|
[1]
|
Kang, Y., He, W., Ren, C., Qiao, J., Guo, Q., Hu, J., et al. (2020) Correction: Advances in Targeted Therapy Mainly Based on Signal Pathways for Nasopharyngeal Carcinoma. Signal Transduction and Targeted Therapy, 5, Article No. 265. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Song, L., Liu, J., Shang, Y., Hu, Y., Zhang, J., Ye, Y., et al. (2024) Enhanced MRI Radiomics Based Model for Predicting Recurrence or Metastasis of Nasopharyngeal Cancer (NC) Undergoing Concurrent Chemoradiotherapy: A Retrospective Study. Cancer Control, 31, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, Y., Li, Y., Guan, Y., Huang, Y., Lin, J., Chen, L., et al. (2020) Prevalence of PRKDC Mutations and Association with Response to Immune Checkpoint Inhibitors in Solid Tumors. Molecular Oncology, 14, 2096-2110. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kumar, K.R.R. (2023) Lost in the Bloom: DNA-PKCS in Green Plants. Frontiers in Plant Science, 14, Article 1231678. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, D., Ren, H., Zhao, N. and Hao, J. (2023) Expression and Prognostic Value of DNA Sensors in Hepatocellular Carcinoma. Journal of Leukocyte Biology, 114, 68-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tan, K.T., Yeh, C., Chang, Y., Cheng, J., Fang, W., Yeh, Y., et al. (2020) PRKDC: New Biomarker and Drug Target for Checkpoint Blockade Immunotherapy. Journal for Immuno Therapy of Cancer, 8, e000485. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, J., Jia, L., Tsang, C.M. and Tsao, S.W. (2017) EBV Infection and Glucose Metabolism in Nasopharyngeal Carcinoma. In: Advances in Experimental Medicine and Biology, Springer, 75-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cao, Y. (2017) EBV Based Cancer Prevention and Therapy in Nasopharyngeal Carcinoma. npj Precision Oncology, 1, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yu, G., Hsu, W.L., Coghill, A.E., Yu, K.J., Wang, C., Lou, P., et al. (2019) Whole-Exome Sequencing of Nasopharyngeal Carcinoma Families Reveals Novel Variants Potentially Involved in Nasopharyngeal Carcinoma. Scientific Reports, 9, Article No. 9916. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, X., Yang, F., Lan, L., Wen, N., Li, H. and Sun, X. (2022) Potential Value of PRKDC as a Therapeutic Target and Prognostic Biomarker in Pan-Cancer. Medicine, 101, e29628. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pang, W., Wang, Y., Lu, X., Li, M., Long, F., Chen, S., et al. (2025) Integrated Spatial and Single Cell Transcriptomics Identifies PRKDC as a Dual Prognostic Biomarker and Therapeutic Target in Hepatocellular Carcinoma. Scientific Reports, 15, Article No. 14834. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ling, Z., Fang, Z., Wu, J. and Liu, J. (2021) The Depletion of Circ‐PRKDC Enhances Autophagy and Apoptosis in T‐cell Acute Lymphoblastic Leukemia via MicroRNA‐653‐5p/Reelin Mediation of the PI3K/AKT/mTOR Signaling Pathway. The Kaohsiung Journal of Medical Sciences, 37, 392-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Oh, T., Kang, G., Jo, H., Park, H., Lee, Y. and Ahn, G. (2024) DNA-Dependent Protein Kinase Regulates Cytosolic Double-Stranded DNA Secretion from Irradiated Macrophages to Increase Radiosensitivity of Tumors. Radiotherapy and Oncology, 193, Article 110111. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, B., Ding, Z., Calbay, O., Li, Y., Li, T., Jin, L., et al. (2023) FAP Is Critical for Ovarian Cancer Cell Survival by Sustaining NF-κB Activation through Recruitment of PRKDC in Lipid Rafts. Cancer Gene Therapy, 30, 608-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, Y., Shen, G., Zhang, D., Meng, T., Lv, Z., Chen, L., et al. (2025) N6-Methyladenosine Modification Mediated by METTL3 Promotes DNA-PKCS Expression to Induce Anlotinib Resistance in Osteosarcoma. Clinical and Translational Medicine, 15, e70228. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Xiong, J., Deng, C., Fu, Y., Tang, J., Xie, J. and Chen, Y. (2025) Prognostic and Potential Therapeutic Roles of PRKDC Expression in Lung Cancer. Molecular Biotechnology, 67, 2455-2466. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Chen, H., Pei, L., Xie, P. and Guo, G. (2020) Circ-PRKDC Contributes to 5-Fluorouracil Resistance of Colorectal Cancer Cells by Regulating miR-375/FOXM1 Axis and Wnt/β-Catenin Pathway. OncoTargets and Therapy, 13, 5939-5953. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, E.J., Wankell, M., Palamuthusingam, P., McFarlane, C. and Hebbard, L. (2021) Targeting the PI3K/AKT/mTOR Pathway in Hepatocellular Carcinoma. Biomedicines, 9, Article 1639. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Ghafouri-Fard, S., Khanbabapour Sasi, A., Hussen, B.M., Shoorei, H., Siddiq, A., Taheri, M., et al. (2022) Interplay between PI3K/AKT Pathway and Heart Disorders. Molecular Biology Reports, 49, 9767-9781. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Savova, M.S., Mihaylova, L.V., Tews, D., Wabitsch, M. and Georgiev, M.I. (2023) Targeting PI3K/AKT Signaling Pathway in Obesity. Biomedicine & Pharmacotherapy, 159, Article 114244. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Huang, L., Yang, Q., Chen, H., Wang, Z., Liu, Q. and Ai, S. (2022) Tollip Promotes Hepatocellular Carcinoma Progression via PI3K/AKT Pathway. Open Medicine, 17, 626-637. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bang, J., Jun, M., Lee, S., Moon, H. and Ro, S.W. (2023) Targeting EGFR/PI3K/AKT/mTOR Signaling in Hepatocellular Carcinoma. Pharmaceutics, 15, Article 2130. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, X., Zuo, H., Wu, C., Li, N., Zhou, Q., Cao, F., et al. (2025) Muscone Attenuates Uveitis through the PI3K/AKT Signaling Pathway. Investigative Ophthalmology & Visual Science, 66, 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zhang, H., Pang, J., Zhang, Y., Ma, Y., Fan, F. and Liu, H. (2022) AZD9291 Suppresses Proliferation and Migration of Nasopharyngeal Carcinoma Cells by Inhibiting the PI3K-AKT-mTOR Pathway. Journal of Southern Medical University, 42, 1403-1409.
|
|
[25]
|
Qin, Z.Q., Li, Q.G., Yi, H., et al. (2020) Heterozygous p53-R280T Mutation Enhances the Oncogenicity of NPC Cells Through Activating PI3K-AKT Signaling Pathway. Frontiers in Oncology, 10, Article 104. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lin, T., Tao, Y.Y., Tang, Y.G., et al. (2025) Effect of Biyan Jiedu Capsules on Proliferation and Apoptosis of Nasopharyngeal Carcinoma Cells Based on PI3K/AKT Pathway. China Journal of Chinese Materia Medica, 50, 1920-1927.
|
|
[27]
|
Xiong, Y., Zhong, W., Liu, J., Cheng, B., Fan, J., Zhou, F., et al. (2022) Luteolin Isolated from polygonum Cuspidatum Is a Potential Compound against Nasopharyngeal Carcinoma. BioMed Research International, 2022, e974066. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wu, Y.T., Chen, L.C., Wang, H.H., et al. (2025) Scutellarein Enhances Cisplatin‑Induced Apoptotic Effects by Suppressing the PI3K/AKT‑MDR1 Pathway in Human NPC/HK1 Nasopharyngeal Carcinoma Cells. Biomedical Reports, 22, Article No. 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pan, S., Zhang, X., Guo, Y. and Li, Y. (2022) DPCPX Induces Bim-Dependent Apoptosis in Nasopharyngeal Carcinoma Cells. Cell Biology International, 46, 2050-2059. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Shi, Y., Meng, X., Xu, Y. and Tian, X. (2021) Role of FOXO Protein’s Abnormal Activation through PI3K/AKT Pathway in Platinum Resistance of Ovarian Cancer. Journal of Obstetrics and Gynaecology Research, 47, 1946-1957. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, F., Yang, Y., Ge, J., Wang, C., Chen, Z., Li, Q., et al. (2024) Multi-Omics Revealed the Mechanisms of Codonopsis Pilosula Aqueous Extract in Improving UC through Blocking Abnormal Activation of PI3K/AKT Signaling Pathway. Journal of Ethnopharmacology, 319, Article 117220. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Luo, T., Chen, S., Ruan, Y., Chen, H., Chen, Y., Li, Y., et al. (2023) Downregulation of DDIT4 Ameliorates Abnormal Behaviors in Autism by Inhibiting Ferroptosis via the PI3K/AKT Pathway. Biochemical and Biophysical Research Communications, 641, 168-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Song, S., Fan, M., Wen, X., Shi, X., Lou, Y., He, Z., et al. (2023) Integrated Network Pharmacology and Gut Microbiome Analysis to Reveal the Mechanism of Qu-Zhuo-Tong-Bi Decoction against Hyperuricemia and Gout. Journal of Ethnopharmacology, 316, Article 116736. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jiang, X., Yin, H., Su, W., Quan, H., Yuan, X., Feng, X., et al. (2023) Trifolirhizin Inhibits Proliferation, Migration and Invasion in Nasopharyngeal Carcinoma Cells via PI3K/AKT Signaling Pathway Suppression. Biochemical and Biophysical Research Communications, 667, 111-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xie, J., Shi, Z., Sun, L., Wu, Y., Feng, J., Wang, H., et al. (2025) Fangchinoline Suppresses Nasopharyngeal Carcinoma Progression by Inhibiting SQLE to Regulate the PI3K/AKT Pathway Dysregulation. Phytomedicine, 140, Article 156484. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Castellano, G.M., Zeeshan, S., Garbuzenko, O.B., Sabaawy, H.E., Malhotra, J., Minko, T., et al. (2022) Inhibition of Mtorc1/2 and DNA-PK via CC-115 Synergizes with Carboplatin and Paclitaxel in Lung Squamous Cell Carcinoma. Molecular Cancer Therapeutics, 21, 1381-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cao, C., Wang, Y., Wu, X., Li, Z., Guo, J. and Sun, W. (2022) The Roles and Mechanisms of Circular RNAs Related to mTOR in Cancers. Journal of Clinical Laboratory Analysis, 36, e24783. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, W., Chen, W., Chen, S., Jiang, L., Shu, G., Yin, Y., et al. (2024) Establishment of a Visualized Mouse Orthotopic Xenograft Model of Nasopharyngeal Carcinoma. Cancer Biology & Therapy, 25, Article 2382531. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, D., Du, C., Lin, Y. and Wu, M. (2002) Inhibition of Growth of Human Nasopharyngeal Cancer Xenografts in SCID Mice by Arsenic Trioxide. Tumori Journal, 88, 522-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Hwang, Y., Lu, T., Huang, D., Kuo, Y., Kao, C., Yeh, N., et al. (2009) NOLC1, an Enhancer of Nasopharyngeal Carcinoma Progression, Is Essential for TP53 to Regulate MDM2 Expression. The American Journal of Pathology, 175, 342-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhang, W., Li, W., Yin, C., Feng, C., Liu, B., Xu, H., et al. (2024) PRKDC Induces Chemoresistance in Osteosarcoma by Recruiting GDE2 to Stabilize GNAS and Activate AKT. Cancer Research, 84, 2873-2887. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhou, Y., Liu, F., Xu, Q., Yang, B., Li, X., Jiang, S., et al. (2020) Inhibiting Importin 4-Mediated Nuclear Import of CEBPD Enhances Chemosensitivity by Repression of PRKDC-Driven DNA Damage Repair in Cervical Cancer. Oncogene, 39, 5633-5648. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, J., Jiang, Y., Yu, Y. and Li, J. (2022) Preclinical Evaluation of the Dual mTORC1/2 Inhibitor Sapanisertib in Combination with Cisplatin in Nasopharyngeal Carcinoma. European Journal of Pharmacology, 915, Article 174688. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, H., Guo, H.M., Wu, Q.L., Yan, H., Liu, G. and Gao, M. (2021) MicroRNA-203a-3p Affects the Biological Characteristics of Nasopharyngeal Carcinoma by Targeting Vascular Endothelial Growth Factor-C. Journal of Physiology and Pharmacology, 72, 605-613. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, J., Zhou, J. and Xiao, S. (2020) Shikonin Inhibits Growth, Invasion and Glycolysis of Nasopharyngeal Carcinoma Cells through Inactivating the Phosphatidylinositol 3 Kinase/AKT Signal Pathway. Anti-Cancer Drugs, 31, 932-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Peng, Y., Xia, J., Zhou, D., et al. (2024) S100A2 Upregulates GLUT1 Expression to Promote Glycolysis in the Progression of Nasopharyngeal Carcinoma. Histology and Histopathology, 39, 1669-1683.
|
|
[47]
|
Sun, Y., Chen, K., Lin, G., Wan, F., Chen, L. and Zhu, X. (2021) Silencing C-Jun Inhibits Autophagy and Abrogates Radioresistance in Nasopharyngeal Carcinoma by Activating the PI3K/AKT/mTOR Pathway. Annals of Translational Medicine, 9, 1085-1085. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Fang, S., Peng, L., Zhang, M., Hou, R., Deng, X., Li, X., et al. (2024) MiR-2110 Induced by Chemically Synthesized Cinobufagin Functions as a Tumor-Metastatic Suppressor via Targeting fgfr1 to Reduce PTEN Ubiquitination Degradation in Nasopharyngeal Carcinoma. Environmental Toxicology, 39, 3548-3562. [Google Scholar] [CrossRef] [PubMed]
|