X. and Xing, J. (2025) Esmolol Upregulates the α7 nAChR/STAT3/NF-κB Pathway by Decreasing the Ubiquitin and Increasing the ChAT+CD4+ T Lymphocyte to Alleviate Inflammation in Septic Cardiomyopathy. International Immunopharmacology, 148, Article 114043. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Li, Y., Zhang, X., Jiang, G., Min, X., Kong, Q., Liu, L., et al. (2025) Downregulation of HSPA12A Protects Heart against Sepsis through Suppressing mTOR-Mediated Inflammatory Response in Cardiomyocytes. International Immunopharmacology, 145, Article 113721. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Zhang, Y., Liu, Y., Xie, Z., Liu, Q., Zhuang, Y., Xie, W., et al. (2022) Inhibition of PFKFB Preserves Intestinal Barrier Function in Sepsis by Inhibiting NLRP3/GSDMD. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 8704016. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Zhu, L., Dou, Z., Wu, W., Hou, Q., Wang, S., Yuan, Z., et al. (2023) Ghrelin/GHSR Axis Induced M2 Macrophage and Alleviated Intestinal Barrier Dysfunction in a Sepsis Rat Model by Inactivating E2F1/NF-κB Signaling. Canadian Journal of Gastroenterology and Hepatology, 2023, Article ID: 1629777. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Wu, R., Xu, J., Zeng, H., Fan, Y., Li, H., Peng, T., et al. (2024) Golden Bifid Treatment Regulates Gut Microbiota and Serum Metabolites to Improve Myocardial Dysfunction in Cecal Ligation and Puncture-Induced Sepsis Mice. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1870, Article 167049. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Chen, Y., Sun, K., Qi, Y., Tang, J., Zhu, H. and Wang, Z. (2024) L-Valine Derived from the Gut Microbiota Protects Sepsis-Induced Intestinal Injury and Negatively Correlates with the Severity of Sepsis. Frontiers in Immunology, 15, Article ID: 1424332. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Cheng, L., Feng, B., Xie, C., Chen, C. and Guo, L. (2025) Overexpression of miR-20a Targeting DUSP3 Inhibits OCLN Ubiquitination Levels and Alleviates Sepsis Induced Intestinal Barrier Dysfunction. In Vitro Cellular & Developmental Biology-Animal, 61, 459-471. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Cao, Y., Qiao, Y., Wang, Z., Chen, Q., Qi, Y., Lu, Z., et al. (2023) The Polo-Like Kinase 1-Mammalian Target of Rapamycin Axis Regulates Autophagy to Prevent Intestinal Barrier Dysfunction during Sepsis. The American Journal of Pathology, 193, 296-312. [Google Scholar] [CrossRef] [PubMed]
|