|
[1]
|
Gallucci, L., Sperber, C., Guggisberg, A.G., Kaller, C.P., Heldner, M.R., Monsch, A.U., et al. (2024) Post-Stroke Cognitive Impairment Remains Highly Prevalent and Disabling Despite State-of-the-Art Stroke Treatment. International Journal of Stroke, 19, 888-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ma, L. and Li, Y. (2017) Cognitive Function and Insulin Resistance in Elderly Patients with Type 2 Diabetes. Neurological Research, 39, 259-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cowan, A.J., Allen, C., Barac, A., et al. (2018) Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncology, 4, 1221-1227.
|
|
[4]
|
Rist, P.M., Chalmers, J., Arima, H., Anderson, C., MacMahon, S., Woodward, M., et al. (2013) Baseline Cognitive Function, Recurrent Stroke, and Risk of Dementia in Patients with Stroke. Stroke, 44, 1790-1795. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ding, M., Xu, Y., Wang, Y., Li, P., Mao, Y., Yu, J., et al. (2019) Predictors of Cognitive Impairment after Stroke: A Prospective Stroke Cohort Study. Journal of Alzheimer’s Disease, 71, 1139-1151. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tatemichi, T.K., Paik, M., Bagiella, E., Desmond, D.W., Pirro, M. and Hanzawa, L.K. (1994) Dementia after Stroke Is a Predictor of Long-Term Survival. Stroke, 25, 1915-1919. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nudo, R.J. (2013) Recovery after Brain Injury: Mechanisms and Principles. Frontiers in Human Neuroscience, 7, Article 887. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, X. and Bi, X. (2020) Post-Stroke Cognitive Impairment: A Review Focusing on Molecular Biomarkers. Journal of Molecular Neuroscience, 70, 1244-1254. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tack, R.W.P., Amboni, C., van Nuijs, D., Pekna, M., Vergouwen, M.D.I., Rinkel, G.J.E., et al. (2023) Inflammation, Anti-Inflammatory Interventions, and Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis of Human and Animal Studies. Translational Stroke Research, 16, 535-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Doyle, K.P., Quach, L.N., Solé, M., Axtell, R.C., Nguyen, T.V., Soler-Llavina, G.J., et al. (2015) B-Lymphocyte-Mediated Delayed Cognitive Impairment Following Stroke. The Journal of Neuroscience, 35, 2133-2145. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ihara, M. and Kalaria, R.N. (2014) Understanding and Preventing the Development of Post-Stroke Dementia. Expert Review of Neurotherapeutics, 14, 1067-1077. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pantoni, L. (2010) Cerebral Small Vessel Disease: From Pathogenesis and Clinical Characteristics to Therapeutic Challenges. The Lancet Neurology, 9, 689-701. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Debette, S. and Markus, H.S. (2010) The Clinical Importance of White Matter Hyperintensities on Brain Magnetic Resonance Imaging: Systematic Review and Meta-Analysis. British Medical Journal, 341, c3666. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ciancarelli, I., Morone, G., Iosa, M., Cerasa, A., Calabrò, R.S., Iolascon, G., et al. (2022) Influence of Oxidative Stress and Inflammation on Nutritional Status and Neural Plasticity: New Perspectives on Post-Stroke Neurorehabilitative Outcome. Nutrients, 15, Article 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, P., Stetler, R.A., Leak, R.K., Shi, Y., Li, Y., Yu, W., et al. (2018) Oxidative Stress and DNA Damage after Cerebral Ischemia: Potential Therapeutic Targets to Repair the Genome and Improve Stroke Recovery. Neuropharmacology, 134, 208-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ghowsi, M., Qalekhani, F., Farzaei, M.H., Mahmudi, F., Yousofvand, N. and Joshi, T. (2021) Inflammation, Oxidative Stress, Insulin Resistance, and Hypertension as Mediators for Adverse Effects of Obesity on the Brain: A Review. BioMedicine, 11, 13-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lee, S., Park, S. and Choi, C.S. (2022) Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46, 15-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Su, F., Shu, H., Ye, Q., Wang, Z., Xie, C., Yuan, B., et al. (2016) Brain Insulin Resistance Deteriorates Cognition by Altering the Topological Features of Brain Networks. NeuroImage: Clinical, 13, 280-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
王富军, 丁海霞. 中国老年2型糖尿病胰岛素抵抗诊疗专家共识(2022版)解读[J]. 河北医科大学学报, 2024, 45(11): 1241-1246.
|
|
[20]
|
Simental-Mendía, L.E., Rodríguez-Morán, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sánchez-García, A., Rodríguez-Gutiérrez, R., Mancillas-Adame, L., González-Nava, V., Díaz González-Colmenero, A., Solis, R.C., et al. (2020) Diagnostic Accuracy of the Triglyceride and Glucose Index for Insulin Resistance: A Systematic Review. International Journal of Endocrinology, 2020, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Akhtar, A. and Sah, S.P. (2020) Insulin Signaling Pathway and Related Molecules: Role in Neurodegeneration and Alzheimer’s Disease. Neurochemistry International, 135, Article 104707. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gasecka, A., Siwik, D., Gajewska, M., Jaguszewski, M.J., Mazurek, T., Filipiak, K.J., et al. (2020) Early Biomarkers of Neurodegenerative and Neurovascular Disorders in Diabetes. Journal of Clinical Medicine, 9, Article 2807. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhao, F., Siu, J.J., Huang, W., Askwith, C. and Cao, L. (2019) Insulin Modulates Excitatory Synaptic Transmission and Synaptic Plasticity in the Mouse Hippocampus. Neuroscience, 411, 237-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gómez-Benito, M., Granado, N., García-Sanz, P., Michel, A., Dumoulin, M. and Moratalla, R. (2020) Modeling Parkinson’s Disease with the Alpha-Synuclein Protein. Frontiers in Pharmacology, 11, Article 356. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Malik, S.A., Acharya, J.D., Mehendale, N.K., Kamat, S.S. and Ghaskadbi, S.S. (2019) Pterostilbene Reverses Palmitic Acid Mediated Insulin Resistance in HepG2 Cells by Reducing Oxidative Stress and Triglyceride Accumulation. Free Radical Research, 53, 815-827. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Deng, X., Liu, Z., Wang, C., Li, Y. and Cai, Z. (2017) Insulin Resistance in Ischemic Stroke. Metabolic Brain Disease, 32, 1323-1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Rusinek, H., Ha, J., Yau, P.L., Storey, P., Tirsi, A., Tsui, W.H., et al. (2015) Cerebral Perfusion in Insulin Resistance and Type 2 Diabetes. Journal of Cerebral Blood Flow & Metabolism, 35, 95-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Livingston, J.M., McDonald, M.W., Gagnon, T., Jeffers, M.S., Gomez-Smith, M., Antonescu, S., et al. (2020) Influence of Metabolic Syndrome on Cerebral Perfusion and Cognition. Neurobiology of Disease, 137, Article 104756. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Fahed, G., Aoun, L., Bou Zerdan, M., Allam, S., Bou Zerdan, M., Bouferraa, Y., et al. (2022) Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. International Journal of Molecular Sciences, 23, Article 786. [Google Scholar] [CrossRef] [PubMed]
|