低聚木糖通过调控肠道菌群及代谢产物改善代谢功能障碍相关脂肪性肝病的机制研究
Mechanistic Study of Xylo-Oligosaccharides in Improving Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulation of Gut Microbiota and Metabolites
摘要: 目的:代谢功能障碍相关脂肪性肝病(MASLD)是全球常见的慢性肝病之一,临床治疗方案有限。低聚木糖作为一种常见益生元,有研究表明其可通过调节肠道微生态改善肝脏脂质沉积。本研究旨在进一步分析低聚木糖对高脂饮食诱导的MASLD小鼠肠道菌群组成及代谢物谱的影响,并探讨其潜在作用机制。方法:将实验小鼠随机分为高脂饮食组(HFD)和低聚木糖干预组(XOS),利用高脂饮食建立MASDL模型。检测血清谷丙转氨酶(ALT)、谷草转氨酶(AST)及甘油三酯(TG)水平;采用H.E染色和油红O染色观察肝脏组织学变化,并依据SAF评分系统评估炎症与纤维化程度。通过16S rRNA测序与代谢组学技术,分别获取两组间的肠道菌群结构与代谢物差异,并推测相关代谢通路。结果:与HFD组相比,XOS组血清ALT、AST及TG水平显著降低(p < 0.05),肝细胞脂滴沉积明显减少。PCoA与Adonis分析(p < 0.001)提示两组菌群在整体结构与分布上存在显著差异;Wilcoxon分析显示,XOS组中Lactobacillus、Coriobacteriaceae_UCG_002丰度升高,而Prevotellaceae在HFD组中相对较高。代谢组学结果发现,XOS组中有156种代谢物含量上升。多组学相关性分析表明,低聚木糖干预可能通过调节肠道菌群组成,影响甘油磷酸胆碱、鞘氨醇等代谢物水平。结论:低聚木糖可改善高脂饮食诱导的MSALD小鼠肠道菌群结构及代谢产物谱,推测其作用可能与鞘脂代谢、甘油磷酸胆碱代谢等通路调控相关,具体机制尚需进一步研究。
Abstract: Objective: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver disorder worldwide, yet effective clinical treatments remain limited. Xylo-oligosaccharides (XOS), a common prebiotic, have been reported to alleviate hepatic lipid accumulation by modulating the gut microbiota. This study aimed to further investigate the effects of XOS on gut microbiota composition and metabolomic profiles in a high-fat diet (HFD)-induced MASLD mouse model, and to explore its potential mechanisms. Methods: Mice were randomly divided into an HFD group and an XOS intervention group. The MASLD model was established via HFD feeding. Serum Alanine Aminotransferase (ALT), Aspartate Aminotransferase (AST), and triglyceride (TG) levels were measured. Histopathological changes in liver tissue were evaluated by hematoxylin-eosin (H&E) and Oil Red O staining, and inflammation and fibrosis were assessed using the SAF scoring system. Gut microbiota composition was analyzed by 16S rRNA sequencing, while metabolomic profiles were obtained via untargeted metabolomics to identify differential metabolites and predict related metabolic pathways. Results: Compared with the HFD group, the XOS group showed significantly reduced serum ALT, AST, and TG levels (p < 0.05), accompanied by markedly decreased hepatic lipid droplet accumulation. Principal coordinates analysis (PCoA) and Adonis testing (p < 0.001) indicated significant differences in overall gut microbiota structure between the two groups. Wilcoxon analysis revealed higher abundances of Lactobacillus and Coriobacteriaceae_UCG_002 in the XOS group, whereas Prevotellaceae was more abundant in the HFD group. Metabolomic profiling identified 156 metabolites with increased levels in the XOS group. Multi-omics correlation analysis suggested that XOS intervention may regulate glycerophosphocholine and sphingolipid-related metabolites by modulating gut microbiota composition. Conclusion: Xylo-oligosaccharides ameliorated gut microbiota dysbiosis and altered metabolite profiles in HFD-induced MASLD mice. The potential mechanism may involve modulation of sphingolipid metabolism, glycerophosphocholine metabolism, and related pathways, although further research is warranted to elucidate the underlying biological processes.
文章引用:韩志伟, 陈力. 低聚木糖通过调控肠道菌群及代谢产物改善代谢功能障碍相关脂肪性肝病的机制研究[J]. 临床医学进展, 2025, 15(10): 2283-2298. https://doi.org/10.12677/acm.2025.15103012

1. 引言

代谢功能障碍相关脂肪性肝病(MASLD)是全球最常见的慢性肝病之一,其疾病谱涵盖了从单纯性脂肪肝到代谢功能障碍相关脂肪性肝炎(MASH)、肝纤维化、肝硬化,最终发展为肝细胞癌等多种疾病[1] [2]。据统计,MASLD的全球患病率男性为39.7%,女性为25.6%,且发病率仍在持续上升,这对社会造成了沉重的经济负担[3]

MASLD患者的死亡风险显著升高,其中死于肝病的比例为13%,死于心血管疾病的比例为25%,死于恶性肿瘤的比例为28% [4]。目前,生活方式干预(包括健康饮食与规律运动)仍是MASLD治疗的基石,但患者长期坚持这些行为改变较为困难[5]。尽管美国FDA近期批准了甲状腺激素受体β (THR-β)激动剂Resmetirom (Rezdiffra)用于治疗部分伴有中度至重度肝纤维化(F2与F3期)的MASH患者[6],但对于早期患者或不符合使用条件的人群,仍存在显著的治疗空缺。这凸显了进一步探索替代性药物和非药物干预策略的重要性。

值得注意的是,先驱性的无菌动物粪菌移植(FMT)研究已证实,肠道菌群失衡可作为MASLD进展的因果驱动因素[7]。这引发了人们对靶向肠道菌群调节以干预疾病过程的广泛关注。在这些策略中,低聚木糖(XOS)作为可选择性促进有益菌增殖、恢复肠道微生态平衡、并影响宿主代谢与炎症反应通路的益生元,展示出良好的应用前景。因此,探究XOS补充是否可通过重塑肠道菌群结构与功能来缓解高脂饮食(HFD)诱导的MASLD,具有重要的科学价值与治疗意义。

低聚木糖是一类在功能食品领域颇受关注的益生元,通常以玉米芯(Zea mays subsp. mays)为原料,经木聚糖酶水解纯化而成,能够耐受人体消化酶降解,并在结肠被肠道菌群发酵利用[8]。化学上,XOS主要由木糖单元通过β-1,4-糖苷键连接组成,聚合度一般为2~7;在分子结构中可能含有阿拉伯糖取代,这种结构多样性可赋予其不同的生物学功能[9]。在安全性方面,欧洲食品安全局(EFSA)膳食产品、营养与过敏原专家组报告称,XOS无基因毒性风险,现有的人体数据亦未发现安全性问题[10]

除益生元活性外,由米糠制备的XOS还表现出清除自由基的能力,对DPPH、羟基自由基(•OH)以及ABTS•⁺自由基的清除率(1.0 g/L)分别达到65.76%、62.10%和97.70%,与维生素C相当。这类XOS还能促进乳酸菌的生长,包括Lactobacillus plantarumLactobacillus brucelliLactobacillus acidophilusLactobacillus rhamnosus [11]。同样地,由稻壳和稻草制备的XOS可以显著促进产乳酸菌如Lactobacillus sakeiLactobacillus brevis的增殖[12]。在动物实验中,XOS饮食可增加小鼠肠道(尤其是回肠)内Bifidobacteria的比例,并升高短链脂肪酸(SCFAs)水平,尤其是丙酸。这些代谢物可进入循环系统,并与降低低度炎症性细胞因子(如IL-1β和IFN-γ)的表达相关[13]。与这些作用一致,XOS具有耐酸性,安全性良好[10] [14] [15];体外实验显示,XOS更容易被Bifidobacterium发酵利用[16],且比较研究表明,其促双歧杆菌作用优于其他益生元,包括低聚果糖(FOS) [17]-[19]。多项动物实验已显示,XOS补充能够减轻高脂饮食诱导的大鼠肝脂肪变[20]。然而,关于XOS是否可通过靶向调节肠道菌群及其代谢产物来缓解MASLD,以及最佳干预剂量的研究,仍存在明显的空白。

为填补这一研究缺口,本研究旨在利用多组学整合方法,系统评估XOS对HFD诱导的小鼠肝脏、回肠及血清代谢紊乱的剂量–反应关系,重点关注其对肠道菌群组成及菌群来源代谢产物的调节作用。

2. 方法与材料

2.1. 小鼠饲养与处理

4周龄的雄性C57BL/6小鼠购自济南博岳实验动物繁育有限公司。整个实验期间,小鼠单笼饲养,置于可自由饮水的笼具中,保持12小时光照–黑暗周期,温度22℃ ± 2℃,湿度50% ± 5%。经过1周的适应期后,小鼠被随机分为2个膳食处理组(n = 10/组):包括MASLD模型组(High-fat Diet, HFD组)以及低聚木糖处理组(Xylose oligosaccharides,山东龙力有限公司,XOS组) (0.35 g/kg*d1),小鼠饲养在18℃~24℃的室温环境中,光暗对照各12小时,每天自由饮水及进食,XOS处理组小鼠每天灌胃1次,剂量为0.35 g/kg,HFD组小鼠灌胃同体积生理盐水,16周后收集粪便,处死小鼠。记录每天小鼠进食量,每周测量并记录小鼠体重。

2.2. 组织收集

在为期16周的膳食干预结束后,未经禁食的小鼠被置于透明腔室中,以每分钟约为腔室体积30%~70%的置换速率,逐渐暴露于与空气混合的二氧化碳环境中,此操作符合《美国兽医协会动物安乐死指南(2020)》的规定。当通过踩足反射消失及自主活动缺失确认小鼠已处于深度麻醉状态后,继续通入二氧化碳直至呼吸停止,以完成安乐死处理。随后立即通过心脏穿刺进行末次采血。血液样本以2000 rpm离心15分钟,收集血清,并使用KONELAB 20XTi分析仪(Diagnostic Products Corporation,美国加利福尼亚州洛杉矶)进行生化分析,以测定甘油三酯(TG)和丙氨酸氨基转移酶(ALT)水平。取肝脏左叶及末端回肠固定于4%缓冲甲醛中用于组织学分析,其余组织则迅速投入液氮中速冻并储存于−80℃。并将结肠粪便收集于无菌2 mL离心管中,用于肠道菌群及代谢物分析。

2.3. DNA提取及16S rRNA基因测序

收集小鼠新鲜粪便样本,液氮速冻后立即保存于−80℃冰箱中用于DNA提取。采用DNA抽提试剂盒对样本的基因组DNA进行提取,之后利用琼脂糖凝胶电泳和NanoDrop2000检测DNA的浓度。利用带有条形码的特异性引物扩增16S rRNA基因的特定区域(16S V3~V4)。将等体积的1X上样缓冲液(含SYBR Green)与PCR产物混合,并在2%琼脂糖凝胶上进行电泳检测。将混合的PCR产物使用Qiagen凝胶回收试剂盒(Qiagen,德国)纯化。测序文库采用TruSeq® DNA PCR-Free文库制备试剂盒(Illumina,美国)构建,并在Illumina NovaSeq平台上进行测序。利用FLASH (V1.2.7)软件对双端序列(paired-end reads)进行合并,并根据微生物生态定量分析(QIIME,版本1.9.1)的质量控制流程对原始标签序列进行质量过滤。序列分析采用Uparse软件(Uparse v7.0.1001)进行,相似性 ≥ 97%的序列被划分为同一操作分类单元(OTUs)。每个代表性序列的分类注释基于Mothur算法,利用Silva数据库进行分类信息注释。

2.4. 粪便代谢组学分析

将每份粪便样品准确称取约100 mg至2 mL离心管中,加入400 µL预先在 −20℃保存的甲醇(MeOH,内含4 ppm 2-氨基-3-(2-氯-苯基)-丙酸作为内标),涡旋混匀30 s。随后加入100 mg玻璃珠,将样品置于组织研磨仪中以60 Hz频率均质90 s。均质液在室温下超声处理10 min,然后于4℃、12,000 rpm离心10 min。所得上清液经0.22 µm滤膜过滤,转移至自动进样瓶中用于液相色谱–质谱(LC-MS)分析。

液相色谱分析采用Vanquish UHPLC系统(Thermo Fisher Scientific,美国)并使用ACQUITY UPLC® HSS T3色谱柱(150 × 2.1 mm,1.8 µm;Waters,美国马萨诸塞州米尔福德)。色谱柱温度保持在40℃,流速0.25 mL/min,进样体积2 µL。代谢物检测使用配备电喷雾电离(ESI)源的Q Exactive质谱仪(Thermo Fisher Scientific,美国)进行,数据采集在Full MS-ddMS2模式(数据依赖性MS/MS)下进行,可同时获取MS1和MS/MS数据。

2.5. 统计学分析

2.5.1. 除肠道菌群和代谢物数据外的统计分析

除肠道菌群和代谢物数据外的统计分析均在SPSS软件(Statistical Package for the Social Sciences, Version 26.0)中进行。组间差异使用单因素方差分析(one-way ANOVA)进行比较。若Shapiro-Wilk正态性检验结果提示数据不符合正态分布,则采用Kruskal-Wallis检验或中位数检验(median test)。统计显著性水平设定为p < 0.05。所有结果均以均值 ± 标准差(mean ± standard deviation)表示。变量之间的关联性使用偏Spearman’s相关系数(partial Spearman’s correlation coefficient)进行评估。

2.5.2. 16S rRNA测序数据分析

16S rRNA测序数据主要使用QIIME软件(Version 1.7.0,美国科罗拉多大学丹佛分校)和R语言程序包(Version 2.15.3)进行处理。β多样性(Beta diversity)分析采用欧几里得距离(Euclidean)和Bray-Curtis距离进行,结果分别通过主成分分析(PCA)可视化。菌群结构在不同组别间的显著性差异通过PERMANOVA (ADONIS)分析在R的vegan包中实现。不同分类水平的分类群丰度在各组间的统计比较采用Student’s t 检验,并通过散点图可视化。

2.5.3. 粪便代谢物数据分析

粪便代谢物数据使用Ropls软件分析。模型构建采用正交偏最小二乘判别分析(OPLS-DA)。为避免模型过拟合,采用7折交叉验证和200次响应置换检验(RPT)评估模型稳健性。模型拟合优度较高(R2X (cum) = 0.717; R2Y (cum) = 0.995),预测能力较强(Q2 = 0.849)。统计学显著性标准设为p < 0.05,且变量投影重要性(VIP)值 > 1。差异代谢物经MetaboAnalyst平台进行通路分析,并映射至KEGG (Kyoto Encyclopedia of Genes and Genomes)数据库通路,使用KEGG Mapper工具进行可视化。

2.5.4. 多组学相关性分析

多组学间的相关性通过Spearman’s相关分析评估,显著性阈值设为p < 0.05,得到的相关矩阵通过聚类热图(clustered heatmap)进行可视化呈现。

3. 结果

3.1. 肝脏的病理改变及血生化指标

经过16周干预后,在16周终点,组织病理学评估显示,高脂饮食(HFD)饲喂的小鼠出现明显的肝脏脂肪变性,其特征为显著的脂肪堆积和气球样变性,表现为肝细胞肿胀、胞质稀疏。Oil Red O染色进一步证实,HFD组肝细胞内脂滴显著增多(图1(A)图1(B))。血清生化分析结果(表1)表明,HFD显著升高了血清丙氨酸氨基转移酶(ALT)和甘油三酯(TG)水平,XOS可使两者水平明显下降(p < 0.005)。

Figure 1. Xylo-oligosaccharides alleviate hepatic steatosis. (A) Oil Red O staining: nuclei are stained blue, and lipid droplets are stained red. (B) Hematoxylin-eosin (H&E) staining of liver tissue: cytoplasm appears red, and nuclei appear blue. Magnifications of 200× and 400× indicate the optical microscope enlargement levels of the tissue sections

1. 低聚木糖可以改善肝脏脂肪变性。(A) 油红染色,蓝染表示细胞核,红染代表脂滴。(B) 肝脏H&E染色,胞质红染,胞核蓝染。200×,400×为组织在显微镜下的放大倍数

Table 1. Comparison of serum biochemical parameters between the two groups (n = 10 per group, mean ± SD)

1. 两组血液生化分析比较(n = 10只/组, x ¯ ±s )

组别

ALT (U/L)

AST (U/L)

TG (mmol/L)

XOS组

29.50 ± 3.44

128.20 ± 13.44

0.65 ± 0.11

HFD组

37.20 ± 2.94

150.60 ± 18.22

0.92 ± 0.17

p值

<0.005

<0.005

<0.005

3.2. 低聚木糖对小鼠肠道菌群的影响

PCoA分析结果(图2(A))显示,两组间菌群分布距离明显分离;Adonis分析(p < 0.001)进一步证实,肠道菌群的组成及结构差异具有统计学显著性。Wilcoxon检验对不同分类水平的菌群差异进行比较。结果表明,在门水平,XOS组放线菌和梭杆菌的相对丰度高于HFD组(图2(B)图2(C));在属水平,两组共检测到46个差异菌群,其中XOS组16个菌属丰度升高、30个降低,前10个差异显著的属如图所示,其中7个属在XOS组丰度增加(图2(D)图2(E));在种水平,共有19种菌出现差异,其中10种在XOS组丰度升高,排名前10的差异种中有6种在XOS组中增加(图2(F)图2(G))。

通过LEfSe分析,我们进一步鉴定了MASDL模型小鼠的特征菌群及潜在生物标志物。结果共检出15个具有鉴别意义的分类单元(p < 0.05, LDA > 4)。在门水平,XOS组放线菌丰度显著增加;在纲水平,CoriobacteriiaBacilli在XOS组中呈上升趋势;在目水平,CoriobacterialesLactobacillales在XOS

Figure 2. Analysis of gut microbiota differences between the two groups at different taxonomic levels. (A) Principal coordinates analysis (PCoA) based on the Bray Curtis distance matrix algorithm, where the horizontal axis (PC1) and vertical axis (PC2) represent the two principal coordinates explaining the greatest variation among samples; ellipses indicate the 95% confidence intervals. (B), (C) Gut microbiota composition at the phylum level. (D), (E) Gut microbiota composition at the genus level. (F), (G) Gut microbiota composition at the species level

2. 分析两组不同水平的菌群差异。(A) 基于Bray Curtis距离矩阵算法的PCoA分析,横坐标(PC1)和纵坐标(PC2)为样本间差异解释度最大的两个主要坐标,椭圆为95%置信度。(B),(C) 门水平的肠道菌群分析。(D),(E) 属水平的肠道菌群分析。(F),(G) 种水平的肠道菌群分析

组中丰度较高;在科水平,AtopobiaceaeLactobacillaceae在XOS组显著增加,而PrevotellaceaeRs_E47_termite_group在HFD组更为丰富。在属水平,HFD组FaecalibaculumAlloprevotella及未培养菌(uncultured_bacterium)丰度较高,而XOS组A2、LactobacillusCoriobacteriaceae_UCG_002相对丰度增加(图3(A)图3(B))。

基于16S rRNA数据,利用PICRUSt对小鼠肠道菌群的功能组成进行了预测分析。结果共鉴定出179条差异KEGG通路,其中图中展示了差异最显著的前50项。多条通路与MASDL的发生机制可能相关,包括鞘脂代谢、脂质生物合成相关蛋白、胰岛素信号通路、脂肪细胞因子信号通路、PPAR信号通路及丙酮酸代谢等(图3(C))。此外,基于LC-MS的代谢组学结果亦验证了部分相关通路。

3.3. 非靶向组学分析肠道差异代谢产物

采用正交偏最小二乘判别分析(PLS-DA, R2X = 0.66, R2Y = 0.992, Q2 = 0.867)对两组整体代谢特征进行比较,结果显示XOS组与HFD组代谢谱存在显著差异(图4(A))。进一步利用监督正交偏最小二乘判别分析(OPLS-DA)区分组间代谢模式,并鉴定差异代谢产物。结果表明,两组在代谢谱上可明显区分(OPLS-DA模型:R2Y = 0.992,Q2 (cum) = 0.64,图4(B))。S-plot OPLS-DA分析显示,显著差异代谢物包括鞘脂类和乙酸等(图4(C))。

Figure 3. Results of LEfSe and PICRUSt analyses. (A) Cladogram of differential taxa: red nodes indicate taxa with higher abundance in the HFD group, while green nodes indicate taxa with higher abundance in the XOS group. (B) Phylogenetic tree based on LEfSe analysis (LDA score > 3) and Wilcoxon test, illustrating significantly different taxa between the two groups at the phylum, class, order, family, and genus levels; red denotes HFD group, green denotes XOS group. (C) Functional pathways of gut microbiota predicted by PICRUSt, showing major functional differences between the two groups

3. LEfSe与PICRUSt分析结果。(A) 差异物种分支图:红色节点代表在HFD组丰度较高的物种,绿色节点代表在XOS组丰度较高的物种。(B) 基于LEfSe分析(LDA阈值 > 3)和Wilcoxon检验的系统进化树,展示两组在门、纲、目、科及属水平上的显著差异菌群,红色为HFD组,绿色为XOS组。(C) PICRUSt预测的肠道菌群功能通路,显示两组的主要功能差异

为探讨差异代谢物的生物学意义,我们结合多维与单维分析,对XOS组与HFD组进行比较,共鉴定出371种显著变化的代谢物(VIP > 1, p < 0.05)。这些代谢物按类别分为:脂质及脂质样分子180种、生物碱及其衍生物4种、类苯化合物8种、木酚素/新木酚素及相关物1种、核苷及其类似物2种、有机酸及衍生物34种、有机氮化合物1种、有机氧化合物11种、有机单环化合物15种、苯丙酮类与聚酮类13种,以及未分类代谢物102种。与HFD组相比,XOS组共有156种代谢物丰度升高,主要包括脂肪酸及其共轭物、氨基酸及肽类等(图4(D)图4(E))。

对差异代谢物进行KEGG功能富集分析(p < 0.05)显示,多条代谢途径与MASDL的发生可能相关,包括甘油磷脂代谢、泛醌及其他萜醌类生物合成、cAMP信号通路、鞘脂代谢及细胞衰老等(图5(A)图5(B))。

3.4. 肠道菌群与差异代谢产物之间的联系

基于Spearman相关性分析,我们探讨了种水平差异菌群与前50种代谢产物的关系,重点关注鞘氨醇和甘油磷酸胆碱。结果显示,甘油磷酸胆碱在XOS组水平升高,与Coriobacteriaceae_UCG-002Lactobacillus呈正相关,与Prevotella_7呈负相关。鞘氨醇在HFD组含量较高,与Lachnospiraceae_NK4A136_groupCoriobacteriaceae_UCG-002TyzzerellaA2GCA-900066225Ruminococcus_1SimplicispiraFamily_XIII_UCG-001呈负相关,而与HymenobacterCorynebacterium_1呈正相关(图6)。

Figure 4. Effects of xylo-oligosaccharides on gut metabolites in mice. (A) PLS-DA score plot of the XOS group and the HFD group. (B) OPLS-DA score plot comparing metabolic differences between the two groups. (C) S-plot analysis based on the PLS-DA model. (D, (E) Hierarchical clustering results and expression levels of the top 50 significantly different metabolites ranked by VIP scores (VIP > 1, p < 0.05)

4. 低聚木糖对小鼠肠道代谢物的影响。(A) XOS组与HFD组的PLS-DA得分图。(B) OPLS-DA得分图比较两组代谢差异。(C) 基于PLS-DA模型的S-plot分析。(D),(E) 层次聚类结果及VIP值排名前50的显著差异代谢物(VIP > 1, p < 0.05)表达水平

Figure 5. KEGG enrichment analysis of differential metabolites. (A), (B) Major metabolic pathways significantly enriched (p < 0.05)

5. 差异代谢物的KEGG富集分析。(A),(B)显著富集(p < 0.05)的主要代谢通路

Figure 6. Correlation analysis between gut microbiota and metabolites. Correlation network between bacterial genera and the top 50 metabolites. Red lines indicate positive correlations, green lines indicate negative correlations, and line thickness reflects the magnitude of the correlation coefficient

6. 肠道菌群与代谢物的相关性分析。属水平的细菌与前50种代谢产物的相关性网络图,红线表示正相关,绿线表示负相关,线条粗细反映相关系数大小

4. 讨论

本研究结合组织病理学、血清生化指标、16S rRNA测序分析以及非靶向代谢组学,证实了低聚木糖(XOS)补充可在高脂饮食(HFD)诱导的代谢相关脂肪性肝病(MASLD)模型中发挥剂量依赖性的有益作用。XOS显著改善了肝脏损伤,同时重塑了肠道菌群及其代谢物谱,使其朝向抗炎、肝脏保护的状态转变。在本研究中,XOS组的甘油磷酸胆碱(GPC)水平升高。GPC是一种类似于磷脂酰胆碱的胆碱前体,已有研究表明其对肝细胞的保护作用。首先,GPC在保护肝脏免受缺血再灌注损伤方面表现出显著效果。研究发现,GPC能够通过维持线粒体功能和减少氧化应激来减轻肝脏损伤[20]。这一机制与GPC在脂肪肝中的作用相似,因为脂肪肝的发生与线粒体功能障碍和氧化应激密切相关。此外,GPC还能够通过增强线粒体呼吸链的活性,降低氧化应激标志物,从而在缺血再灌注损伤中发挥保护作用[21]。此外,甘油磷酸胆碱的代谢产物磷脂酰胆碱(PC)在脂肪肝的预防和治疗中也显示出潜力。研究表明,PC能够通过调节胆汁酸代谢和肠道微生物群来改善高脂饮食诱导的小鼠脂质积累和肝损伤[22]。值得一提的是,PC还能够通过减少肝脏三酰甘油的积累和增加糖原含量来改善肝脏代谢功能[23]。还有研究发现GPC还能够通过调节脂质代谢相关基因的表达,减少肝脏脂质积累和炎症反应[24]。这些研究结果表明,GPC及其代谢产物在脂肪肝的预防和治疗中具有重要作用。

相关性分析发现,GPC与Coriobacteriaceae_UCG-002Lactobacillus呈正相关,与Prevotella_7呈负相关。值得注意的是,XOS组中CoriobacteriaceaeLactobacillus均显著增加。有研究证明Coriobacteriaceae与他汀类药物联合使用可以更好地调节代谢相关脂肪肝疾病(MAFLD)模型大鼠的肠道微生物群,改善肝脏病理和功能[25]。此外,Coriobacteriaceae可能通过抗氧化和抗炎途径提供保护作用。另有研究表明,Coriobacteriaceae通过Akt/Nrf2/HO-1途径在甲硫氨酸和胆碱缺乏饮食诱导的脂肪肝中发挥抗氧化作用[26]。类似地,Coriobacteriaceae通过减轻氧化应激和改善脂质谱在小鼠中对抗MASLD [27]。而Lactobacillus作为常见的益生菌,在脂肪肝中的保护作用已引起广泛关注。Lactobacillus rhamnosus GG (LGG)在小鼠模型中被证明可以通过增加有益菌群、恢复肠道屏障功能以及减轻肝脏炎症和脂肪变性来保护小鼠免受高果糖饮食诱导的非酒精性脂肪肝(NAFLD) [28]。类似地,Lactobacillus fermentum CQPC06通过稳定肠–肝轴,在小鼠中预防NAFLD,其机制包括增强肠道紧密连接蛋白的表达和调节肠道微生态[29]。Lactobacillus gasseri在高胆固醇饮食诱导的脂肪肝模型中显示出保护作用,其机制涉及调节宿主基因表达和脂质代谢途径[30]。另一方面,Prevotella在XOS组中却呈低丰度。Prevotella在肠道微生物群中的丰度与MASLD的发生和发展密切相关。一项研究通过分析不同肝病病因的患者的肠道微生物群,发现Prevotella copri在肝纤维化患者中显著富集,并且是预测肝纤维化的最强微生物标志物。这表明Prevotella可能在肝纤维化的进程中发挥重要作用[31]。此外,另一项研究指出,Prevotella的丰度与肝纤维化相关的代谢通路变化密切相关,可能促进氧化应激和炎症环境的形成[32]。在一项针对肥胖青少年的研究中,NAFLD患者的Prevotella丰度显著降低,这与肠道微生物多样性下降和Firmicutes/Bacteroidetes比例增加有关[33]。此外,Prevotella的丰度还与饮食和代谢综合征的改善有关。一项研究显示,高油酸花生的摄入可以增加Prevotella的丰度,并降低Firmicutes/Bacteroidetes比例,从而可能延缓脂肪肝的初期症状[34]。另一项研究则指出,阿克贝亚皂苷D通过减少Prevotella的丰度,改善了高脂饮食引起的肠道屏障功能障碍和代谢综合征[35]。这提示XOS可能通过调节特定菌群组成影响GPC的代谢途径,从而参与调控MASDL的发生与发展。

鞘氨醇是一类鞘磷脂,也是鞘氨醇1-磷酸(S1P)的前体,可在鞘氨醇激酶-1 (SphK1)作用下磷酸化为S1P。鞘氨醇及其代谢产物在脂肪肝的发生和发展中具有双重作用。它们既可以通过调节代谢和炎症反应来保护肝脏,也可能在某些条件下促进病理进程。研究表明,鞘氨醇代谢产物鞘氨醇-1-磷酸(S1P)通过与特定的G蛋白偶联受体相互作用,调节多种细胞和生理事件,包括细胞生长、免疫细胞迁移和炎症反应[36]。在非酒精性脂肪肝病(NAFLD)中,S1P的水平与脂质病理生理学密切相关,包括肝脂肪变性和纤维化[36]。在高脂饮食诱导的肥胖小鼠模型中,S1P通过S1PR3信号轴保护机体免受肥胖引起的代谢功能障碍。研究发现,S1P-S1PR3信号在脂肪组织和肝脏中调节PPARγ的表达,从而在脂肪生成程序中发挥作用。这一信号通路在维持代谢稳态方面具有重要意义,能够抵御过度炎症和脂肪变性[37]。此外,S1P在肝脏损伤中的作用也得到了广泛研究。在非酒精性脂肪肝(NAFL)中,S1P的生成对于保护肝脏免受缺血/再灌注损伤至关重要。研究表明,Sphk1生成的S1P能够通过缓解氧化应激和减少活性氧(ROS)的产生来保护肝细胞[38]。这提示S1P可能成为治疗NAFL相关肝损伤的潜在靶点。然而,S1P的作用并非全然有益。在某些情况下,S1P可能促进炎症和纤维化的进展。例如,S1P通过激活NLRP3炎性小体在非酒精性脂肪性肝炎(NASH)中发挥作用。研究发现,S1PR4在NASH患者的肝脏中高表达,并通过IP3受体依赖的钙信号通路激活NLRP3炎性小体,从而促进NASH和肝纤维化的发展[39]

本研究发现,XOS组鞘氨醇水平下降,且与Coriobacteriaceae_UCG-002Ruminococcus_1TyzzerellaA2等菌呈负相关。其中,Ruminococcus_1已知为丁酸生成菌,丁酸盐在脂肪肝中的作用已被多项研究证实,其在改善肝脏脂肪变性和炎症方面表现出显著的潜力。首先,丁酸盐能够通过调节脂质代谢和氧化应激来保护肝脏。例如,一项研究表明,丁酸盐能够通过恢复脂肪酸氧化和改善线粒体功能来减轻由丙戊酸钠引起的肝损伤[40]。此外,丁酸盐还能够通过减少氧化应激和炎症反应来保护肝脏细胞,从而有效地防止脂肪肝的发生[40]。进一步的研究表明,丁酸盐在MASLD的进展中也具有显著的抑制作用。通过口服补充丁酸盐,可以有效地减缓MASLD向MASH的进展。这种保护作用与丁酸盐对肠道屏障功能的改善以及对炎症因子的抑制有关[41]。此外,丁酸盐通过调节肝脏中的脂质代谢相关基因表达,减少脂质合成并促进脂肪酸氧化,从而降低肝脏脂肪积累的风险[42]。丁酸盐的作用不仅限于直接的肝脏保护,其通过调节肠道微生物群也发挥了重要作用。研究表明,丁酸盐能够通过增加短链脂肪酸(SCFAs)的产生,改善肠道微生物群的组成,从而间接地对抗脂肪肝的发生[43] [44]。此外,丁酸盐还能够通过增强肠道屏障功能,减少内毒素的渗透,进而降低系统性炎症反应,这对于NAFLD的防治具有重要意义[45]。如前文所述,Coriobacteriaceae_UCG-002亦被证明可改善肝脏脂肪变性。这提示Coriobacteriaceae_UCG-002Ruminococcus_1可能通过调控鞘脂代谢途径,进而降低SphK1活性或促进SphK2表达,减少鞘氨醇与S1P水平,从而减轻肝细胞脂肪变性。

此外,基于16S rRNA测序数据的PICRUSt功能预测结果显示,多条KEGG功能通路(如鞘脂代谢、甘油磷脂代谢、脂肪细胞因子信号通路以及PPAR信号通路)在不同处理组间存在显著差异。值得注意的是,这些由微生物组预测得到的功能通路,与代谢组学分析结果中实际检测到的甘油磷脂代谢和鞘脂代谢通路高度一致,提示肠道菌群功能变化与宿主代谢特征存在密切关联。结合前期研究证据推测,低聚木糖(XOS)可能通过调节肠道菌群组成及其代谢潜能,进而影响上述与脂质代谢密切相关的信号通路,从而在一定程度上干预并改善MASLD (代谢相关脂肪性肝病)的发生和进展。例如,甘油磷脂代谢和鞘脂代谢异常被认为与肝脏脂质沉积、细胞凋亡及胰岛素抵抗等病理过程密切相关,而脂肪细胞因子信号通路与宿主的炎症反应及能量代谢调控密不可分;PPAR信号通路则是调节脂肪酸氧化与脂质稳态的关键节点。因此,XOS对这些通路的潜在调节作用,可能构成其改善MASLD的重要分子基础。

我们的研究结果主要基于相关性分析,其因果关系有待进一步验证,可考虑采用来自XOS处理供体的小鼠粪菌移植(FMT)、关键菌群或菌群联合的去除–重建实验,以及针对AhR/PXR激活与5-LOX抑制的功能获得/缺失实验来进行验证。机制研究可结合鸟枪法宏基因组测序、同位素示踪的靶向/通量代谢组学以及受体–报告基因检测等方法开展。

本研究的不足包括仅使用雄性小鼠、单一XOS来源与单一时间点、采用粪便而非黏膜微生物组分析,以及缺乏相关代谢产物的直接定量检测。未来工作应在雌雄双性、不同剂量、更长干预周期及不同肠段取样的条件下加以验证。鉴于XOS的安全性,本研究结果支持其作为一种以调节肠道微生物为靶向的MASLD辅助干预手段的潜力。为最大化疗效并减少个体差异,应开展剂量梯度研究,以及与互补益生菌联合的合生元策略探索。同时,基于个体基线微生物组和饮食结构的个性化干预,可能进一步提升效果。

5. 总结

低聚木糖作为一种益生元,不仅有助于缓解MASDL的脂肪变性,还可调节肠道菌群结构,从而改善肠道代谢产物谱,并可能通过参与鞘脂及甘油磷脂代谢途径影响MASDL的进展,其具体机制仍需进一步探讨。

NOTES

*通讯作者。

参考文献

[1] Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. [Google Scholar] [CrossRef] [PubMed]
[2] Younossi, Z., Anstee, Q.M., Marietti, M., Hardy, T., Henry, L., Eslam, M., et al. (2017) Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention. Nature Reviews Gastroenterology & Hepatology, 15, 11-20. [Google Scholar] [CrossRef] [PubMed]
[3] Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef] [PubMed]
[4] Adams, L.A., Lymp, J.F., St. Sauver, J., Sanderson, S.O., Lindor, K.D., Feldstein, A., et al. (2005) The Natural History of Nonalcoholic Fatty Liver Disease: A Population-Based Cohort Study. Gastroenterology, 129, 113-121. [Google Scholar] [CrossRef] [PubMed]
[5] Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. [Google Scholar] [CrossRef] [PubMed]
[6] Keam, S.J. (2024) Resmetirom: First Approval. Drugs, 84, 729-735. [Google Scholar] [CrossRef] [PubMed]
[7] Smits, L.P., Bouter, K.E.C., de Vos, W.M., Borody, T.J. and Nieuwdorp, M. (2013) Therapeutic Potential of Fecal Microbiota Transplantation. Gastroenterology, 145, 946-953. [Google Scholar] [CrossRef] [PubMed]
[8] Fuso, A., Rosso, F., Rosso, G., Risso, D., Manera, I. and Caligiani, A. (2022) Production of Xylo-Oligosaccharides (XOS) of Tailored Degree of Polymerization from Acetylated Xylans through Modelling of Enzymatic Hydrolysis. Food Research International, 162, Article ID: 112019. [Google Scholar] [CrossRef] [PubMed]
[9] Fuso, A., Risso, D., Rosso, G., Rosso, F., Manini, F., Manera, I., et al. (2021) Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods, 10, Article No. 1197. [Google Scholar] [CrossRef] [PubMed]
[10] Turck, D., Bresson, J., Burlingame, B., Dean, T., Fairweather‐Tait, S., Heinonen, M., et al. (2018) Safety of Xylo‐Oligosaccharides (XOS) as a Novel Food Pursuant to Regulation (EU) 2015/2283. EFSA Journal, 16, e05361. [Google Scholar] [CrossRef] [PubMed]
[11] Tian, S., Yang, Z., Yan, F., Xue, X. and Lu, J. (2024) Preparation of Xylooligosaccharides from Rice Husks and Their Structural Characterization, Antioxidant Activity, and Probiotic Properties. International Journal of Biological Macromolecules, 271, Article ID: 132575. [Google Scholar] [CrossRef] [PubMed]
[12] Jaichakan, P., Nakphaichit, M., Rungchang, S., Weerawatanakorn, M., Phongthai, S. and Klangpetch, W. (2021) Two-stage Processing for Xylooligosaccharide Recovery from Rice By-Products and Evaluation of Products: Promotion of Lactic Acid-Producing Bacterial Growth and Food Application in a High-Pressure Process. Food Research International, 147, Article ID: 110529. [Google Scholar] [CrossRef] [PubMed]
[13] Hansen, C.H.F., Frøkiær, H., Christensen, A.G., Bergström, A., Licht, T.R., Hansen, A.K., et al. (2013) Dietary Xylooligosaccharide Downregulates IFN-γ and the Low-Grade Inflammatory Cytokine Il-1β Systemically in Mice. The Journal of Nutrition, 143, 533-540. [Google Scholar] [CrossRef] [PubMed]
[14] Santibáñez, L., Henríquez, C., Corro-Tejeda, R., Bernal, S., Armijo, B. and Salazar, O. (2021) Xylooligosaccharides from Lignocellulosic Biomass: A Comprehensive Review. Carbohydrate Polymers, 251, Article ID: 117118. [Google Scholar] [CrossRef] [PubMed]
[15] Kumar, V., Bahuguna, A., Kumar, S. and Kim, M. (2025) Xylooligosaccharides Mediated Gut Microbiome Modulation: Prebiotics to Postbiotics. Critical Reviews in Biotechnology, 45, 1098-1116. [Google Scholar] [CrossRef] [PubMed]
[16] Berger, K., Burleigh, S., Lindahl, M., Bhattacharya, A., Patil, P., Stålbrand, H., et al. (2021) Xylooligosaccharides Increase Bifidobacteria and Lachnospiraceae in Mice on a High-Fat Diet, with a Concomitant Increase in Short-Chain Fatty Acids, Especially Butyric Acid. Journal of Agricultural and Food Chemistry, 69, 3617-3625. [Google Scholar] [CrossRef] [PubMed]
[17] Liu, N., Shen, H., Zhang, F., Liu, X., Xiao, Q., Jiang, Q., et al. (2023) Applications and Prospects of Functional Oligosaccharides in Pig Nutrition: A Review. Animal Nutrition, 13, 206-215. [Google Scholar] [CrossRef] [PubMed]
[18] Pang, J., Zhou, X., Ye, H., Wu, Y., Wang, Z., Lu, D., et al. (2021) The High Level of Xylooligosaccharides Improves Growth Performance in Weaned Piglets by Increasing Antioxidant Activity, Enhancing Immune Function, and Modulating Gut Microbiota. Frontiers in Nutrition, 8, Article ID: 764556. [Google Scholar] [CrossRef] [PubMed]
[19] Su, J., Zhang, W., Ma, C., Xie, P., Blachier, F. and Kong, X. (2021) Dietary Supplementation with Xylo-Oligosaccharides Modifies the Intestinal Epithelial Morphology, Barrier Function and the Fecal Microbiota Composition and Activity in Weaned Piglets. Frontiers in Veterinary Science, 8, Article ID: 680208. [Google Scholar] [CrossRef] [PubMed]
[20] Zazueta, C., Buelna‐Chontal, M., Macías‐López, A., Román‐Anguiano, N.G., González‐Pacheco, H., Pavón, N., et al. (2018) Cytidine‐5’‐Diphosphocholine Protects the Liver from Ischemia/Reperfusion Injury Preserving Mitochondrial Function and Reducing Oxidative Stress. Liver Transplantation, 24, 1070-1083. [Google Scholar] [CrossRef] [PubMed]
[21] Strifler, G., Tuboly, E., Görbe, A., Boros, M., Pécz, D. and Hartmann, P. (2016) Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine. PLOS ONE, 11, e0166682. [Google Scholar] [CrossRef] [PubMed]
[22] Jia, L., Wang, R., Huang, Z., Sun, N., Sun, H., Wang, H., et al. (2024) Phosphatidylcholine Ameliorates Lipid Accumulation and Liver Injury in High-Fat Diet Mice by Modulating Bile Acid Metabolism and Gut Microbiota. International Journal of Food Sciences and Nutrition, 76, 165-178. [Google Scholar] [CrossRef] [PubMed]
[23] Arshad, U., Zenobi, M.G., Tribulo, P., Staples, C.R. and Santos, J.E.P. (2023) Dose-Dependent Effects of Rumen-Protected Choline on Hepatic Metabolism during Induction of Fatty Liver in Dry Pregnant Dairy Cows. PLOS ONE, 18, e0290562. [Google Scholar] [CrossRef] [PubMed]
[24] Arshad, U., Husnain, A., Poindexter, M.B., Zimpel, R., Perdomo, M.C. and Santos, J.E.P. (2023) Effect of Source and Amount of Rumen-Protected Choline on Hepatic Metabolism during Induction of Fatty Liver in Dairy Cows. Journal of Dairy Science, 106, 6860-6879. [Google Scholar] [CrossRef] [PubMed]
[25] Ran, X., Wang, Y., Li, S. and Dai, C. (2024) Effects of Bifidobacterium and Rosuvastatin on Metabolic-Associated Fatty Liver Disease via the Gut-Liver Axis. Lipids in Health and Disease, 23, Article No. 401. [Google Scholar] [CrossRef] [PubMed]
[26] Li, W., Ma, F., Zhang, L., Huang, Y., Li, X., Zhang, A., et al. (2016) S‐Propargyl‐Cysteine Exerts a Novel Protective Effect on Methionine and Choline Deficient Diet‐Induced Fatty Liver via Akt/Nrf2/HO-1 Pathway. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 4690857. [Google Scholar] [CrossRef] [PubMed]
[27] Zeinalian Boroujeni, Z., Khorsandi, L., Zeidooni, L., Badiee, M.S. and Khodayar, M.J. (2024) Protocatechuic Acid Protects Mice against Non-Alcoholic Fatty Liver Disease by Attenuating Oxidative Stress and Improving Lipid Profile. Reports of Biochemistry and Molecular Biology, 13, 218-230. [Google Scholar] [CrossRef] [PubMed]
[28] Ritze, Y., Bárdos, G., Claus, A., Ehrmann, V., Bergheim, I., Schwiertz, A., et al. (2014) Lactobacillus Rhamnosus GG Protects against Non-Alcoholic Fatty Liver Disease in Mice. PLOS ONE, 9, e80169. [Google Scholar] [CrossRef] [PubMed]
[29] Mu, J., Tan, F., Zhou, X. and Zhao, X. (2020) Lactobacillus fermentum CQPC06 in Naturally Fermented Pickles Prevents Non-Alcoholic Fatty Liver Disease by Stabilizing the Gut-Liver Axis in Mice. Food & Function, 11, 8707-8723. [Google Scholar] [CrossRef] [PubMed]
[30] He, T., Lykov, N., Luo, X., Wang, H., Du, Z., Chen, Z., et al. (2023) Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. International Journal of Molecular Sciences, 24, Article No. 2053. [Google Scholar] [CrossRef] [PubMed]
[31] Dong, T.S., Katzka, W., Lagishetty, V., Luu, K., Hauer, M., Pisegna, J., et al. (2020) A Microbial Signature Identifies Advanced Fibrosis in Patients with Chronic Liver Disease Mainly Due to NAFLD. Scientific Reports, 10, Article No. 2771. [Google Scholar] [CrossRef] [PubMed]
[32] Kwan, S., Jiao, J., Joon, A., Wei, P., Petty, L.E., Below, J.E., et al. (2021) Gut Microbiome Features Associated with Liver Fibrosis in Hispanics, a Population at High Risk for Fatty Liver Disease. Hepatology, 75, 955-967. [Google Scholar] [CrossRef] [PubMed]
[33] Monga Kravetz, A., Testerman, T., Galuppo, B., Graf, J., Pierpont, B., Siebel, S., et al. (2020) Effect of Gut Microbiota and pnpla3 Rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. The Journal of Clinical Endocrinology & Metabolism, 105, e3575-e3585. [Google Scholar] [CrossRef] [PubMed]
[34] Bimro, E.T., Hovav, R., Nyska, A., Glazer, T.A. and Madar, Z. (2020) High Oleic Peanuts Improve Parameters Leading to Fatty Liver Development and Change the Microbiota in Mice Intestine. Food & Nutrition Research, 64, Article No. 4278. [Google Scholar] [CrossRef] [PubMed]
[35] Yang, S., Hu, T., Liu, H., Lv, Y., Zhang, W., Li, H., et al. (2021) Akebia Saponin D Ameliorates Metabolic Syndrome (MetS) via Remodeling Gut Microbiota and Attenuating Intestinal Barrier Injury. Biomedicine & Pharmacotherapy, 138, Article ID: 111441. [Google Scholar] [CrossRef] [PubMed]
[36] Park, W.J., Song, J.H., Kim, G.T. and Park, T.S. (2020) Ceramide and Sphingosine 1-Phosphate in Liver Diseases. Molecules and Cells, 43, 419-430.
[37] Chakrabarty, S., Bui, Q., Badeanlou, L., Hester, K., Chun, J., Ruf, W., et al. (2022) S1P/S1PR3 Signalling Axis Protects against Obesity-Induced Metabolic Dysfunction. Adipocyte, 11, 69-83. [Google Scholar] [CrossRef] [PubMed]
[38] Li, Q., Qian, J., Li, Y., Huang, P., Liang, H., Sun, H., et al. (2020) Generation of Sphingosine-1-Phosphate by Sphingosine Kinase 1 Protects Nonalcoholic Fatty Liver from Ischemia/reperfusion Injury through Alleviating Reactive Oxygen Species Production in Hepatocytes. Free Radical Biology and Medicine, 159, 136-149. [Google Scholar] [CrossRef] [PubMed]
[39] Hong, C.H., Ko, M.S., Kim, J.H., Cho, H., Lee, C., Yoon, J.E., et al. (2022) Sphingosine 1-Phosphate Receptor 4 Promotes Nonalcoholic Steatohepatitis by Activating NLRP3 Inflammasome. Cellular and Molecular Gastroenterology and Hepatology, 13, 925-947. [Google Scholar] [CrossRef] [PubMed]
[40] Pirozzi, C., Lama, A., Annunziata, C., Cavaliere, G., De Caro, C., Citraro, R., et al. (2019) Butyrate Prevents Valproate‐induced Liver Injury: In Vitro and in Vivo Evidence. The FASEB Journal, 34, 676-690. [Google Scholar] [CrossRef] [PubMed]
[41] Baumann, A., Jin, C., Brandt, A., Sellmann, C., Nier, A., Burkard, M., et al. (2020) Oral Supplementation of Sodium Butyrate Attenuates the Progression of Non-Alcoholic Steatohepatitis. Nutrients, 12, Article No. 951. [Google Scholar] [CrossRef] [PubMed]
[42] Honma, K., Oshima, K., Takami, S. and Goda, T. (2020) Regulation of Hepatic Genes Related to Lipid Metabolism and Antioxidant Enzymes by Sodium Butyrate Supplementation. Metabolism Open, 7, Article ID: 100043. [Google Scholar] [CrossRef] [PubMed]
[43] Takai, A., Kikuchi, K., Ichimura, M., Tsuneyama, K., Moritoki, Y., Matsumoto, K., et al. (2020) Fructo-Oligosaccharides Ameliorate Steatohepatitis, Visceral Adiposity, and Associated Chronic Inflammation via Increased Production of Short-Chain Fatty Acids in a Mouse Model of Non-Alcoholic Steatohepatitis. BMC Gastroenterology, 20, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
[44] Zhang, J., Zhao, Y., Ren, D. and Yang, X. (2020) Effect of Okra Fruit Powder Supplementation on Metabolic Syndrome and Gut Microbiota Diversity in High Fat Diet-Induced Obese Mice. Food Research International, 130, Article ID: 108929. [Google Scholar] [CrossRef] [PubMed]
[45] Liu, W., Luo, X., Tang, J., Mo, Q., Zhong, H., Zhang, H., et al. (2020) A Bridge for Short-Chain Fatty Acids to Affect Inflammatory Bowel Disease, Type 1 Diabetes, and Non-Alcoholic Fatty Liver Disease Positively: By Changing Gut Barrier. European Journal of Nutrition, 60, 2317-2330. [Google Scholar] [CrossRef] [PubMed]