|
[1]
|
Horiuchi, T., Mitoma, H., Harashima, S., Tsukamoto, H. and Shimoda, T. (2010) Transmembrane TNF-α: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology, 49, 1215-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Jiang, Y., Yu, M., Hu, X., Han, L., Yang, K., Ba, H., et al. (2017) STAT1 Mediates Transmembrane TNF-α-Induced Formation of Death-Inducing Signaling Complex and Apoptotic Signaling via Tnfr1. Cell Death & Differentiation, 24, 660-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tartaglia, L.A. and Goeddel, D.V. (1992) Two TNF Receptors. Immunology Today, 13, 151-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Huyghe, J., Priem, D. and Bertrand, M.J.M. (2023) Cell Death Checkpoints in the TNF Pathway. Trends in Immunology, 44, 628-643. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ting, A.T. and Bertrand, M.J.M. (2016) More to Life than NF-κB in TNFR1 Signaling. Trends in Immunology, 37, 535-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
van Loo, G. and Bertrand, M.J.M. (2023) Death by TNF: A Road to Inflammation. Nature Reviews Immunology, 23, 289-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Medler, J. and Wajant, H. (2019) Tumor Necrosis Factor Receptor-2 (TNFR2): An Overview of an Emerging Drug Target. Expert Opinion on Therapeutic Targets, 23, 295-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dondelinger, Y., Jouan-Lanhouet, S., Divert, T., Theatre, E., Bertin, J., Gough, P.J., et al. (2015) NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 60, 63-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lafont, E., Draber, P., Rieser, E., Reichert, M., Kupka, S., de Miguel, D., et al. (2018) TBK1 and IKKε Prevent TNF-Induced Cell Death by RIPK1 Phosphorylation. Nature Cell Biology, 20, 1389-1399. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Xu, D., Jin, T., Zhu, H., Chen, H., Ofengeim, D., Zou, C., et al. (2018) TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging. Cell, 174, 1477-1491.e19. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, L., Du, F. and Wang, X. (2008) TNF-α Induces Two Distinct Caspase-8 Activation Pathways. Cell, 133, 693-703. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. and Verma, I.M. (1996) Suppression of TNF-α-Induced Apoptosis by NF-κB. Science, 274, 787-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, X., Dowling, J.P. and Zhang, J. (2019) RIPK1 Can Mediate Apoptosis in Addition to Necroptosis during Embryonic Development. Cell Death & Disease, 10, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tao, P., Sun, J., Wu, Z., Wang, S., Wang, J., Li, W., et al. (2020) A Dominant Autoinflammatory Disease Caused by Non-Cleavable Variants of RIPK1. Nature, 577, 109-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dapas, M. and Dunaif, A. (2022) Deconstructing a Syndrome: Genomic Insights into PCOS Causal Mechanisms and Classification. Endocrine Reviews, 43, 927-965. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Escobar-Morreale, H.F., Luque-Ramírez, M. and González, F. (2011) Circulating Inflammatory Markers in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Fertility and Sterility, 95, 1048-1058.e2. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sadeghi, H.M., Adeli, I., Calina, D., Docea, A.O., Mousavi, T., Daniali, M., et al. (2022) Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. International Journal of Molecular Sciences, 23, Article 583. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tremellen, K. and Pearce, K. (2012) Dysbiosis of Gut Microbiota (DOGMA)—A Novel Theory for the Development of Polycystic Ovarian Syndrome. Medical Hypotheses, 79, 104-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
韩启新, 徐洁颖, 储维薇, 等. 雄激素与肠道菌群在多囊卵巢综合征中作用机制的研究进展[J]. 生理科学进展, 2020, 51(1): 77-81.
|
|
[20]
|
Shabbir, S., Khurram, E., Moorthi, V.S., Eissa, Y.T.H., Kamal, M.A. and Butler, A.E. (2023) The Interplay between Androgens and the Immune Response in Polycystic Ovary Syndrome. Journal of Translational Medicine, 21, Article No. 259. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gambineri, A., Pelusi, C., Vicennati, V., Pagotto, U. and Pasquali, R. (2002) Obesity and the Polycystic Ovary Syndrome. International Journal of Obesity, 26, 883-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ha, L.X., Wu, Y.Y., Yin, T., et al. (2021) Effect of TNF-Alpha on Endometrial Glucose Transporter-4 Expression in Patients with Polycystic Ovary Syndrome through Nuclear Factor-Kappa B Signaling Pathway Activation. Journal of Physiology and Pharmacology, 72, 965-973.
|
|
[23]
|
He, Y., Lu, L., Wei, X., Jin, D., Qian, T., Yu, A., et al. (2016) The Multimerization and Secretion of Adiponectin Are Regulated by TNF-α. Endocrine, 51, 456-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Guan, H.R., Li, B., Zhang, Z.H., et al. (2024) Exploring the Efficacy and Mechanism of Bailing Capsule to Improve Polycystic Ovary Syndrome in Mice Based on Intestinal-Derived LPS-TLR4 Pathway. Journal of Ethnopharmacology, 331, Article 118274. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shivyari, F.T., Pakniat, H., Nooshabadi, M.R., Rostami, S., Haghighian, H.K. and Shiri-Shahsavari, M.R. (2024) Examining the Oleoylethanolamide Supplement Effects on Glycemic Status, Oxidative Stress, Inflammation, and Anti-Mullerian Hormone in Polycystic Ovary Syndrome. Journal of Ovarian Research, 17, Article No. 111. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kazemi, M., Lalooha, F., Nooshabadi, M.R., Dashti, F., Kavianpour, M. and Haghighian, H.K. (2021) Randomized Double Blind Clinical Trial Evaluating the Ellagic Acid Effects on Insulin Resistance, Oxidative Stress and Sex Hormones Levels in Women with Polycystic Ovarian Syndrome. Journal of Ovarian Research, 14, Article No. 100. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Liang, J.X., Zhang, Y., Xiao, C.H., et al. (2023) Application Value of Tumor Necrosis Factor Inhibitors in in Vitro Fertilization-Embryo Transfer in Infertile Women with Polycystic Ovary Syndrome. BMC Pregnancy and Childbirth, 23, Article No. 247. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Pan, M.L., Chen, L.R., Tsao, H.M., et al. (2017) Polycystic Ovarian Syndrome and the Risk of Subsequent Primary Ovarian Insufficiency: A Nationwide Population-Based Study. Menopause, 24, 803-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
中国医师协会妇产科医师分会, 中华医学会妇产科学分会子宫内膜异位症协作组. 子宫内膜异位症诊治指南(第三版) [J]. 中华妇产科杂志, 2021, 56(12): 812-824.
|
|
[30]
|
Tomassetti, C., Johnson, N.P., Petrozza, J., Abrao, M.S., Einarsson, J.I., Horne, A.W., et al. (2021) An International Terminology for Endometriosis, 2021. Human Reproduction Open, 2021, hoab029. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tulandi, T. and Vercellini, P. (2024) Growing Evidence That Endometriosis Is a Systemic Disease. Reproductive BioMedicine Online, 49, Article 104292. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Orisaka, M., Mizutani, T., Miyazaki, Y., Shirafuji, A., Tamamura, C., Fujita, M., et al. (2023) Chronic Low-Grade Inflammation and Ovarian Dysfunction in Women with Polycystic Ovarian Syndrome, Endometriosis, and Aging. Frontiers in Endocrinology, 14, Article 1324429. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wójtowicz, M., Zdun, D., Owczarek, A.J., Skrzypulec-Plinta, V. and Olszanecka-Glinianowicz, M. (2025) Evaluation of Proinflammatory Cytokines Concentrations in Plasma, Peritoneal, and Endometrioma Fluids in Women Operated on for Ovarian Endometriosis—A Pilot Study. International Journal of Molecular Sciences, 26, Article 5117. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yamauchi, N., Harada, T., Taniguchi, F., Yoshida, S., Iwabe, T. and Terakawa, N. (2004) Tumor Necrosis Factor-α Induced the Release of Interleukin-6 from Endometriotic Stromal Cells by the Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways. Fertility and Sterility, 82, 1023-1028. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, Y., Li, R., Ouyang, N., Dai, K., Yuan, P., Zheng, L., et al. (2019) Investigating the Impact of Local Inflammation on Granulosa Cells and Follicular Development in Women with Ovarian Endometriosis. Fertility and Sterility, 112, 882-891.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Penzias, A., Azziz, R., Bendikson, K., Falcone, T., Hansen, K., Hill, M., et al. (2020) Testing and Interpreting Measures of Ovarian Reserve: A Committee Opinion. Fertility and Sterility, 114, 1151-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Pastore, L.M., Christianson, M.S., Stelling, J., Kearns, W.G. and Segars, J.H. (2018) Reproductive Ovarian Testing and the Alphabet Soup of Diagnoses: DOR, POI, POF, POR, and For. Journal of Assisted Reproduction and Genetics, 35, 17-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Vital Reyes, V.S., Téllez Velasco, S., Hinojosa Cruz, J.C., et al. (2005) Serum Levels of IL-1 Beta, IL-6 and TNF-Alpha in Infertile Patients with Ovarian Dysfunction. Ginecología y Obstetricia de México, 73, 604-610.
|
|
[39]
|
Huang, Y., Cheng, Y., Zhang, M., Xia, Y., Chen, X., Xian, Y., et al. (2023) Oxidative Stress and Inflammatory Markers in Ovarian Follicular Fluid of Women with Diminished Ovarian Reserve during in Vitro Fertilization. Journal of Ovarian Research, 16, Article No. 206. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, X., Li, C., Yang, J., Lin, M., Zhou, X., Su, Z., et al. (2025) Associations of the Levels of Adipokines and Cytokines in Individual Follicles with in Vitro Fertilization Outcomes in Women with Different Ovarian Reserves. Journal of Ovarian Research, 18, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jiao, X., Zhang, X., Li, N., et al. (2021) T(reg) Deficiency-Mediated T(H) 1 Response Causes Human Premature Ovarian Insufficiency through Apoptosis and Steroidogenesis Dysfunction of Granulosa Cells. Clinical and Translational Medicine, 11, e448. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, W., Wu, J., Mukherjee, A., He, T., Wang, X., Ma, Y., et al. (2020) Lysophosphatidic Acid Induces Tumor Necrosis Factor-α to Regulate a Pro-Inflammatory Cytokine Network in Ovarian Cancer. The FASEB Journal, 34, 13935-13948. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wu, S., Boyer, C.M., Whitaker, R.S., et al. (1993) Tumor Necrosis Factor Alpha as an Autocrine and Paracrine Growth Factor for Ovarian Cancer: Monokine Induction of Tumor Cell Proliferation and Tumor Necrosis Factor Alpha Expression. Cancer Research, 53, 1939-1944.
|
|
[45]
|
Szlosarek, P.W., Grimshaw, M.J., Kulbe, H., Wilson, J.L., Wilbanks, G.D., Burke, F., et al. (2006) Expression and Regulation of Tumor Necrosis Factor Α in Normal and Malignant Ovarian Epithelium. Molecular Cancer Therapeutics, 5, 382-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Cheng, N. and Chen, J. (2001) Tumor Necrosis Factor-Α Induction of Endothelial Ephrin A1 Expression Is Mediated by a P38 MAPK-and SAPK/JNK-Dependent but Nuclear Factor-κB-Independent Mechanism. Journal of Biological Chemistry, 276, 13771-13777. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lau, T.S., Chan, L.K., Wong, E.C., et al. (2017) A Loop of Cancer-Stroma-Cancer Interaction Promotes Peritoneal Metastasis of Ovarian Cancer via TNFα-TGFα-EGFR. Oncogene, 36, 3576-3587. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Torrey, H., Butterworth, J., Mera, T., Okubo, Y., Wang, L., Baum, D., et al. (2017) Targeting TNFR2 with Antagonistic Antibodies Inhibits Proliferation of Ovarian Cancer Cells and Tumor-Associated Tregs. Science Signaling, 10, eaaf8608. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Jaiswal, M., Larusso, N.F., Burgart, L.J., et al. (2000) Inflammatory Cytokines Induce DNA Damage and Inhibit DNA Repair in Cholangiocarcinoma Cells by a Nitric Oxide-Dependent Mechanism. Cancer Research, 60, 184-190.
|
|
[50]
|
Brown, E.R., Charles, K.A., Hoare, S.A., Rye, R.L., Jodrell, D.I., Aird, R.E., et al. (2008) A Clinical Study Assessing the Tolerability and Biological Effects of Infliximab, a TNF-α Inhibitor, in Patients with Advanced Cancer. Annals of Oncology, 19, 1340-1346. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Charles, K.A., Kulbe, H., Soper, R., Escorcio-Correia, M., Lawrence, T., Schultheis, A., et al. (2009) The Tumor-Promoting Actions of TNF-α Involve TNFR1 and IL-17 in Ovarian Cancer in Mice and Humans. Journal of Clinical Investigation, 119, 3011-3023. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Chen, X. and Oppenheim, J.J. (2017) Targeting TNFR2, an Immune Checkpoint Stimulator and Oncoprotein, Is a Promising Treatment for Cancer. Science Signaling, 10, eaal2328. [Google Scholar] [CrossRef] [PubMed]
|