[1]
|
中华医学会感染病学分会艾滋病学组. 艾滋病诊疗指南第三版(2015版) [J]. 中华临床感染病杂志, 2015, 8(5): 385-401.
|
[2]
|
Fletcher, C.V., Staskus, K., Wietgrefe, S.W., Rothenberger, M., Reilly, C., Chipman, J.G., et al. (2014) Persistent HIV-1 Replication Is Associated with Lower Antiretroviral Drug Concentrations in Lymphatic Tissues. Proceedings of the National Academy of Sciences, 111, 2307-2312. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Clapham, P.R. and McKnight, Á. (2001) HIV-1 Receptors and Cell Tropism. British Medical Bulletin, 58, 43-59. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Calado, M., Pires, D., Conceição, C., Ferreira, R., Santos-Costa, Q., Anes, E., et al. (2023) Cell-to-Cell Transmission of HIV-1 and HIV-2 from Infected Macrophages and Dendritic Cells to CD4+ T Lymphocytes. Viruses, 15, Article 1030. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Toccafondi, E., Lener, D. and Negroni, M. (2021) HIV-1 Capsid Core: A Bullet to the Heart of the Target Cell. Frontiers in Microbiology, 12, Article ID: 652486. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Zhu, J. and Paul, W.E. (2008) CD4 T Cells: Fates, Functions, and Faults. Blood, 112, 1557-1569. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Tedeschi, V., Paldino, G., Kunkl, M., Paroli, M., Sorrentino, R., Tuosto, L., et al. (2022) CD8+ T Cell Senescence: Lights and Shadows in Viral Infections, Autoimmune Disorders and Cancer. International Journal of Molecular Sciences, 23, Article 3374. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Fenwick, C., Joo, V., Jacquier, P., Noto, A., Banga, R., Perreau, M., et al. (2019) T‐Cell Exhaustion in HIV Infection. Immunological Reviews, 292, 149-163. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Masenga, S.K., Mweene, B.C., Luwaya, E., Muchaili, L., Chona, M. and Kirabo, A. (2023) HIV-Host Cell Interactions. Cells, 12, Article 1351. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Mzingwane, M.L. and Tiemessen, C.T. (2017) Mechanisms of HIV Persistence in HIV Reservoirs. Reviews in Medical Virology, 27, e1924. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Kalinichenko, S., Komkov, D. and Mazurov, D. (2022) HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses, 14, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Wik, J.A. and Skålhegg, B.S. (2022) T Cell Metabolism in Infection. Frontiers in Immunology, 13, Article ID: 840610. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Jin, X., Zhou, R. and Huang, Y. (2022) Role of Inflammasomes in HIV-1 Infection and Treatment. Trends in Molecular Medicine, 28, 421-434. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Callender, L.A., Carroll, E.C., Bober, E.A., Akbar, A.N., Solito, E. and Henson, S.M. (2020) Mitochondrial Mass Governs the Extent of Human T Cell Senescence. Aging Cell, 19, e13067. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Wherry, E.J. and Kurachi, M. (2015) Molecular and Cellular Insights into T Cell Exhaustion. Nature Reviews Immunology, 15, 486-499. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Douek, D.C., Picker, L.J. and Koup, R.A. (2003) T Cell Dynamics in HIV-1 Infection. Annual Review of Immunology, 21, 265-304. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Brenchley, J.M., Hill, B.J., Ambrozak, D.R., Price, D.A., Guenaga, F.J., Casazza, J.P., et al. (2004) T-Cell Subsets That Harbor Human Immunodeficiency Virus (HIV) in Vivo: Implications for HIV Pathogenesis. Journal of Virology, 78, 1160-1168. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Douek, D.C., Brenchley, J.M., Betts, M.R., Ambrozak, D.R., Hill, B.J., Okamoto, Y., et al. (2002) HIV Preferentially Infects HIV-Specific CD4+ T Cells. Nature, 417, 95-98. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M.M. and Paul, W.E. (2002) CD4+ T-Cell Depletion in HIV Infection: Are We Closer to Understanding the Cause? Nature Medicine, 8, 319-323. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Paoletti, A., Allouch, A., Caillet, M., Saïdi, H., Subra, F., Nardacci, R., et al. (2019) HIV-1 Envelope Overcomes Nlrp3-Mediated Inhibition of F-Actin Polymerization for Viral Entry. Cell Reports, 28, 3381-3394.e7. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Reis, E.C., Leal, V.N.C., da Silva, L.T., dos Reis, M.M.L., Argañaraz, E.R., Oshiro, T.M., et al. (2019) Antagonistic Role of Il-1β and NLRP3/IL-18 Genetics in Chronic HIV-1 Infection. Clinical Immunology, 209, Article 108266. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Wang, X., Mbondji-Wonje, C., Zhao, J. and Hewlett, I. (2016) Il-1β and IL-18 Inhibition of HIV-1 Replication in Jurkat Cells and PBMCs. Biochemical and Biophysical Research Communications, 473, 926-930. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Arbore, G., West, E.E., Spolski, R., Robertson, A.A.B., Klos, A., Rheinheimer, C., et al. (2016) T Helper 1 Immunity Requires Complement-Driven NLRP3 Inflammasome Activity in CD4+ T Cells. Science, 352, aad1210. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Cheung, M.S., Theodoropoulou, K., Lugrin, J., Martinon, F., Busso, N. and Hofer, M. (2017) Periodic Fever with Aphthous Stomatitis, Pharyngitis, and Cervical Adenitis Syndrome Is Associated with a CARD8 Variant Unable to Bind the NLRP3 Inflammasome. The Journal of Immunology, 198, 2063-2069. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Johnson, D.C., Taabazuing, C.Y., Okondo, M.C., Chui, A.J., Rao, S.D., Brown, F.C., et al. (2018) DPP8/DPP9 Inhibitor-Induced Pyroptosis for Treatment of Acute Myeloid Leukemia. Nature Medicine, 24, 1151-1156. N., et al. (2011) IFI16 Acts as a Nuclear Pathogen Sensor to Induce the Inflammasome in Response to Kaposi Sarcomaassociated Herpesvirus Infection. Cell Host & Microbe, 9, 363-375. [Google Scholar] [CrossRef]
|
[26]
|
Jin, T., Perry, A., Jiang, J., Smith, P., Curry, J.A., Unterholzner, L., et al. (2012) Structures of the HIN Domain:DNA Complexes Reveal Ligand Binding and Activation Mechanisms of the AIM2 Inflammasome and IFI16 Receptor. Immunity, 36, 561-571. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Hornung, V., Ablasser, A., Charrel-Dennis, M., Bauernfeind, F., Horvath, G., Caffrey, D.R., et al. (2009) AIM2 Recognizes Cytosolic DsDNA and Forms a Caspase-1-Activating Inflammasome with ASC. Nature, 458, 514-518. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Unterholzner, L., Keating, S.E., Baran, M., Horan, K.A., Jensen, S.B., Sharma, S., et al. (2010) IFI16 Is an Innate Immune Sensor for Intracellular DNA. Nature Immunology, 11, 997-1004. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Jakobsen, M.R. and Paludan, S.R. (2014) IFI16: At the Interphase between Innate DNA Sensing and Genome Regulation. Cytokine & Growth Factor Reviews, 25, 649-655. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Jønsson, K.L., Laustsen, A., Krapp, C., Skipper, K.A., Thavachelvam, K., Hotter, D., et al. (2017) IFI16 Is Required for DNA Sensing in Human Macrophages by Promoting Production and Function of Cgamp. Nature Communications, 8, Article No. 14391. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Roy, A., Ghosh, A., Kumar, B. and Chandran, B. (2019) IFI16, a Nuclear Innate Immune DNA Sensor, Mediates Epigenetic Silencing of Herpesvirus Genomes by Its Association with H3K9 Methyltransferases SUV39H1 and GLP. Elife, 8, e49500.
|
[32]
|
Alroy, I., Tuvia, S., Greener, T., Gordon, D., Barr, H.M., Taglicht, D., et al. (2005) The Trans-Golgi Network-Associated Human Ubiquitin-Protein Ligase POSH Is Essential for HIV Type 1 Production. Proceedings of the National Academy of Sciences, 102, 1478-1483. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Ghosn, J., Taiwo, B., Seedat, S., Autran, B. and Katlama, C. (2018) HIV. The Lancet, 392, 685-697. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Doitsh, G., Cavrois, M., Lassen, K.G., Zepeda, O., Yang, Z., Santiago, M.L., et al. (2010) Abortive HIV Infection Mediates CD4 T Cell Depletion and Inflammation in Human Lymphoid Tissue. Cell, 143, 789-801. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Langkilde, A., Petersen, J., Klausen, H.H., Henriksen, J.H., Eugen-Olsen, J. and Andersen, O. (2012) Inflammation in HIV-Infected Patients: Impact of HIV, Lifestyle, Body Composition, and Demography—A Cross Sectional Cohort Study. PLOS ONE, 7, e51698. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Luo, X., Herzig, E., Doitsh, G., Grimmett, Z.W., Muñoz-Arias, I. and Greene, W.C. (2019) HIV-2 Depletes CD4 T Cells through Pyroptosis Despite VPX-Dependent Degradation of Samhd1. Journal of Virology, 93, e00666-19. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Li, G., Makar, T., Gerzanich, V., Kalakonda, S., Ivanova, S., Pereira, E.F.R., et al. (2020) HIV-1 Vpr-Induced Proinflammatory Response and Apoptosis Are Mediated through the Sur1-Trpm4 Channel in Astrocytes. mBio, 11, e02939-20. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
He, X., Yang, W., Zeng, Z., Wei, Y., Gao, J., Zhang, B., et al. (2020) NLRP3-Dependent Pyroptosis Is Required for HIV-1 Gp120-Induced Neuropathology. Cellular & Molecular Immunology, 17, 283-299. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
周忠霞. 基于HIV-1逆转录酶结构与新策略的抗艾滋病药物的设计、合成与活性评价[D]: [博士学位论文]. 济南: 山东大学, 2020.
|
[40]
|
Blasi, M., Negri, D., Saunders, K.O., Baker, E.J., Stadtler, H., LaBranche, C., et al. (2020) Immunogenicity, Safety, and Efficacy of Sequential Immunizations with an Siv-Based IDLV Expressing CH505 Envs. npj Vaccines, 5, Article No. 107. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Pardi, N., Hogan, M.J., Naradikian, M.S., Parkhouse, K., Cain, D.W., Jones, L., et al. (2018) Nucleoside-Modified mRNA Vaccines Induce Potent T Follicular Helper and Germinal Center b Cell Responses. Journal of Experimental Medicine, 215, 1571-1588. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Pardi, N., Hogan, M.J., Pelc, R.S., Muramatsu, H., Andersen, H., DeMaso, C.R., et al. (2017) Zika Virus Protection by a Single Low-Dose Nucleoside-Modified mRNA Vaccination. Nature, 543, 248-251. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Saunders, K.O., Pardi, N., Parks, R., Santra, S., Mu, Z., Sutherland, L., et al. (2021) Lipid Nanoparticle Encapsulated Nucleoside-Modified mRNA Vaccines Elicit Polyfunctional HIV-1 Antibodies Comparable to Proteins in Nonhuman Primates. npj Vaccines, 6, Article 50. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Kasturi, S.P., Rasheed, M.A.U., Havenar-Daughton, C., Pham, M., Legere, T., Sher, Z.J. et al. (2020) 3M-052, a Synthetic TLR-7/8 Agonist, Induces Durable HIV-1 Envelope-Specific Plasma Cells and Humoral Immunity in Nonhumanprimates. Science Immunology, 5, eabb1025.
|
[45]
|
Lederer, K., Castaño, D., Gómez Atria, D., Oguin, T.H., Wang, S., Manzoni, T.B., et al. (2020) SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation. Immunity, 53, 1281-1295.e5. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
邓建宁, 邓珊, 黄磊, 王秋东, 林绿, 黎彦君, 肖秋叶. HIV-1感染患者肠道归巢CD4+变化与T淋巴细胞亚型的相关性[J]. 临床和实验医学杂志, 2019, 18(10): 1073-1077.
|
[47]
|
Haynes, B.F., Wiehe, K., Borrow, P., Saunders, K.O., Korber, B., Wagh, K., et al. (2023) Strategies for HIV-1 Vaccines That Induce Broadly Neutralizing Antibodies. Nature Reviews Immunology, 23, 142-158. [Google Scholar] [CrossRef] [PubMed]
|