|
[1]
|
Parul, Singh, A. and Shukla, S. (2024) Novel Techniques for Early Diagnosis and Monitoring of Alzheimer’s Disease. Expert Review of Neurotherapeutics, 25, 29-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
段火强, 舒星辉, 徐俊, 等. 基于PiBPET影像感兴趣区域的阿尔茨海默症计算机辅助分析[J]. 中国生物医学工程学报, 2016, 35(6): 641-647.
|
|
[3]
|
戴志飞. 分子探针在重大疾病诊疗中的应用、机遇与挑战[J]. 科学通报, 2017, 62(1): 25-35.
|
|
[4]
|
Chapman, K.R., Bing-Canar, H., Alosco, M.L., Steinberg, E.G., Martin, B., Chaisson, C., et al. (2016) Mini Mental State Examination and Logical Memory Scores for Entry into Alzheimer’s Disease Trials. Alzheimer’s Research & Therapy, 8, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
贾建平, 王荫华, 李焰生, 等. 中国痴呆与认知障碍诊治指南(二): 痴呆分型及诊断标准[J]. 中华医学杂志, 2011, 91(10): 651-655.
|
|
[6]
|
韩英妹, 李一杰, 张衡, 等. 基于MRI分析阿尔茨海默病大尺度脑网络研究进展[J]. 实用医学杂志, 2024, 40(4): 575-579.
|
|
[7]
|
周荻, 席芊. 阿尔茨海默病及轻度认知障碍PET/MR研究进展[J]. 医学影像学杂志, 2022, 32(3): 515-518.
|
|
[8]
|
Hampel, H., Bürger, K., Teipel, S.J., Bokde, A.L.W., Zetterberg, H. and Blennow, K. (2007) Core Candidate Neurochemical and Imaging Biomarkers of Alzheimer’s Disease. Alzheimer’s & Dementia, 4, 38-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hussain, A., Sheikh, Z. and Subramanian, M. (2023) The Eye as a Diagnostic Tool for Alzheimer’s Disease. Life, 13, Article 726. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
van Oostveen, W.M. and de Lange, E.C.M. (2021) Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. International Journal of Molecular Sciences, 22, Article 2110. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, X., Qiu, Y., Zhou, J. and Xie, Z. (2021) Applications and Challenges of Machine Learning Methods in Alzheimer’s Disease Multi-Source Data Analysis. Current Genomics, 22, 564-582. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Knutson, K.A. and Pan, W. (2021) Integrating Brain Imaging Endophenotypes with GWAS for Alzheimer’s Disease. Quantitative Biology, 9, 185-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jiang, J., Li, C., Lu, J., Sun, J., Sun, X., Yang, J., et al. (2024) Using Interpretable Deep Learning Radiomics Model to Diagnose and Predict Progression of Early AD Disease Spectrum: A Preliminary [18F]FDG PET Study. European Radiology, 35, 2620-2633. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yuan, Z., Qi, N., Chen, X., Luo, Y., Zhou, Z., Wang, J., et al. (2025) Magnetic Resonance Radiomics-Based Deep Learning Model for Diagnosis of Alzheimer’s Disease. Digital Health, 11, 1-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, S., Xie, J., Liu, J., Wu, Y., Wang, Z., Cao, Z., et al. (2024) Prognostic Value of a Combined Nomogram Model Integrating 3-Dimensional Deep Learning and Radiomics for Head and Neck Cancer. Journal of Computer Assisted Tomography, 48, 498-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, C., Deng, M., Zhong, X., Ren, J., Chen, X., Chen, J., et al. (2023) Multi-View Radiomics and Deep Learning Modeling for Prostate Cancer Detection Based on Multi-Parametric MRI. Frontiers in Oncology, 13, Article 1198899. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
AlSaeed, D. and Omar, S.F. (2022) Brain MRI Analysis for Alzheimer’s Disease Diagnosis Using CNN-Based Feature Extraction and Machine Learning. Sensors, 22, Article 2911. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lin, A., Chen, Y., Chen, Y., Ye, Z., Luo, W., Chen, Y., et al. (2024) MRI Radiomics Combined with Machine Learning for Diagnosing Mild Cognitive Impairment: A Focus on the Cerebellar Gray and White Matter. Frontiers in Aging Neuroscience, 16, Article 1460293. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
曾安, 邹超, 潘丹. 基于3D卷积神经网络-感兴趣区域的阿尔茨海默症辅助诊断模型[J]. 生物医学工程研究, 2020, 39(2): 133-138.
|
|
[20]
|
Sun, Y., Bi, Q., Wang, X., Hu, X., Li, H., Li, X., et al. (2019) Prediction of Conversion from Amnestic Mild Cognitive Impairment to Alzheimer’s Disease Based on the Brain Structural Connectome. Frontiers in Neurology, 9, Article 1178. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
林雪峰, 李炜. 基于深度学习的阿尔兹海默症多模态辅助诊断研究[J]. 工业控制计算机, 2020, 33(3): 58-60.
|
|
[22]
|
Tong, B., Zhou, Z., Tarzanagh, D.A., Hou, B., Saykin, A.J., Moore, J., et al. (2023) Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. In: Cao, X., Xu, X., Rekik, I., Cui, Z. and Ouyang, X., Eds., Machine Learning in Medical Imaging, Springer, 144-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ban, Q., Zhang, H., Wang, W., Du, Y., Zhao, Y., Peng, A., et al. (2024) Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT. American Journal of Neuroradiology, 45, 1260-1268. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, D., Li, Y., Li, C. and Guo, W. (2024) Multimodal Radiomics and Deep Learning Models for Predicting Early Femoral Head Deformity in LCPD. European Journal of Radiology, 181, Article ID: 111793. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xu, W., Zhang, H., Xia, Y., Ren, Y., Guan, J. and Zhou, S. (2024) Hybrid Causal Feature Selection for Cancer Biomarker Identification from RNA-Seq Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 21, 1645-1655. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yu, M., Sporns, O. and Saykin, A.J. (2021) The Human Connectome in Alzheimer Disease—Relationship to Biomarkers and Genetics. Nature Reviews Neurology, 17, 545-563. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Englert, B., Roeber, S., Arzberger, T., Ruf, V., Windl, O. and Herms, J. (2024) Fast-Track Neuropathological Screening for Neurodegenerative Diseases. Free Neuropathology, 5, Article 16. https://pubmed.ncbi.nlm.nih.gov/39118598/
|
|
[28]
|
Elsheikh, S.S.M., Chimusa, E.R., Mulder, N.J. and Crimi, A. (2020) Genome-Wide Association Study of Brain Connectivity Changes for Alzheimer’s Disease. Scientific Reports, 10, Article No. 1433. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, H., Yang, A., Huang, W., Du, L., Liu, B., Lv, K., et al. (2024) Associations of Quantitative Susceptibility Mapping with Cortical Atrophy and Brain Connectome in Alzheimer’s Disease: A Multi-Parametric Study. NeuroImage, 290, Article ID: 120555. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, L., Yu, X., Sheng, C., Jiang, X., Zhang, Q., Han, Y., et al. (2022) A Review of Brain Imaging Biomarker Genomics in Alzheimer’s Disease: Implementation and Perspectives. Translational Neurodegeneration, 11, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Si, H., Gao, S. and Wang, Y. (2024) [Research Progress on the Application of Artificial Intelligence in the Early Diagnosis and Treatment of Burn Diseases]. Chinese Critical Care Medicine, 36, 887-891. https://pubmed.ncbi.nlm.nih.gov/39238416/
|
|
[32]
|
Qin, Y., Tian, Y., Han, H., Liu, L., Ge, X., Xue, H., et al. (2019) Risk Classification for Conversion from Mild Cognitive Impairment to Alzheimer’s Disease in Primary Care. Psychiatry Research, 278, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
李珍珍. 阿尔兹海默症多模态辅助诊断模型研究[D]: [硕士学位论文]. 开封: 河南大学, 2019.
|
|
[34]
|
吕明媞, 杨志军, 张伟. PPARα与阿尔茨海默病的研究进展[J]. 生物化学与生物物理进展, 2021, 48(8): 866-874.
|
|
[35]
|
Wang, Y., Li, J., Zhang, H., et al. (2023) Federated Learning for Multi-Center Alzheimer’s Disease Diagnosis Using Structural MRI. IEEE Journal of Biomedical and Health Informatics, 27, 4892-4901.
|
|
[36]
|
Zhu, X., Liu, Y., Wang, Z., et al. (2022) GAN-Based Data Augmentation for Improving Deep Learning Diagnosis of Mild Cognitive Impairment. Computers in Biology and Medicine, 148, Article ID: 105803.
|
|
[37]
|
Chen, T., Kornblith, S., Norouzi, M., et al. (2020) A Simple Framework for Contrastive Learning of Visual Representations. International Conference on Machine Learning, 119, 1597-1607.
|
|
[38]
|
Mehta, S. and Rastegari, M. (2022) MobileViT: Light-Weight, General-Purpose, and Mobile-Friendly Vision Transformer. The IEEE/CVF International Conference on Computer Vision, 2022, 1800-1810.
|
|
[39]
|
Han, S., Pool, J., Tran, J., et al. (2015) Learning both Weights and Connections for Efficient Neural Networks. Advances in Neural Information Processing Systems, 28, 1135-1143.
|
|
[40]
|
Wang, L., Zhang, Y., Li, H., et al. (2024) Standardized AI-Generated Radiology Reports for Alzheimer’s Disease: A Multicenter Validation Study. Radiology, 302, e232453.
|
|
[41]
|
Liu, X., Wang, J., Zhao, Y., et al. (2024) Human-AI Collaborative Diagnosis for Alzheimer’s Disease: A Prospective, Multicenter Study. npj Digital Medicine, 7, Article No. 45.
|