[1]
|
李媛媛, 谢晶晶, 李树涛, 等. 2024年WHO全球结核病报告: 全球与中国关键数据分析[J]. 新发传染病电子杂志, 2024, 9(6): 92-98.
|
[2]
|
Xu, A., He, C., Cheng, X., Abuduaini, A., Tuerxun, Z., Sha, Y., et al. (2022) Distribution and Identification of Mycobacterium tuberculosis Lineage in Kashgar Prefecture. BMC Infectious Diseases, 22, Article No. 312. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
周崇兴. 结核分枝杆菌基因分型及命名规则[J]. 华西医学, 2022, 37(11): 1742-1748.
|
[4]
|
刘丙雨, 贾鹏霞, 李新月, 等. 新疆阿克苏地区结核分枝杆菌的基因分型与耐药性分析[J]. 吉林医学, 2020, 41(8): 1904-1908.
|
[5]
|
Couvin, D., Segretier, W., Stattner, E. and Rastogi, N. (2020) Novel Methods Included in Spollineages Tool for Fast and Precise Prediction of Mycobacterium tuberculosis Complex Spoligotype Families. Database, 2020, baaa108. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Dohál, M., Porvazník, I., Pršo, K., Rasmussen, E.M., Solovič, I. and Mokrý, J. (2020) Whole-genome Sequencing and Mycobacterium tuberculosis: Challenges in Sample Preparation and Sequencing Data Analysis. Tuberculosis, 123, Article ID: 101946. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Couvin, D., Allaguy, A., Ez-zari, A., Jagielski, T. and Rastogi, N. (2025) Molecular Typing of Mycobacterium tuberculosis: A Review of Current Methods, Databases, Softwares, and Analytical Tools. FEMS Microbiology Reviews, 49, fuaf017. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Comín, J., Otal, I. and Samper, S. (2022) In-Depth Analysis of IS6110 Genomic Variability in the Mycobacterium tuberculosis Complex. Frontiers in Microbiology, 13, Article 767912. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Arora, J., Suresh, N., Porwal, C., Pandey, P., Pande, J.N. and Singh, U.B. (2020) Genotyping Mycobacterium tuberculosis Isolates with Few Copies of IS6110: Value of Additional Genetic Markers. Infection, Genetics and Evolution, 81, Article ID: 104230. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Lyu, L., Li, Z., Pan, L., Jia, H., Sun, Q., Liu, Q., et al. (2020) Evaluation of Digital PCR Assay in Detection of M.tuberculosis IS6110 and IS1081 in Tuberculosis Patients Plasma. BMC Infectious Diseases, 20, Article No. 657. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Ansarin, K., Sahebi, L., Aftabi, Y., Khalili, M. and Seyyedi, M. (2020) Comparing IS6110‐RFLP, PGRS‐RFLP and IS6110‐Mtb1/Mtb2 PCR Methods for Genotyping of Mycobacterium tuberculosis Isolates. Journal of Applied Microbiology, 129, 1062-1070. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Hussien, B., Zewude, A., Wondale, B., Hailu, A. and Ameni, G. (2022) Spoligotyping of Clinical Isolates of Mycobacterium tuberculosis Complex Species in the Oromia Region of Ethiopia. Frontiers in Public Health, 10, Article 808626. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Gürer Giray, B., Aslantürk, A., Şimşek, H., Özgür, D., Kılıç, S. and Aslan, G. (2022) Determination of Genetic Diversity of Multidrug-Resistant Mycobacterium tuberculosis Strains in Turkey Using 15 Locus MIRU-VNTR and Spoligotyping Methods. Pathogens and Global Health, 117, 85-91. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
van Embden, J.D.A., van Gorkom, T., Kremer, K., Jansen, R., van der Zeijst, B.A.M. and Schouls, L.M. (2000) Genetic Variation and Evolutionary Origin of the Direct Repeat Locus of Mycobacterium tuberculosis Complex Bacteria. Journal of Bacteriology, 182, 2393-2401. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Moe Sann, W.W., Namwat, W., Faksri, K., Swe, T.L., Swe, K.K., Thwin, T., et al. (2020) Genetic Diversity of Mycobacterium tuberculosis Using 24-Locus MIRU-VNTR Typing and Spoligotyping in Upper Myanmar. The Journal of Infection in Developing Countries, 14, 1296-1305. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Kone, B., Somboro, A.M., Holl, J.L., et al. (2020) Exploring the Usefulness of Molecular Epidemiology of Tuberculosis in Africa: A Systematic Review. International Journal of Molecular Epidemiology and Genetics, 11, 1-15.
|
[17]
|
Supply, P., Mazars, E., Lesjean, S., Vincent, V., Gicquel, B. and Locht, C. (2000) Variable Human Minisatellite‐Like Regions in the Mycobacterium tuberculosis Genome. Molecular Microbiology, 36, 762-771. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
方梓昊, 赵文丽, 徐雁南, 等. 基因分型方法在结核分枝杆菌分型中的应用进展[J]. 山东医药, 2024, 64(15): 103-107.
|
[19]
|
Weerasekera, D., Pathirane, H., Madegedara, D., Dissanayake, N., Thevanesam, V. and Magana-Arachchi, D.N. (2019) Evaluation of the 15 and 24-loci MIRU-VNTR Genotyping Tools with Spoligotyping in the Identification of Mycobacterium tuberculosis Strains and Their Genetic Diversity in Molecular Epidemiology Studies. Infectious Diseases, 51, 206-215. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
凌曦, 王璐, 张泽文, 等. 全基因组测序技术在结核病分子流行病学中的应用进展[J]. 中国感染控制杂志, 2022, 21(4): 399-403.
|
[21]
|
张洁, 任怡宣, 潘丽萍, 等. 全基因组测序在结核分枝杆菌研究中的应用[J]. 中国防痨杂志, 2020, 42(7): 737-740.
|
[22]
|
Qian, W., Ma, N., Zeng, X., Shi, M., Wang, M., Yang, Z., et al. (2024) Identification of Novel Single Nucleotide Variants in the Drug Resistance Mechanism of Mycobacterium tuberculosis Isolates by Whole-Genome Analysis. BMC Genomics, 25, Article No. 478. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Kanabalan, R.D., Lee, L.J., Lee, T.Y., Chong, P.P., Hassan, L., Ismail, R., et al. (2021) Human Tuberculosis and Mycobacterium tuberculosis Complex: A Review on Genetic Diversity, Pathogenesis and Omics Approaches in Host Biomarkers Discovery. Microbiological Research, 246, Article ID: 126674. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Chaiyachat, P., Chaiprasert, A., Nonghanphithak, D., Smithtikarn, S., Kamolwat, P., Pungrassami, P., et al. (2021) Whole-Genome Analysis of Drug-Resistant Mycobacterium tuberculosis Reveals Novel Mutations Associated with Fluoroquinolone Resistance. International Journal of Antimicrobial Agents, 58, Article ID: 106385. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Chitale, P., Lemenze, A.D., Fogarty, E.C., Shah, A., Grady, C., Odom-Mabey, A.R., et al. (2022) Author Correction: A Comprehensive Update to the Mycobacterium tuberculosis H37Rv Reference Genome. Nature Communications, 13, Article No. 7538. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Nikolayevskyy, V., Niemann, S., Anthony, R., van Soolingen, D., Tagliani, E., Ködmön, C., et al. (2019) Role and Value of Whole Genome Sequencing in Studying Tuberculosis Transmission. Clinical Microbiology and Infection, 25, 1377-1382. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Napier, G., Campino, S., Merid, Y., Abebe, M., Woldeamanuel, Y., Aseffa, A., et al. (2020) Robust Barcoding and Identification of Mycobacterium tuberculosis Lineages for Epidemiological and Clinical Studies. Genome Medicine, 12, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Marcinkowska-Swojak, M., Rakoczy, M., Podkowiński, J., Handschuh, J., Wojciechowski, P. and Handschuh, L. (2024) Od Sangera do sekwencjonowania genomów—Przegląd technologii sekwencjonowania DNA [From Sanger to Genome Sequencing—An Overview of DNA Sequencing Technologies]. Postępy Biochemii, 70, 173-189. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Narayanan, S. and Desikan, S. (2015) Genetic Markers, Genotyping Methods & Next Generation Sequencing in Mycobacterium tuberculosis. Indian Journal of Medical Research, 141, 761-774. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Dale, K., Globan, M., Horan, K., Sherry, N., Ballard, S., Tay, E.L., et al. (2022) Whole Genome Sequencing for Tuberculosis in Victoria, Australia: A Genomic Implementation Study from 2017 to 2020. The Lancet Regional Health - Western Pacific, 28, Article ID: 100556. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Zheng, P., Zhou, C., Ding, Y., Liu, B., Lu, L., Zhu, F., et al. (2023) Nanopore Sequencing Technology and Its Applications. MedComm, 4, e316. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Meehan, C.J., Goig, G.A., Kohl, T.A., Verboven, L., Dippenaar, A., Ezewudo, M., et al. (2019) Whole Genome Sequencing of Mycobacterium tuberculosis: Current Standards and Open Issues. Nature Reviews Microbiology, 17, 533-545. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Sanoussi, C.N., Coscolla, M., Ofori-Anyinam, B., Otchere, I.D., Antonio, M., Niemann, S., et al. (2021) Mycobacterium tuberculosis Complex Lineage 5 Exhibits High Levels of Within-Lineage Genomic Diversity and Differing Gene Content Compared to the Type Strain H37Rv. Microbial Genomics, 7, Article ID: 000437. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Dur-e-Shahwar Tariq (2024) Pangenomic Analyses of Tuberculosis Strains to Identify Resistomes Using Computational Approaches. Journal of the Pakistan Medical Association, 74, S74-S78. [Google Scholar] [CrossRef] [PubMed]
|