|
[1]
|
Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Adams, L.A., Lymp, J.F., St. Sauver, J., Sanderson, S.O., Lindor, K.D., Feldstein, A., et al. (2005) The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Gastroenterology, 129, 113-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Keam, S.J. (2024) Resmetirom: First Approval. Drugs, 84, 729-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Smits, L.P., Bouter, K.E.C., de Vos, W.M., Borody, T.J. and Nieuwdorp, M. (2013) Therapeutic Potential of Fecal Microbiota Transplantation. Gastroenterology, 145, 946-953. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fuso, A., Rosso, F., Rosso, G., Risso, D., Manera, I. and Caligiani, A. (2022) Production of Xylo-Oligosaccharides (XOS) of Tailored Degree of Polymerization from Acetylated Xylans through Modelling of Enzymatic Hydrolysis. Food Research International, 162, Article ID: 112019. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Fuso, A., Risso, D., Rosso, G., Rosso, F., Manini, F., Manera, I., et al. (2021) Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods, 10, Article No. 1197. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Turck, D., Bresson, J., Burlingame, B., Dean, T., Fairweather‐Tait, S., Heinonen, M., et al. (2018) Safety of Xylo‐Oligosaccharides (XOS) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA Journal, 16, e05361. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tian, S., Yang, Z., Yan, F., Xue, X. and Lu, J. (2024) Preparation of Xylooligosaccharides from Rice Husks and Their Structural Characterization, Antioxidant Activity, and Probiotic Properties. International Journal of Biological Macromolecules, 271, Article ID: 132575. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jaichakan, P., Nakphaichit, M., Rungchang, S., Weerawatanakorn, M., Phongthai, S. and Klangpetch, W. (2021) Two-stage Processing for Xylooligosaccharide Recovery from Rice By-Products and Evaluation of Products: Promotion of Lactic Acid-Producing Bacterial Growth and Food Application in a High-Pressure Process. Food Research International, 147, Article ID: 110529. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hansen, C.H.F., Frøkiær, H., Christensen, A.G., Bergström, A., Licht, T.R., Hansen, A.K., et al. (2013) Dietary Xylooligosaccharide Downregulates IFN-γ and the Low-Grade Inflammatory Cytokine Il-1β Systemically in Mice. The Journal of Nutrition, 143, 533-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Santibáñez, L., Henríquez, C., Corro-Tejeda, R., Bernal, S., Armijo, B. and Salazar, O. (2021) Xylooligosaccharides from Lignocellulosic Biomass: A Comprehensive Review. Carbohydrate Polymers, 251, Article ID: 117118. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kumar, V., Bahuguna, A., Kumar, S. and Kim, M. (2025) Xylooligosaccharides Mediated Gut Microbiome Modulation: Prebiotics to Postbiotics. Critical Reviews in Biotechnology, 45, 1098-1116. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Berger, K., Burleigh, S., Lindahl, M., Bhattacharya, A., Patil, P., Stålbrand, H., et al. (2021) Xylooligosaccharides Increase Bifidobacteria and Lachnospiraceae in Mice on a High-Fat Diet, with a Concomitant Increase in Short-Chain Fatty Acids, Especially Butyric Acid. Journal of Agricultural and Food Chemistry, 69, 3617-3625. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Liu, N., Shen, H., Zhang, F., Liu, X., Xiao, Q., Jiang, Q., et al. (2023) Applications and Prospects of Functional Oligosaccharides in Pig Nutrition: A Review. Animal Nutrition, 13, 206-215. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pang, J., Zhou, X., Ye, H., Wu, Y., Wang, Z., Lu, D., et al. (2021) The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Frontiers in Nutrition, 8, Article ID: 764556. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Su, J., Zhang, W., Ma, C., Xie, P., Blachier, F. and Kong, X. (2021) Dietary Supplementation with Xylo-Oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Frontiers in Veterinary Science, 8, Article ID: 680208. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zazueta, C., Buelna‐Chontal, M., Macías‐López, A., Román‐Anguiano, N.G., González‐Pacheco, H., Pavón, N., et al. (2018) Cytidine‐5’‐Diphosphocholine Protects the Liver from Ischemia/Reperfusion Injury Preserving Mitochondrial Function and Reducing Oxidative Stress. Liver Transplantation, 24, 1070-1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Strifler, G., Tuboly, E., Görbe, A., Boros, M., Pécz, D. and Hartmann, P. (2016) Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine. PLOS ONE, 11, e0166682. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jia, L., Wang, R., Huang, Z., Sun, N., Sun, H., Wang, H., et al. (2024) Phosphatidylcholine Ameliorates Lipid Accumulation and Liver Injury in High-Fat Diet Mice by Modulating Bile Acid Metabolism and Gut Microbiota. International Journal of Food Sciences and Nutrition, 76, 165-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Arshad, U., Zenobi, M.G., Tribulo, P., Staples, C.R. and Santos, J.E.P. (2023) Dose-Dependent Effects of Rumen-Protected Choline on Hepatic Metabolism during Induction of Fatty Liver in Dry Pregnant Dairy Cows. PLOS ONE, 18, e0290562. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Arshad, U., Husnain, A., Poindexter, M.B., Zimpel, R., Perdomo, M.C. and Santos, J.E.P. (2023) Effect of Source and Amount of Rumen-Protected Choline on Hepatic Metabolism during Induction of Fatty Liver in Dairy Cows. Journal of Dairy Science, 106, 6860-6879. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ran, X., Wang, Y., Li, S. and Dai, C. (2024) Effects of Bifidobacterium and Rosuvastatin on Metabolic-Associated Fatty Liver Disease via the Gut-Liver Axis. Lipids in Health and Disease, 23, Article No. 401. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, W., Ma, F., Zhang, L., Huang, Y., Li, X., Zhang, A., et al. (2016) S‐Propargyl‐Cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet‐Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 4690857. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zeinalian Boroujeni, Z., Khorsandi, L., Zeidooni, L., Badiee, M.S. and Khodayar, M.J. (2024) Protocatechuic Acid Protects Mice against Non-Alcoholic Fatty Liver Disease by Attenuating Oxidative Stress and Improving Lipid Profile. Reports of Biochemistry and Molecular Biology, 13, 218-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., et al. (2014) Lactobacillus Rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice. PLOS ONE, 9, e80169. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mu, J., Tan, F., Zhou, X. and Zhao, X. (2020) Lactobacillus fermentum CQPC06 in Naturally Fermented Pickles Prevents Non-Alcoholic Fatty Liver Disease by Stabilizing the Gut-Liver Axis in Mice. Food & Function, 11, 8707-8723. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
He, T., Lykov, N., Luo, X., Wang, H., Du, Z., Chen, Z., et al. (2023) Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. International Journal of Molecular Sciences, 24, Article No. 2053. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dong, T.S., Katzka, W., Lagishetty, V., Luu, K., Hauer, M., Pisegna, J., et al. (2020) A Microbial Signature Identifies Advanced Fibrosis in Patients with Chronic Liver Disease Mainly Due to NAFLD. Scientific Reports, 10, Article No. 2771. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kwan, S., Jiao, J., Joon, A., Wei, P., Petty, L.E., Below, J.E., et al. (2021) Gut Microbiome Features Associated with Liver Fibrosis in Hispanics, a Population at High Risk for Fatty Liver Disease. Hepatology, 75, 955-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Monga Kravetz, A., Testerman, T., Galuppo, B., Graf, J., Pierpont, B., Siebel, S., et al. (2020) Effect of Gut Microbiota and pnpla3 Rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. The Journal of Clinical Endocrinology & Metabolism, 105, e3575-e3585. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Bimro, E.T., Hovav, R., Nyska, A., Glazer, T.A. and Madar, Z. (2020) High Oleic Peanuts Improve Parameters Leading to Fatty Liver Development and Change the Microbiota in Mice Intestine. Food & Nutrition Research, 64, Article No. 4278. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, S., Hu, T., Liu, H., Lv, Y., Zhang, W., Li, H., et al. (2021) Akebia Saponin D Ameliorates Metabolic Syndrome (MetS) via Remodeling Gut Microbiota and Attenuating Intestinal Barrier Injury. Biomedicine & Pharmacotherapy, 138, Article ID: 111441. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Park, W.J., Song, J.H., Kim, G.T. and Park, T.S. (2020) Ceramide and Sphingosine 1-Phosphate in Liver Diseases. Molecules and Cells, 43, 419-430.
|
|
[37]
|
Chakrabarty, S., Bui, Q., Badeanlou, L., Hester, K., Chun, J., Ruf, W., et al. (2022) S1P/S1PR3 Signalling Axis Protects against Obesity-Induced Metabolic Dysfunction. Adipocyte, 11, 69-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, Q., Qian, J., Li, Y., Huang, P., Liang, H., Sun, H., et al. (2020) Generation of Sphingosine-1-Phosphate by Sphingosine Kinase 1 Protects Nonalcoholic Fatty Liver from Ischemia/reperfusion Injury through Alleviating Reactive Oxygen Species Production in Hepatocytes. Free Radical Biology and Medicine, 159, 136-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Hong, C.H., Ko, M.S., Kim, J.H., Cho, H., Lee, C., Yoon, J.E., et al. (2022) Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cellular and Molecular Gastroenterology and Hepatology, 13, 925-947. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Pirozzi, C., Lama, A., Annunziata, C., Cavaliere, G., De Caro, C., Citraro, R., et al. (2019) Butyrate Prevents Valproate‐induced Liver Injury: In Vitro and in Vivo Evidence. The FASEB Journal, 34, 676-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Baumann, A., Jin, C., Brandt, A., Sellmann, C., Nier, A., Burkard, M., et al. (2020) Oral Supplementation of Sodium Butyrate Attenuates the Progression of Non-Alcoholic Steatohepatitis. Nutrients, 12, Article No. 951. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Honma, K., Oshima, K., Takami, S. and Goda, T. (2020) Regulation of Hepatic Genes Related to Lipid Metabolism and Antioxidant Enzymes by Sodium Butyrate Supplementation. Metabolism Open, 7, Article ID: 100043. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Takai, A., Kikuchi, K., Ichimura, M., Tsuneyama, K., Moritoki, Y., Matsumoto, K., et al. (2020) Fructo-Oligosaccharides Ameliorate Steatohepatitis, Visceral Adiposity, and Associated Chronic Inflammation via Increased Production of Short-Chain Fatty Acids in a Mouse Model of Non-Alcoholic Steatohepatitis. BMC Gastroenterology, 20, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, J., Zhao, Y., Ren, D. and Yang, X. (2020) Effect of Okra Fruit Powder Supplementation on Metabolic Syndrome and Gut Microbiota Diversity in High Fat Diet-Induced Obese Mice. Food Research International, 130, Article ID: 108929. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, W., Luo, X., Tang, J., Mo, Q., Zhong, H., Zhang, H., et al. (2020) A Bridge for Short-Chain Fatty Acids to Affect Inflammatory Bowel Disease, Type 1 Diabetes, and Non-Alcoholic Fatty Liver Disease Positively: By Changing Gut Barrier. European Journal of Nutrition, 60, 2317-2330. [Google Scholar] [CrossRef] [PubMed]
|