[1]
|
Han, H., Desert, R., Das, S., Song, Z., Athavale, D., Ge, X., et al. (2020) Danger Signals in Liver Injury and Restoration of Homeostasis. Journal of Hepatology, 73, 933-951. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Devarbhavi, H., Asrani, S.K., Arab, J.P., Nartey, Y.A., Pose, E. and Kamath, P.S. (2023) Global Burden of Liver Disease: 2023 Update. Journal of Hepatology, 79, 516-537. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Asrani, S.K., Devarbhavi, H., Eaton, J. and Kamath, P.S. (2019) Burden of Liver Diseases in the World. Journal of Hepatology, 70, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Cheemerla, S. and Balakrishnan, M. (2021) Global Epidemiology of Chronic Liver Disease. Clinical Liver Disease, 17, 365-370. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Kong, L., Chandimali, N., Han, Y., Lee, D., Kim, J., Kim, S., et al. (2019) Pathogenesis, Early Diagnosis, and Therapeutic Management of Alcoholic Liver Disease. International Journal of Molecular Sciences, 20, Article 2712. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Raya Tonetti, F., Eguileor, A., Mrdjen, M., Pathak, V., Travers, J., Nagy, L.E., et al. (2024) Gut-Liver Axis: Recent Concepts in Pathophysiology in Alcohol-Associated Liver Disease. Hepatology, 80, 1342-1371. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Liu, S., Tsai, I. and Hsu, Y. (2021) Alcohol-Related Liver Disease: Basic Mechanisms and Clinical Perspectives. International Journal of Molecular Sciences, 22, Article 5170. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Mackowiak, B., Fu, Y., Maccioni, L. and Gao, B. (2024) Alcohol-Associated Liver Disease. Journal of Clinical Investigation, 134, e176345. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Mitra, S., De, A. and Chowdhury, A. (2020) Epidemiology of Non-Alcoholic and Alcoholic Fatty Liver Diseases. Translational Gastroenterology and Hepatology, 5, Article 16. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Mundi, M.S., Velapati, S., Patel, J., Kellogg, T.A., Abu Dayyeh, B.K. and Hurt, R.T. (2019) Evolution of NAFLD and Its Management. Nutrition in Clinical Practice, 35, 72-84. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Younossi, Z.M., Golabi, P., Paik, J.M., Henry, A., Van Dongen, C. and Henry, L. (2023) The Global Epidemiology of Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review. Hepatology, 77, 1335-1347. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Huang, D.Q., Singal, A.G., Kono, Y., Tan, D.J.H., El-Serag, H.B. and Loomba, R. (2022) Changing Global Epidemiology of Liver Cancer from 2010 to 2019: NASH Is the Fastest Growing Cause of Liver Cancer. Cell Metabolism, 34, 969-977.e2. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Alexander, M., Loomis, A.K., van der Lei, J., Duarte-Salles, T., Prieto-Alhambra, D., Ansell, D., et al. (2019) Risks and Clinical Predictors of Cirrhosis and Hepatocellular Carcinoma Diagnoses in Adults with Diagnosed NAFLD: Real-World Study of 18 Million Patients in Four European Cohorts. BMC Medicine, 17, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Kim, G., Lee, S., Lee, Y., Jun, J.E., Ahn, J., Bae, J.C., et al. (2018) Relationship between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7‐Year Longitudinal Study. Hepatology, 68, 1755-1768. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
El Sherif, O., Dhaliwal, A., Newsome, P.N. and Armstrong, M.J. (2020) Sarcopenia in Nonalcoholic Fatty Liver Disease: New Challenges for Clinical Practice. Expert Review of Gastroenterology & Hepatology, 14, 197-205. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Kang, S., Moon, M.K., Kim, W. and Koo, B.K. (2020) Association between Muscle Strength and Advanced Fibrosis in Non‐Alcoholic Fatty Liver Disease: A Korean Nationwide Survey. Journal of Cachexia, Sarcopenia and Muscle, 11, 1232-1241. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Park, S.H., Kim, D.J. and Plank, L.D. (2020) Association of Grip Strength with Non-Alcoholic Fatty Liver Disease: Investigation of the Roles of Insulin Resistance and Inflammation as Mediators. European Journal of Clinical Nutrition, 74, 1401-1409. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Rockey, D.C., Bell, P.D. and Hill, J.A. (2015) Fibrosis—A Common Pathway to Organ Injury and Failure. New England Journal of Medicine, 372, 1138-1149. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Loomba, R., Friedman, S.L. and Shulman, G.I. (2021) Mechanisms and Disease Consequences of Nonalcoholic Fatty Liver Disease. Cell, 184, 2537-2564. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Sharpton, S.R. and Loomba, R. (2023) Emerging Role of Statin Therapy in the Prevention and Management of Cirrhosis, Portal Hypertension, and HCC. Hepatology, 78, 1896-1906. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Kaplan, D.E., Ripoll, C., Thiele, M., Fortune, B.E., Simonetto, D.A., Garcia-Tsao, G., et al. (2023) AASLD Practice Guidance on Risk Stratification and Management of Portal Hypertension and Varices in Cirrhosis. Hepatology, 79, 1180-1211. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Zamani, M., Alizadeh-Tabari, S., Ajmera, V., Singh, S., Murad, M.H. and Loomba, R. (2025) Global Prevalence of Advanced Liver Fibrosis and Cirrhosis in the General Population: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 23, 1123-1134. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Man, S., Deng, Y., Ma, Y., Fu, J., Bao, H., Yu, C., et al. (2023) Prevalence of Liver Steatosis and Fibrosis in the General Population and Various High-Risk Populations: A Nationwide Study with 5.7 Million Adults in China. Gastroenterology, 165, 1025-1040. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Wu, Z., Wang, W., Zhang, K., Fan, M. and Lin, R. (2023) Trends in the Incidence of Cirrhosis in Global from 1990 to 2019: A Joinpoint and Age‐Period‐Cohort Analysis. Journal of Medical Virology, 95, e28858. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Liu, Y. and Chen, M. (2022) Epidemiology of Liver Cirrhosis and Associated Complications: Current Knowledge and Future Directions. World Journal of Gastroenterology, 28, 5910-5930. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Huang, D.Q., Terrault, N.A., Tacke, F., Gluud, L.L., Arrese, M., Bugianesi, E., et al. (2023) Global Epidemiology of Cirrhosis—Aetiology, Trends and Predictions. Nature Reviews Gastroenterology & Hepatology, 20, 388-398. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Huang, D.Q., Ahlholm, N., Luukkonen, P.K., Porthan, K., Amangurbanova, M., Madamba, E., et al. (2024) Development and Validation of the Nonalcoholic Fatty Liver Disease Familial Risk Score to Detect Advanced Fibrosis: A Prospective, Multicenter Study. Clinical Gastroenterology and Hepatology, 22, 81-90.e4. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Rumgay, H., Ferlay, J., de Martel, C., Georges, D., Ibrahim, A.S., Zheng, R., et al. (2022) Global, Regional and National Burden of Primary Liver Cancer by Subtype. European Journal of Cancer, 161, 108-118. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Frontera, W.R. and Ochala, J. (2014) Skeletal Muscle: A Brief Review of Structure and Function. Calcified Tissue International, 96, 183-195. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Moylan, J.S. and Reid, M.B. (2007) Oxidative Stress, Chronic Disease, and Muscle Wasting. Muscle & Nerve, 35, 411-429. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Rier, H.N., Jager, A., Sleijfer, S., Maier, A.B. and Levin, M. (2016) The Prevalence and Prognostic Value of Low Muscle Mass in Cancer Patients: A Review of the Literature. The Oncologist, 21, 1396-1409. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Hamasaki, H., Kawashima, Y., Katsuyama, H., Sako, A., Goto, A. and Yanai, H. (2017) Association of Handgrip Strength with Hospitalization, Cardiovascular Events, and Mortality in Japanese Patients with Type 2 Diabetes. Scientific Reports, 7, Article No. 7041. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Wu, Y., Wang, W., Liu, T. and Zhang, D. (2017) Association of Grip Strength with Risk of All-Cause Mortality, Cardiovascular Diseases, and Cancer in Community-Dwelling Populations: A Meta-Analysis of Prospective Cohort Studies. Journal of the American Medical Directors Association, 18, 551.e17-551.e35. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Hanai, T., Shiraki, M., Nishimura, K., Ohnishi, S., Imai, K., Suetsugu, A., et al. (2015) Sarcopenia Impairs Prognosis of Patients with Liver Cirrhosis. Nutrition, 31, 193-199. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Dasarathy, S. and Merli, M. (2016) Sarcopenia from Mechanism to Diagnosis and Treatment in Liver Disease. Journal of Hepatology, 65, 1232-1244. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Montano-Loza, A.J., Angulo, P., Meza-Junco, J., Prado, C.M.M., Sawyer, M.B., Beaumont, C., et al. (2015) Sarcopenic Obesity and Myosteatosis Are Associated with Higher Mortality in Patients with Cirrhosis. Journal of Cachexia, Sarcopenia and Muscle, 7, 126-135. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Bhanji, R.A., Moctezuma-Velazquez, C., Duarte-Rojo, A., Ebadi, M., Ghosh, S., Rose, C., et al. (2018) Myosteatosis and Sarcopenia Are Associated with Hepatic Encephalopathy in Patients with Cirrhosis. Hepatology International, 12, 377-386. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Yu, R., Shi, Q., Liu, L. and Chen, L. (2018) Relationship of Sarcopenia with Steatohepatitis and Advanced Liver Fibrosis in Non-Alcoholic Fatty Liver Disease: A Meta-Analysis. BMC Gastroenterology, 18, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Petermann-Rocha, F., Gray, S.R., Forrest, E., Welsh, P., Sattar, N., Celis-Morales, C., et al. (2022) Associations of Muscle Mass and Grip Strength with Severe NAFLD: A Prospective Study of 333,295 UK Biobank Participants. Journal of Hepatology, 76, 1021-1029. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Kim, D., Wijarnpreecha, K., Sandhu, K.K., Cholankeril, G. and Ahmed, A. (2021) Sarcopenia in Nonalcoholic Fatty Liver Disease and All‐Cause and Cause‐Specific Mortality in the United States. Liver International, 41, 1832-1840. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Linge, J., Nasr, P., Sanyal, A.J., Dahlqvist Leinhard, O. and Ekstedt, M. (2023) Adverse Muscle Composition Is a Significant Risk Factor for All-Cause Mortality in NAFLD. JHEP Reports, 5, Article ID: 100663. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Di Angelantonio, E., Bhupathiraju, S.N., Wormser, D., Gao, P., Kaptoge, S., de Gonzalez, A.B., et al. (2016) Body-Mass Index and All-Cause Mortality: Individual-Participant-Data Meta-Analysis of 239 Prospective Studies in Four Continents. The Lancet, 388, 776-786. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Kim, J.A. and Choi, K.M. (2019) Sarcopenia and Fatty Liver Disease. Hepatology International, 13, 674-687. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Shi, Y., Chen, X., Qiu, H., Jiang, W., Zhang, M., Huang, Y., et al. (2021) Visceral Fat Area to Appendicular Muscle Mass Ratio as a Predictor for Nonalcoholic Fatty Liver Disease Independent of Obesity. Scandinavian Journal of Gastroenterology, 56, 312-320. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Polyzos, S.A., Vachliotis, I.D. and Mantzoros, C.S. (2023) Sarcopenia, Sarcopenic Obesity and Nonalcoholic Fatty Liver Disease. Metabolism, 147, Article ID: 155676. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Hagström, H., Simon, T.G., Roelstraete, B., Stephansson, O., Söderling, J. and Ludvigsson, J.F. (2021) Maternal Obesity Increases the Risk and Severity of NAFLD in Offspring. Journal of Hepatology, 75, 1042-1048. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Kuang, M., Sheng, G., Hu, C., Lu, S., Peng, N. and Zou, Y. (2022) The Value of Combining the Simple Anthropometric Obesity Parameters, Body Mass Index (BMI) and a Body Shape Index (ABSI), to Assess the Risk of Non-Alcoholic Fatty Liver Disease. Lipids in Health and Disease, 21,Article No. 104. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Machado, M.V. and Cortez-Pinto, H. (2022) NAFLD, MAFLD and Obesity: Brothers in Arms? Nature Reviews Gastroenterology & Hepatology, 20, 67-68. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Marchesini, G., Moscatiello, S., Di Domizio, S. and Forlani, G. (2008) Obesity-Associated Liver Disease. The Journal of Clinical Endocrinology & Metabolism, 93, s74-s80. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Malaguarnera, M., Di Rosa, M., Nicoletti, F. and Malaguarnera, L. (2009) Molecular Mechanisms Involved in NAFLD Progression. Journal of Molecular Medicine, 87, 679-695. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Miyake, T., Miyazaki, M., Yoshida, O., Kanzaki, S., Nakaguchi, H., Nakamura, Y., et al. (2021) Relationship between Body Composition and the Histology of Non‐Alcoholic Fatty Liver Disease: A Cross‐Sectional Study. BMC Gastroenterology, 21, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Liu, L., Lin, J., Yin, M., Liu, L., Gao, J., Liu, X., et al. (2024) Association of the Fat Mass Index with Hepatic Steatosis and Fibrosis: Evidence from NHANES 2017-2018. Scientific Reports, 14, Article No. 6943. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Westerterp, K.R. (2018) Exercise, Energy Balance and Body Composition. European Journal of Clinical Nutrition, 72, 1246-1250. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Xu, G., Wu, Y., Chen, J., Xiang, D. and Li, D. (2024) The Relationship between Muscle Mass and Fat Content in Body Composition and Non-Alcoholic Fatty Liver Disease in the Chinese General Population: A Cross-Sectional Study. Frontiers in Medicine, 11, Article 1384366. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Mai, Z., Chen, Y., Mao, H. and Wang, L. (2024) Association between the Skeletal Muscle Mass to Visceral Fat Area Ratio and Metabolic Dysfunction‐Associated Fatty Liver Disease: A Cross‐Sectional Study of NHANES 2017-2018. Journal of Diabetes, 16, e13569. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Liu, S., He, Y., Yu, G., Song, C., Wang, D., Liu, L., et al. (2024) Association of Muscle Mass, Grip Strength and Fat-to-Muscle Ratio and Metabolic Dysfunction-Associated Steatotic Liver Disease in a Middle-to-Elderly Aged Population. Annals of Medicine, 56, Article ID: 2390169. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Mastrototaro, L. and Roden, M. (2021) Insulin Resistance and Insulin Sensitizing Agents. Metabolism, 125, Article ID: 154892. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Rinaldi, L., Pafundi, P.C., Galiero, R., Caturano, A., Morone, M.V., Silvestri, C., et al. (2021) Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants, 10, Article 270. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Sinn, D.H., Kang, D., Kang, M., Guallar, E., Hong, Y.S., Lee, K.H., et al. (2022) Nonalcoholic Fatty Liver Disease and Accelerated Loss of Skeletal Muscle Mass: A Longitudinal Cohort Study. Hepatology, 76, 1746-1754. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Guo, M., Xiang, L., Yao, J., Zhang, J., Zhu, S., Wang, D., et al. (2022) Comprehensive Transcriptome Profiling of NAFLD-and NASH-Induced Skeletal Muscle Dysfunction. Frontiers in Endocrinology, 13, Article 851520. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Wang, J., Du, J., Ge, X., Peng, W., Guo, X., Li, W., et al. (2022) Circulating ISM1 Reduces the Risk of Type 2 Diabetes but Not Diabetes-Associated NAFLD. Frontiers in Endocrinology, 13, Article 890332. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Rabøl, R., Petersen, K.F., Dufour, S., Flannery, C. and Shulman, G.I. (2011) Reversal of Muscle Insulin Resistance with Exercise Reduces Postprandial Hepatic De Novo Lipogenesis in Insulin Resistant Individuals. Proceedings of the National Academy of Sciences of the United States of America, 108, 13705-13709. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
Han, X., Liu, C., Xue, Y., Wang, J., Xue, C., Yanagita, T., et al. (2016) Long-Term Fatty Liver-Induced Insulin Resistance in Orotic Acid-Induced Nonalcoholic Fatty Liver Rats. Bioscience, Biotechnology, and Biochemistry, 80, 735-743. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
Lee, Y., Kim, S.U., Song, K., Park, J.Y., Kim, D.Y., Ahn, S.H., et al. (2016) Sarcopenia Is Associated with Significant Liver Fibrosis Independently of Obesity and Insulin Resistance in Nonalcoholic Fatty Liver Disease: Nationwide Surveys (KNHANES 2008‐2011). Hepatology, 63, 776-786. [Google Scholar] [CrossRef] [PubMed]
|
[66]
|
Bhanji, R.A., Narayanan, P., Allen, A.M., Malhi, H. and Watt, K.D. (2017) Sarcopenia in Hiding: The Risk and Consequence of Underestimating Muscle Dysfunction in Nonalcoholic Steatohepatitis. Hepatology, 66, 2055-2065. [Google Scholar] [CrossRef] [PubMed]
|
[67]
|
Petta, S., Ciminnisi, S., Di Marco, V., Cabibi, D., Cammà, C., Licata, A., et al. (2016) Sarcopenia Is Associated with Severe Liver Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease. Alimentary Pharmacology & Therapeutics, 45, 510-518. [Google Scholar] [CrossRef] [PubMed]
|
[68]
|
Okubo, T., Atsukawa, M., Tsubota, A., Ono, H., Kawano, T., Yoshida, Y., et al. (2024) Low Vitamin D Levels Accelerates Muscle Mass Loss in Patients with Chronic Liver Disease. PLOS ONE, 19, e0299313. [Google Scholar] [CrossRef] [PubMed]
|
[69]
|
Ticinesi, A., Nouvenne, A., Cerundolo, N., Catania, P., Prati, B., Tana, C., et al. (2019) Gut Microbiota, Muscle Mass and Function in Aging: A Focus on Physical Frailty and Sarcopenia. Nutrients, 11, Article 1633. [Google Scholar] [CrossRef] [PubMed]
|
[70]
|
Powell, E.E., Wong, V.W. and Rinella, M. (2021) Non-Alcoholic Fatty Liver Disease. The Lancet, 397, 2212-2224. [Google Scholar] [CrossRef] [PubMed]
|
[71]
|
Ng, C.H., Lim, W.H., Hui Lim, G.E., Hao Tan, D.J., Syn, N., Muthiah, M.D., et al. (2023) Mortality Outcomes by Fibrosis Stage in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Clinical Gastroenterology and Hepatology, 21, 931-939.e5. [Google Scholar] [CrossRef] [PubMed]
|
[72]
|
Shah, P.A., Patil, R. and Harrison, S.A. (2022) NAFLD‐Related Hepatocellular Carcinoma: The Growing Challenge. Hepatology, 77, 323-338. [Google Scholar] [CrossRef] [PubMed]
|
[73]
|
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. [Google Scholar] [CrossRef] [PubMed]
|
[74]
|
Rizzo, M., Colletti, A., Penson, P.E., et al. (2023) Nutraceutical Approaches to Non-Alcoholic Fatty Liver Disease (NAFLD): A Position Paper from the International Lipid Expert Panel (ILEP). Pharmacological Research, 189, Article ID: 106679.
|
[75]
|
Mortellaro, S., Triggiani, S., Mascaretti, F., Galloni, M., Garrone, O., Carrafiello, G., et al. (2024) Quantitative and Qualitative Radiological Assessment of Sarcopenia and Cachexia in Cancer Patients: A Systematic Review. Journal of Personalized Medicine, 14, Article 243. [Google Scholar] [CrossRef] [PubMed]
|
[76]
|
Romero-Gómez, M., Zelber-Sagi, S. and Trenell, M. (2017) Treatment of NAFLD with Diet, Physical Activity and Exercise. Journal of Hepatology, 67, 829-846. [Google Scholar] [CrossRef] [PubMed]
|
[77]
|
Pickhardt, P.J., Graffy, P.M., Zea, R., Lee, S.J., Liu, J., Sandfort, V., et al. (2020) Automated CT Biomarkers for Opportunistic Prediction of Future Cardiovascular Events and Mortality in an Asymptomatic Screening Population: A Retrospective Cohort Study. The Lancet Digital Health, 2, e192-e200. [Google Scholar] [CrossRef] [PubMed]
|
[78]
|
Zhu, M., Li, H., Yin, Y., Ding, M., Philips, C.A., Romeiro, F.G., et al. (2022) U‐shaped Relationship between Subcutaneous Adipose Tissue Index and Mortality in Liver Cirrhosis. Journal of Cachexia, Sarcopenia and Muscle, 14, 508-516. [Google Scholar] [CrossRef] [PubMed]
|
[79]
|
Pickhardt, P.J. (2022) Value-Added Opportunistic CT Screening: State of the Art. Radiology, 303, 241-254. [Google Scholar] [CrossRef] [PubMed]
|
[80]
|
Taylor, J.A., Greenhaff, P.L., Bartlett, D.B., Jackson, T.A., Duggal, N.A. and Lord, J.M. (2023) Multisystem Physiological Perspective of Human Frailty and Its Modulation by Physical Activity. Physiological Reviews, 103, 1137-1191. [Google Scholar] [CrossRef] [PubMed]
|
[81]
|
Kalafateli, M., Mantzoukis, K., Choi Yau, Y., Mohammad, A.O., Arora, S., Rodrigues, S., et al. (2016) Malnutrition and Sarcopenia Predict Post‐Liver Transplantation Outcomes Independently of the Model for End‐Stage Liver Disease Score. Journal of Cachexia, Sarcopenia and Muscle, 8, 113-121. [Google Scholar] [CrossRef] [PubMed]
|
[82]
|
Carey, E.J., Lai, J.C., Sonnenday, C., Tapper, E.B., Tandon, P., Duarte‐Rojo, A., et al. (2019) A North American Expert Opinion Statement on Sarcopenia in Liver Transplantation. Hepatology, 70, 1816-1829. [Google Scholar] [CrossRef] [PubMed]
|
[83]
|
Czigany, Z., Kramp, W., Lurje, I., Miller, H., Bednarsch, J., Lang, S.A., et al. (2021) The Role of Recipient Myosteatosis in Graft and Patient Survival after Deceased Donor Liver Transplantation. Journal of Cachexia, Sarcopenia and Muscle, 12, 358-367. [Google Scholar] [CrossRef] [PubMed]
|
[84]
|
Saiman, Y. and Serper, M. (2021) Frailty and Sarcopenia in Patients Pre-and Post-Liver Transplant. Clinics in Liver Disease, 25, 35-51. [Google Scholar] [CrossRef] [PubMed]
|
[85]
|
Liu, D., Ji, D., Garrett, J.W., Zea, R., Kuchnia, A., Summers, R.M., et al. (2025) Automated Abdominal CT Imaging Biomarkers and Clinical Frailty Measures Associated with Postoperative Deceased-Donor Liver Transplant Outcomes. European Radiology, 35, 5514-5524. [Google Scholar] [CrossRef] [PubMed]
|
[86]
|
Shafaat, O., Liu, Y., Jackson, K.R., Motter, J.D., Boyarsky, B.J., Latif, M.A., et al. (2023) Association between Abdominal CT Measurements of Body Composition before Deceased Donor Liver Transplant with Posttransplant Outcomes. Radiology, 306, e212403. [Google Scholar] [CrossRef] [PubMed]
|
[87]
|
Yuan, G., Li, S., Liang, P., Chen, G., Luo, Y., Shen, Y., et al. (2022) High Visceral Adipose Tissue Area Is Independently Associated with Early Allograft Dysfunction in Liver Transplantation Recipients: A Propensity Score Analysis. Insights into Imaging, 13, Article No. 165. [Google Scholar] [CrossRef] [PubMed]
|