由颅内动脉狭窄介导的认知功能障碍
Cognitive Impairment Mediated by Intracranial Arterial Stenosis
摘要: 颅内动脉狭窄是认知障碍的重要危险因素,本文对颅内动脉狭窄患者的辅助检查结果和认知损害表现进行综述,旨在进一步明确颅内动脉狭窄介导认知功能障碍的机制,为相关患者早期诊断、早期干预以及减少认知功能缺损提供依据,并指出未来可能的研究方向。
Abstract: Intracranial arterial stenosis is a significant risk factor for cognitive impairment. This article reviews the results of auxiliary examinations and the manifestations of cognitive impairment in patients with intracranial arterial stenosis. The purpose is to further clarify the mechanism of cognitive impairment mediated by intracranial arterial stenosis, provide a basis for the early diagnosis, early intervention, and reduction of cognitive deficit in relevant patients, and point out potential future research directions.
文章引用:刘宗元, 王鹏. 由颅内动脉狭窄介导的认知功能障碍[J]. 临床个性化医学, 2025, 4(6): 1-7. https://doi.org/10.12677/jcpm.2025.46471

1. 引言

随着老龄化的加剧,认知障碍已成为全球健康的主要威胁之一,预计痴呆症病例数将于2040年增加至8000万[1]。研究显示阿尔茨海默病是痴呆的主要原因,血管性痴呆是第二常见痴呆原因[2]。血管性认知障碍(Vascular Cognitive Impairment, VCI)与阿尔茨海默病(Alzheimer’s disease, AD)并不是完全独立的病种,在认知障碍患者身上两者常有共存,神经血管混合退行性痴呆已成为与年龄相关的认知障碍的主要原因,脑血管因素对认知障碍疾病的发生发展起关键作用[3]

一项基于中国人群的研究报告称,7%的40岁以上人口存在颅内动脉狭窄(Intracranial arterial stenosis, ICS),60岁以上人群中,约23%的人口患有颅内动脉粥样硬化疾病[4]。以颅内动脉粥样硬化性狭窄(Intracranial atherosclerotic stenosis, ICAS)为主的颅内动脉狭窄与认知障碍有着密切的关系[5],与VCI和AD的临床表现、神经影像学和病理学标志物有关,但两者之间确切的病理生理学联系的研究并不完善[6]

2. ICS的病理生理机制与辅助检查

2.1. ICS病理生理机制

ICS常见病因为动脉粥样硬化[7],ICAS占颅内动脉狭窄的90% [8]。ICAS是指因动脉粥样硬化导致颅内动脉管腔异常缩窄(狭窄率 ≥ 50%)的病理状态,可以引起急性脑卒中以及慢性脑灌注不足损伤,涵盖脑底动脉环(Willis动脉环)及其主要分支,最好发于大脑中动脉(cerebral middle artery, MCA)水平段[9]。其病理生理机制为胆固醇颗粒沉积于血管内皮损伤处,伴随着慢性炎症反应,巨噬细胞和平滑肌细胞吞噬脂质后持续实变形成动脉粥样硬化[10]。高血压,糖尿病,高脂血症,吸烟,高同型半胱氨酸血症以及微量白蛋白尿等是颅内动脉粥样硬化性狭窄的独立危险因素[7] [11] [12]

ICAS的治疗包括药物治疗、血管内治疗以及生活方式控制。抗血小板药物是药物治疗的核心也是ICAS治疗的核心。MCA成形术对MCA重度狭窄的患者认知功能预后有保护作用。针对高血压、糖尿病等独立危险因素的控制也至关重要。

除此之外,烟雾病,血管炎以及其他因素也可导致颅内动脉狭窄[13] [14]

2.2. 颅内动脉狭窄辅助检查

2.2.1. 超声

经颅多普勒超声(Transcranial Doppler, TCD)可以即时、无创的评估脑动脉内的血流速度,是临床工作中常用的技术[15]。经颅彩色多普勒超声(Transcranial Color-Coded Sonography, TCCS)与之类似,常被用于诊断中度和重度ICAS [16]。特殊应用中的脑血管反应性测试可预测颅脑动脉是否狭窄、脑血流量是否受损[17]

ICAS患者的典型改变包括局部血流速度显著增高,血流频谱紊乱,侧枝循环开放,狭窄远端血流改变。狭窄闭塞部位的临界流速可能是区分严重MCA狭窄和闭塞的可靠指标[18]

2.2.2. 磁共振成像

磁共振成像(Magnetic Resonance Imaging, MRI)对诊断潜在颅内血管病变具有很高的灵敏性,作为非侵入性检查方法在研究中具有重要意义[19]

ICS患者颅脑MRI表现多种多样,体现出不同病理生理过程对脑组织的影响,利用高分辨率MRI技术能观察到如下几种典型的影像学特征:血管壁异常,脑白质病变,微出血,侧支循环形成,梗死和软化灶。

ICS引发的颅脑MRI改变与认知障碍存在相关性,在进行相关性分析时需要综合运用各种高级MRI序列才能得到全面准确的评估结果[20]。高分辨率磁共振成像(High resolution magnetic resonance imaging, HR-MRI)相对优于传统的MRI序列的是可以通过直接观察血管腔和斑块来准确测量狭窄程度(特别是中度和重度狭窄) [21],可以为ICS的临床评估和治疗方案的制定提供准确的影像学参考[9],但是HR-MRI的昂贵、有创性以及对肾功能的负荷限制了其在临床中的应用。动脉自旋标记(arterial spin labeling, ASL)成像可无创采集全脑脑血流量(Cerebral Blood Flow, CBF)图,是评估ICS的重要手段,避开了传统的颅脑MRI灌注检查的有创性、药物过敏可能以及肾功能负荷,但信噪比低,倾向于高估重度慢性MCA狭窄患者的灌注不足[22],对极重度ICS患者的检查结果准确性较差。有研究证明三维时间飞跃法磁共振血管成像(3D Time-of-Flight Magnetic Resonance Angiography, 3D TOF-MRA)在检测认知障碍患者尤其是老年患者和具有血管风险因素的患者的血管病变方面,显示出较高的诊断率[23],动脉传输伪影(arterial transit artefact, ATA)可能是受累动脉区域梗死的独立预测因子[24]。扩散张量成像(diffusion tensor imaging, DTI)通过探测和量化水分子的运动方向和受限程度,可以无创显示脑白质纤维完整性、提供组织微结构信息,比常规MRI更敏感的检测早期或细微的白质病变,可以在验证脑灌注量较少后脑结构改变进而造成认知功能障碍过程中发挥重要作用。

3. ICS与认知障碍的相关性分析

有多项病例对照研究显示,ICAS与认知障碍存在相关性。例如,Nevine的脑动脉狭窄研究纳入了15名正常对照和没有结构性脑损伤的无症状脑动脉狭窄(cerebral arterial stenosis, CAS)患者30人,被分为ICS组和颅外动脉狭窄(Extracranial Artery Stenosis, ECS)组,每组15名患者。结果显示无症状CAS患者有较高的认知功能障碍患病率。ICS组有更多的执行功能障碍,而ECS组有更多的记忆和信息处理功能障碍[25]。一项纽约市的研究纳入了85名受试者(平均年龄60 ± 6岁),结果提示颅内大动脉狭窄与至少一个认知领域的表现较差相关,主要是与较低的工作记忆、列表学习和整体认知相关[26]。另有一项北京协和医院的研究显示ICAS患者存在不同程度的认知功能受损,呈现出广泛的双侧皮质、白质及皮质下脑结构改变[27] [28]一项大脑动脉粥样硬化研究中,非致残性缺血性中风组的患者认知功能,包括整体认知、记忆、注意力、执行功能和语言功能明显受损,其中没有缺血半影的ICAS患者的执行、记忆和语言功能得到更好的保留[5]

Saima的脑灌注量研究纳入了381例患者(平均年龄 = 72.3 ± 7.9岁),结果表明,ICS患者灰质(grey matter, GM)空间变异系数(spatial coefficient of variation, sCoV)较高,CBF较低。ICAS与sCoV的关联具有统计学意义。较高sCoV检测到的受损CBF与诊断为ICS的个体的认知障碍有关,sCoV部分介导ICS和认知之间的联系。ICS与视觉构建性能较差相关,sCoV越高,视觉构建性能越差[29]

Baogen的脑灌注量研究包括47名患有ICAS或闭塞的患者和40名对照组,研究显示,病灶侧同侧MCA区域的CBF明显下降,对侧CBF升高。GM和病变同侧MCA区域的sCoV显着增加,基于GM区域或MCA区域的sCoV值与ICAS患者的整体认知功能、记忆功能和执行功能显著相关。与CBF相比,脑血流速度sCoV可能是颅内大血管疾病患者认知障碍更稳定可靠的指标[30]。也有学者纳入122名参与者完善ASL成像进行脑灌注量研究,发现随着认知缺陷严重程度与sCoV呈正相关。当只检查颞叶的sCoV时,也发现了类似的总体趋势[31]

另一项在中国的认知障碍研究显示,颅内动脉狭窄与淀粉样蛋白非依赖性神经变性有关,特别是海马萎缩[32]

巴塞罗那无症状颅内动脉粥样硬化研究纳入了神经心理学研究的95名参与者。受试者年龄在50~65岁之间,结果显示穹窿、皮质脊髓和前丘脑这些重要区域的平均各向异性分数(fraction anisotropy, FA)与注意力、精神运动速度和视觉空间技能的表现不佳独立相关[33]

多项队列研究同样显示ICS与认知障碍具有相关性。例如,新加坡的一项队列研究中,364名患者被纳入分析,平均年龄(±SD)为71.9 (±8.0)岁,研究表明ICS与较差的执行功能相关(β = −0.37,95%置信区间 = −0.68至−0.05,p = 0.022),并改变固定随访时间对记忆力(p = 0.005)和视觉运动速度(p = 0.047)的影响[34]。巴塞罗那无症状颅内动脉粥样硬化(AsIA)研究包括933名白人受试者(平均年龄66岁,64%男性),随访中发现亚临床CCS受试者的认知障碍发生率显著升高(21.4% vs无CCS受试者为9%) [35]。Bibek Gyanwali对老年人认知能力下降的队列研究纳入了368名记忆诊所患者。3年随访中,较高的基线GM-sCoV与记忆域的下降相关[36]

4. ICS介导认知障碍的相关机制

ICS会造成血流动力学改变,颅内动脉狭窄患者CBF明显下降[37],这种血流动力学的不平衡或许与认知功能下降密切相关。同时ICS会进一步促进粥样斑块形成发展,加速动脉粥样硬化及狭窄进程[29]

研究表明,慢性脑低灌注(Chronic Cerebral Hypoperfusion, CCH)是各类VCI亚型的共同特征[38]。CCH能整合VCI的已知机制包括慢性炎症、氧化应激、神经退行性变和脑萎缩等,是潜在病因的关键。CCH可直接通过葡萄糖和氧气供应的减少导致脑细胞出现结构和功能上的改变并影响认知功能[39]

CCH还可以通过对血脑屏障(Blood-brain barrier, BBB)的影响来介导认知功能的下降。血脑屏障由内皮细胞、周细胞、星形胶质细胞终足和基底膜组成,作为中枢神经系统重要的解剖和生物化学屏障严格调控血液与脑组织间的物质交换从而维持脑实质微环境稳态[40]。CCH会诱导细胞能量失衡,除影响ATP代谢并导致酸中毒外,还会在中枢神经系统中产生兴奋性毒性状态[41],这会促进脑中的血管通透性增加[42],并介导内皮细胞破坏[43],影响BBB的结构与功能。CCH引起的缺氧会导致脑微血管内皮细胞中氧化应激[44],从而改变内皮细胞功能,导致BBB功能障碍[45]。CBF的减少引发的由一系列复杂事件组成的缺血级联反应,各种脑细胞表达促炎细胞因子、趋化因子和炎症介质。CCH期间BBB完整性的丧失,促炎趋化因子和细胞因子的表达增加触发白细胞浸润。激活的白细胞通过进一步释放促炎细胞因子,导致CCH的慢性炎症状态,形成内皮激活的正反馈循环,使BBB损伤持续存在[40]。上述因素破坏BBB及对应的神经血管单位,导致血管调节功能异常。这在临床上可能导致患者的认知能力加速下降和临床结局恶化[36]。BBB损伤的结果是血管周围空间的尺寸增加,血管周围空间是大脑中复杂的液体清除系统的一部分,这种改变会导致有害废物在大脑中积累。同时BBB损伤是脑白质病变(White Matter Lesions, WML)形成的起点,是相关认知下降的核心促成机制。兴奋性毒性、氧化应激、微血管损伤、血脑屏障功能障碍和继发性炎症可加重脑内低灌注损伤并导致永久性脑损伤[40]

CCH可能是VCI最早的、潜在的指标,而脑萎缩和WML发生在CCH下游,是更动态和可检测的变化[39]

除此之外,颅内动脉狭窄还可能通过微栓塞介导认知障碍,有研究显示微栓塞信号(Microembolic signals, MES)与认知功能损害呈正相关,MES可能是认知功能下降的一个重要预测因子[46]

5. 总结

综合相关研究,ICS对认知障碍的发生发展有明显的促进作用。颅内动脉给大脑供血时结构和分布复杂多样且不同区域供血需求不同,这使得各部位动脉狭窄引起的脑灌注量变化与其导致的影像学异常和临床表现有明显的差别,深入研究这些因素之间的相关性有助于进一步明确颅内动脉狭窄引发认知障碍的机制,并为相关患者的诊断及防治提供依据。接下来的研究中,可以考虑对比不同颅内动脉狭窄或者颅内动脉狭窄与颅外动脉狭窄对不同认知领域的影响,或进行队列研究通过ASL成像以及DTI采集的影像来分析相关影像学特征是否能为预测ICS患者的认知水平变化提供指导,以及探讨不同的治疗方式与ICS患者认知功能是否相关,在此基础上也可以考虑寻找新的BBB相关的生物化学类标记物。

NOTES

*通讯作者。

参考文献

[1] Rizzi, L., Rosset, I. and Roriz-Cruz, M. (2014) Global Epidemiology of Dementia: Alzheimer’s and Vascular Types. BioMed Research International, 2014, 1-8. [Google Scholar] [CrossRef] [PubMed]
[2] Iadecola, C., Duering, M., Hachinski, V., Joutel, A., Pendlebury, S.T., Schneider, J.A., et al. (2019) Vascular Cognitive Impairment and Dementia. Journal of the American College of Cardiology, 73, 3326-3344. [Google Scholar] [CrossRef] [PubMed]
[3] Iadecola, C. (2013) The Pathobiology of Vascular Dementia. Neuron, 80, 844-866. [Google Scholar] [CrossRef] [PubMed]
[4] Suri, M.F.K. and Johnston, S.C. (2009) Epidemiology of Intracranial Stenosis. Journal of Neuroimaging, 19, 11S-16S. [Google Scholar] [CrossRef] [PubMed]
[5] Yin, S., Zhang, Y., Du, B., Cao, S., Wang, K. and Wei, Q. (2024) Effects of Intracranial Artery Stenosis of Anterior Circulation on Cognition—A CT Perfusion-Based Study. Brain and Behavior, 14, e3521. [Google Scholar] [CrossRef] [PubMed]
[6] Yang, D., Cherian, L., Arfanakis, K., Schneider, J.A., Aggarwal, N.T. and Gutierrez, J. (2024) Intracranial Atherosclerotic Disease and Neurodegeneration: A Narrative Review and Plausible Mechanisms. Journal of Stroke and Cerebrovascular Diseases, 33, Article 108015. [Google Scholar] [CrossRef] [PubMed]
[7] Carvalho, M., Oliveira, A., Azevedo, E. and Bastos-Leite, A.J. (2014) Intracranial Arterial Stenosis. Journal of Stroke and Cerebrovascular Diseases, 23, 599-609. [Google Scholar] [CrossRef] [PubMed]
[8] Chimowitz, M.I., Lynn, M.J., Derdeyn, C.P., Turan, T.N., Fiorella, D., Lane, B.F., et al. (2011) Stenting versus Aggressive Medical Therapy for Intracranial Arterial Stenosis. New England Journal of Medicine, 365, 993-1003. [Google Scholar] [CrossRef] [PubMed]
[9] Sun, J., Feng, X., Feng, P., Liu, Y., Yang, H., Yang, X., et al. (2022) HR-MRI Findings of Intracranial Artery Stenosis and Distribution of Atherosclerotic Plaques Caused by Different Etiologies. Neurological Sciences, 43, 5421-5430. [Google Scholar] [CrossRef] [PubMed]
[10] Chen, L.H., Spagnolo-Allende, A., Yang, D., Qiao, Y. and Gutierrez, J. (2024) Epidemiology, Pathophysiology, and Imaging of Atherosclerotic Intracranial Disease. Stroke, 55, 311-323. [Google Scholar] [CrossRef] [PubMed]
[11] Kim, J., Park, K., Shin, D., Park, M. and Kwon, O. (2016) Relation of Serum Homocysteine Levels to Cerebral Artery Calcification and Atherosclerosis. Atherosclerosis, 254, 200-204. [Google Scholar] [CrossRef] [PubMed]
[12] Zhang, X., Chen, M., Yao, Q., Zhang, N., Fan, J., Shi, J., et al. (2022) Correlation between Microalbuminuria and Atherosclerotic Intracranial and Extracranial Arterial Stenosis in Patients with Cerebral Infarction. Journal of Clinical Neuroscience, 101, 118-123. [Google Scholar] [CrossRef] [PubMed]
[13] Demartini Jr, Z., Teixeira, B.C., Koppe, G.L., Gatto, L.A.M., Roman, A. and Munhoz, R.P. (2022) Moyamoya Disease and Syndrome: A Review. Radiologia Brasileira, 55, 31-37. [Google Scholar] [CrossRef] [PubMed]
[14] Salvarani, C., Brown, R.D., Calamia, K.T., Christianson, T.J.H., Weigand, S.D., Miller, D.V., et al. (2007) Primary Central Nervous System Vasculitis: Analysis of 101 Patients. Annals of Neurology, 62, 442-451. [Google Scholar] [CrossRef] [PubMed]
[15] Sarabian, M., Babaee, H. and Laksari, K. (2022) Physics-Informed Neural Networks for Brain Hemodynamic Predictions Using Medical Imaging. IEEE Transactions on Medical Imaging, 41, 2285-2303. [Google Scholar] [CrossRef] [PubMed]
[16] Rocha, L.J.D.A., Zotin, M.C.Z., Santos, R.D.S.A., Libardi, M.C., Camilo, M.R., Barreira, C.M.A., et al. (2024) High Prevalence of Intracranial Arterial Stenosis among Acute Ischemic Stroke Patients in a Brazilian Center: A Transcranial Color-Coded Duplex Sonography Study. Arquivos de Neuro-Psiquiatria, 82, 1-8. [Google Scholar] [CrossRef] [PubMed]
[17] Milanlioglu, A., Yaman, A., Kolukisa, M. and Asil, T. (2022) Evaluation of Cerebral Hemodynamic Status in Patients with Unilateral Symptomatic Carotid Artery Stenosis during Motor Tasks, through Use of Transcranial Doppler Sonography. Arquivos de Neuro-Psiquiatria, 80, 339-343. [Google Scholar] [CrossRef] [PubMed]
[18] Mo, X., Ma, Z., Lin, H., Ou, A., He, X., Liu, G., et al. (2022) Multi-Assessment of Critical Steno-Occlusive Middle Cerebral Arteries: Transcranial Doppler Combined with Magnetic Resonance Angiography. Heliyon, 8, e10806. [Google Scholar] [CrossRef] [PubMed]
[19] Destrebecq, V., Sadeghi, N., Lubicz, B., Jodaitis, L., Ligot, N. and Naeije, G. (2020) Intracranial Vessel Wall MRI in Cryptogenic Stroke and Intracranial Vasculitis. Journal of Stroke and Cerebrovascular Diseases, 29, Article 104684. [Google Scholar] [CrossRef] [PubMed]
[20] 王卫国, 徐军锋. 脑动脉狭窄程度及载脂蛋白B/低密度脂蛋白胆固醇比值与血管性认知障碍相关性及临床应用价值[J]. 山西医药杂志, 2023, 52(22): 1708-1712.
[21] Zhao, D., Li, R., Li, C., Chen, X., Yu, J., Zhang, Y., et al. (2023) Assessment of the Degree of Arterial Stenosis in Intracranial Atherosclerosis Using 3D High-Resolution MRI: Comparison with Time-of-Flight MRA, Contrast-Enhanced MRA, and DSA. Clinical Radiology, 78, e63-e70. [Google Scholar] [CrossRef] [PubMed]
[22] Tian, B., Liu, Q., Wang, X., Chen, S., Xu, B., Zhu, C., et al. (2018) Chronic Intracranial Artery Stenosis: Comparison of Whole-Brain Arterial Spin Labeling with CT Perfusion. Clinical Imaging, 52, 252-259. [Google Scholar] [CrossRef] [PubMed]
[23] Park, H.Y., Suh, C.H., Shim, W.H., Heo, H., Kim, W.S., Lim, J., et al. (2022) Diagnostic Yield of TOF-MRA for Detecting Incidental Vascular Lesions in Patients with Cognitive Impairment: An Observational Cohort Study. Frontiers in Neurology, 13, Article 958037. [Google Scholar] [CrossRef] [PubMed]
[24] Peer, S. and Singh, P. (2023) Intraluminal Arterial Transit Artifact as a Predictor of Intracranial Large Artery Stenosis on 3D Time of Flight MR Angiography: Expanding the Application of Arterial Spin Labeling MRI in Ischemic Stroke. Journal of Clinical Imaging Science, 13, Article 17. [Google Scholar] [CrossRef] [PubMed]
[25] Nahas, N.E., Zaki, A., Zakaria, M., Naser, A.A.E., Bassiony, A.E., Abdeldayem, E., et al. (2022) Cognitive Impairment in Asymptomatic Cerebral Arterial Stenosis: A P300 Study. Neurological Sciences, 44, 601-609. [Google Scholar] [CrossRef] [PubMed]
[26] Gutierrez, J., Porras, T.N., Yoo-Jeong, M., Khasiyev, F., Igwe, K.C., Laing, K.K., et al. (2021) Cerebrovascular Contributions to Neurocognitive Disorders in People Living with HIV. Journal of Acquired Immune Deficiency Syndromes, 88, 79-85. [Google Scholar] [CrossRef] [PubMed]
[27] 司倩倩, 程安琪, 范晓媛, 张晓倩, 李明利, 冯逢, 刘彩燕, 徐蔚海. 症状性颅内动脉粥样硬化性狭窄患者的认知功能及脑结构改变[J]. 中国卒中杂志, 2023, 18(11): 1228-1237.
[28] 司倩倩, 程安琪, 范晓媛, 张晓倩, 李明利, 冯逢, 刘彩燕, 徐蔚海. 颅内动脉粥样硬化性狭窄与认知功能的关系研究[J]. 中国卒中杂志, 2023, 18(4): 418-427.
[29] Hilal, S., Mutsaerts, H.J.M.M., Ferro, D.A., Petr, J., Kuijf, H.J., Biessels, G.J., et al. (2021) The Effects of Intracranial Stenosis on Cerebral Perfusion and Cognitive Performance. Journal of Alzheimers Disease, 79, 1369-1380. [Google Scholar] [CrossRef] [PubMed]
[30] Du, B., Wu, P., Yin, S., Cao, S., Mo, Y., Liu, Y., et al. (2023) Intracranial Atherosclerotic Stenosis Is Associated with Cognitive Impairment in Patients with Nondisabling Ischemic Stroke: A pCASL-Based Study. Brain Connectivity, 13, 508-518. [Google Scholar] [CrossRef] [PubMed]
[31] Morgan, C.A., Melzer, T.R., Roberts, R.P., Wiebels, K., Mutsaerts, H.J.M.M., Spriggs, M.J., et al. (2021) Spatial Variation of Perfusion MRI Reflects Cognitive Decline in Mild Cognitive Impairment and Early Dementia. Scientific Reports, 11, Article No. 23325. [Google Scholar] [CrossRef] [PubMed]
[32] Kang, K.M., Byun, M.S., Lee, J.H., Yi, D., Choi, H.J., Lee, E., et al. (2020) Association of Carotid and Intracranial Stenosis with Alzheimer’s Disease Biomarkers. Alzheimers Research & Therapy, 12, Article No. 106. [Google Scholar] [CrossRef] [PubMed]
[33] López-Olóriz, J., López-Cancio, E., Arenillas, J.F., Hernández, M., Dorado, L., Dacosta-Aguayo, R., et al. (2014) Diffusion Tensor Imaging, Intracranial Vascular Resistance and Cognition in Middle-Aged Asymptomatic Subjects. Cerebrovascular Diseases, 38, 24-30. [Google Scholar] [CrossRef] [PubMed]
[34] Lim, M.J.R., Tan, C.S., Gyanwali, B., Chen, C. and Hilal, S. (2021) The Effect of Intracranial Stenosis on Cognitive Decline in a Memory Clinic Cohort. European Journal of Neurology, 28, 1829-1839. [Google Scholar] [CrossRef] [PubMed]
[35] Crespo-Cuevas, A.M., Canento, T., Hernández-Perez, M., Cáceres, C., González, A., Ispierto, L., et al. (2020) The Barcelona-Asymptomatic Intracranial Atherosclerosis (AsIA) Study: Subclinical Cervico-Cerebral Stenosis and Middle Cerebral Artery Pulsatility Index as Predictors of Long-Term Incident Cognitive Impairment. Atherosclerosis, 312, 104-109. [Google Scholar] [CrossRef] [PubMed]
[36] Gyanwali, B., Mutsaerts, H.J., Tan, C.S., Kaweilh, O.R., Petr, J., Chen, C., et al. (2022) Association of Arterial Spin Labeling Parameters with Cognitive Decline, Vascular Events, and Mortality in a Memory-Clinic Sample. The American Journal of Geriatric Psychiatry, 30, 1298-1309. [Google Scholar] [CrossRef] [PubMed]
[37] Chen, Z., Liu, J., Wang, A., Wu, B., Cheng, Z., Jiang, Y., et al. (2024) Hemodynamic Impairment of Blood Pressure and Stroke Mechanisms in Symptomatic Intracranial Atherosclerotic Stenosis. Stroke, 55, 1798-1807. [Google Scholar] [CrossRef] [PubMed]
[38] Venkat, P., Chopp, M. and Chen, J. (2015) Models and Mechanisms of Vascular Dementia. Experimental Neurology, 272, 97-108. [Google Scholar] [CrossRef] [PubMed]
[39] Rajeev, V., Fann, D.Y., Dinh, Q.N., Kim, H.A., De Silva, T.M., Lai, M.K.P., et al. (2022) Pathophysiology of Blood Brain Barrier Dysfunction during Chronic Cerebral Hypoperfusion in Vascular Cognitive Impairment. Theranostics, 12, 1639-1658. [Google Scholar] [CrossRef] [PubMed]
[40] Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
[41] Profaci, C.P., Munji, R.N., Pulido, R.S. and Daneman, R. (2020) The Blood-Brain Barrier in Health and Disease: Important Unanswered Questions. Journal of Experimental Medicine, 217, e20190062. [Google Scholar] [CrossRef] [PubMed]
[42] Xhima, K., Weber-Adrian, D. and Silburt, J. (2016) Glutamate Induces Blood-Brain Barrier Permeability through Activation of N-Methyl-D-Aspartate Receptors. The Journal of Neuroscience, 36, 12296-12298. [Google Scholar] [CrossRef] [PubMed]
[43] Collard, C.D., Park, K.A., Montalto, M.C., Alapati, S., Buras, J.A., Stahl, G.L., et al. (2002) Neutrophil-Derived Glutamate Regulates Vascular Endothelial Barrier Function. Journal of Biological Chemistry, 277, 14801-14811. [Google Scholar] [CrossRef] [PubMed]
[44] Chen, R., Lai, U.H., Zhu, L., Singh, A., Ahmed, M. and Forsyth, N.R. (2018) Reactive Oxygen Species Formation in the Brain at Different Oxygen Levels: The Role of Hypoxia Inducible Factors. Frontiers in Cell and Developmental Biology, 6, Article 132. [Google Scholar] [CrossRef] [PubMed]
[45] Lewén, A., Matz, P. and Chan, P.H. (2000) Free Radical Pathways in CNS Injury. Journal of Neurotrauma, 17, 871-890. [Google Scholar] [CrossRef] [PubMed]
[46] Yan, J., Li, Z., Wills, M., Rajah, G., Wang, X., Bai, Y., et al. (2021) Intracranial Microembolic Signals Might Be a Potential Risk Factor for Cognitive Impairment. Neurological Research, 43, 867-873. [Google Scholar] [CrossRef] [PubMed]