铁死亡在动脉粥样硬化中的作用及中药干预的研究进展
The Role of Ferroptosis in Atherosclerosis and Research Progress on Traditional Chinese Medicine Intervention
DOI: 10.12677/tcm.2025.1410630, PDF, HTML, XML,   
作者: 马 博:黑龙江中医药大学研究生院,黑龙江 哈尔滨;孙 静:黑龙江中医药大学附属第一医院心血管病二科,黑龙江 哈尔滨
关键词: 铁死亡动脉粥样硬化中药干预机制综述Ferroptosis Atherosclerosis Traditional Chinese Medicine Intervention Mechanism Review
摘要: 铁死亡是近十年来发现的一种非凋亡形式的程序性细胞死亡,其过程与铁过载和脂质过氧化离不开关系。本文综述了铁死亡的核心调控机制,目前主要包括System XcGSH-GPX4轴、非GPX4依赖途径(FSP1/CoQ10, DHODH, GCH1)、铁稳态失衡及脂质过氧化物生成。近年研究表明,铁死亡在多种心血管疾病中发挥着重要作用,例如动脉粥样硬化(AS),心率失常,心肌缺血再灌注损伤等。内皮细胞、巨噬细胞和平滑肌细胞的铁死亡与AS发生和发展呈正相关。本文还总结了多种中药活性成分(如丹参酮IIA、黄芪甲苷IV、芍药醇、小檗碱、黄芩苷等)及复方(如茱萸丸、豁痰解毒通络饮等)通过抑制铁死亡治疗AS的研究进展。本文认为,靶向铁死亡是防治AS的新方式,而中药具有多靶点干预的特性使其在此领域有着巨大的应用前景。
Abstract: Ferroptosis is a form of non-apoptotic programmed cell death discovered in the past decade, and its process is closely related to iron overload and lipid peroxidation. This article reviews the core regulatory mechanisms of ferroptosis, which currently mainly include the System XcGSH-GPX4 axis, non-GPX4-dependent pathways (FSP1/CoQ10, DHODH, GCH1), iron homeostasis imbalance, and lipid peroxide production. Recent studies have shown that ferroptosis plays an important role in various cardiovascular diseases, such as atherosclerosis (AS), arrhythmia, and myocardial ischemia-reperfusion injury. The ferroptosis of endothelial cells, macrophages, and smooth muscle cells is positively correlated with the occurrence and development of AS. This article also summarizes the research progress of a variety of active ingredients of traditional Chinese medicine (such as tanshinone IIA, astragaloside IV, paeonol, berberine, baicalin, etc.) and compound prescriptions (such as Zhuyu Pill, Huotan Jiedu Tongluo Decoction, etc.) in treating AS by inhibiting ferroptosis. This article holds that targeting ferroptosis is a new approach for the prevention and treatment of AS, and the multi-target intervention characteristic of traditional Chinese medicine endows it with broad application prospects in this field.
文章引用:马博, 孙静. 铁死亡在动脉粥样硬化中的作用及中药干预的研究进展[J]. 中医学, 2025, 14(10): 4349-4359. https://doi.org/10.12677/tcm.2025.1410630

1. 铁死亡的发现历史

1957年谷胱甘肽过氧化物酶(GPX)被发现[1],并于1973年证实GPX是一种硒酶[2],1982年首次从猪肝中纯化出GPX4,当时称为过氧化物抑制蛋白[3],之后被称为磷脂氢过氧化物谷胱甘肽过氧化物酶(PHGpx)。1980年作为胱氨酸和谷氨酸转运蛋白的System Xc (CG System)被发现[4]。并于1994年从人体肝脏中提取出GPX4 [5]

2003年铁死亡诱导剂Erastin被发现[6],2008年铁死亡诱导剂RLS3被发现[7]。在针对特定基因背景(如RAS突变)进行的高通量筛选研究中,发现Erastin和RLS3诱导的细胞死亡缺乏细胞凋亡的标志性特征,表明这是一种非细胞凋亡的新型的细胞死亡形式[8]。然而,当时“铁死亡”的概念尚未被提出。

2012年铁死亡概念正式被提出,Dixon等人正式命名了“铁死亡”(Ferroptosis),明确其是一种与细胞凋亡、坏死和自噬不停的、铁依赖性的非凋亡性细胞死亡形式。他们发现Erastin通过抑制System Xc的胱氨酸摄取发挥作用,导致细胞内半胱氨酸耗竭、谷胱甘肽(GSH)合成受阻、抗氧化能力丧失,最终引起知名的脂质活性氧(ROS)积累。研究同时指出,抑制胱氨酸摄取并非诱发铁死亡的唯一途径[9]

2. 铁死亡的机制

铁死亡是一种非细胞凋亡形式的、铁依赖性的调节性细胞死亡。其核心机制在于细胞内脂质过氧化(尤其是磷脂过氧化)与抗氧化防御系统之间的失衡。正常情况下,细胞生成多不饱和脂肪酸(PUFA)磷脂底物和氧化剂(如ROS)的同时,也产生抑制脂质氧化的物质(如GPX4、GSH、辅酶Q10等)。在失衡时,发生PUFA磷脂过氧化过度增强或抗氧化防御能力显著减弱,脂质过氧化产物大量积累,超过细胞的清除能力,导致细胞膜结构和功能的不可逆损伤,最终引发铁死亡[10]

值得注意的是,铁死亡的发生也高度依赖细胞微环境。除铁离子(Fe2+)外,最新研究表明,在特定条件下,铜离子[11],锌离子[12]等其他金属离子也可能诱导铁死亡。

铁死亡的核心关键因素离不开活性氧(ROS)、易氧化的脂质(主要是多不饱和脂肪酸的磷脂,即PUFA-PLs):

活性氧(ROS)是机体进行有氧代谢的产物,含氧并且性质活泼的一类物质,有多种来源途径,包括线粒体电子传递链[13],NADPH氧化酶(NOX) [14],酶促反应(如细胞色素P450氧化还原酶) [15]以及芬顿反应(Fe2+催化H2O2产生·OH) [16]

多不饱和脂肪酸(PUFA)是细胞膜磷脂的重要组成部分,具有多种生物学功能(如参与免疫,炎症,细胞生长调节) [17],PUFA侧链上的双烯丙基氢原子使其极易受到ROS的攻击,成为脂质过氧化的主要靶点[18]

铁死亡的调控机制主要涉及以下几个关键通路。

2.1. System Xc-GSH-GPX4途径

System Xc是一种位于细胞膜上的胱氨酸/谷氨酸反向转运蛋白,是由xCT(SLC7A11) [19]和4F2HC (SLC3A2) [20]两个亚基组成。首先,System Xc通过摄取细胞外胱氨酸入胞,其次,被还原为半胱氨酸(Cys)。半胱氨酸是合成谷胱甘肽的关键前体。经过谷胱甘肽合成酶(GSS)和谷氨酸–半胱氨酸连接酶(GCLC)催化,与谷氨酸和甘氨酸结合形成谷胱甘肽。

谷胱甘肽过氧化物酶4 (GPX4)作为一种硒蛋白[2],也是目前已知唯一能够特异性还原生物膜内磷脂氢过氧化物的酶,它利用谷胱甘肽作为其酶活性的辅助因子[21],将有毒的磷脂氢过氧化物还原为无毒的磷脂醇(PLOHs),从而保护细胞膜完整性,有效防范脂质过氧化对其的损害,来抑制铁死亡[22]

铁死亡诱导剂Erastin [9],索拉菲尼[23],p53 [24]等可抑制System Xc的功能,触发一系列连锁反应:首先胱氨酸的摄取受阻,其次,细胞内半胱氨酸池的耗竭,谷胱甘肽合成中断,最后,关键抗氧化剂GPX4因缺乏谷胱甘肽而失活,无法清除细胞内PLOOHs,最终导致脂质过氧化失控和细胞铁死亡。

铁死亡诱导剂RSL3的作用机制不同,它并非通过抑制System Xc,也不直接耗竭GSH [9],而是通过共价结合直接抑制GPX4的活性,使PLOOHS堆积,破坏细胞膜结构,进而诱导铁死亡[25]

2.2. 不依赖GPX4的铁死亡调节途径

除依赖GPX4外,还存在其他重要的铁死亡防御机制。

2.2.1. FSP1-CoQ10-NAD(P)H途径

铁死亡抑制蛋白1 (FSP1)是一种定位于质膜的辅酶Q10 (CoQ10)氧化还原酶,由于FSP1最初是P53的响应基因,被称作AIFM2,一种黄素蛋白,属于AIF家族[26]具有NADH:泛醌还原酶活性[27],能够还原泛醌(CoQ10)形成泛醇(CoQ10H2),后者是一种强效的亲脂性自由基捕获抗氧化剂(RTA),能够直接减少脂质自由基(如脂质过氧自由基LOO·),或再生α-生育酚自由基(维生素E),从而有效抑制脂质过氧化和铁死亡的发生[28] [29]。此途径独立于GPX4活性、GSH水平以及ACSL4的表达。

2.2.2. 二氢乳清酸脱氢酶(DHODH)途径

DHODH是嘧啶合成途径中的酶,位于线粒体内膜中。它也能将线粒体中的CoQ10还原为CoQ10H2,从而通过线粒体提供抗氧化保护,抑制线粒体相关的铁死亡[30]

2.2.3. GCH1-BH4/BH2-磷脂途径

GTP环化水解酶1 (GCH1)通过其代谢产物二氢生物喋呤(BH2)和四氢生物喋呤(BH4)抑制铁死亡。GCH1抑制铁死亡具有双重机制:GCH1不仅能重塑脂质膜环境,选择性地增加CoQ10的含量,增强其抗氧化能力,以保护磷脂。更重要的是,其产物BH4还能凭借自身的亲脂性直接发挥抗氧化作用,防止脂质过氧化,从而保护细胞免受铁死亡的威胁[31]

2.3. 铁稳态失衡致铁过载

细胞内铁的代谢失衡是触发铁死亡的关键因素。血清中的主要铁载体蛋白是转铁蛋白(Tf)。血液循环中的Fe³⁺与Tf结合,通过转铁蛋白受体1 (TFR1)介导的内吞作用进入到细胞中[32]。进入胞内的内吞体后,Fe³⁺被金属还原酶(如STEAP3)还原,这是Fe2+被二价金属离子转运蛋白1 (DMT1)转运并进入胞质的不稳定铁池(LIP)的关键步骤,其过量部分则储存在铁蛋白中[33]

正常情况下,LIP中的Fe2+浓度受到铁调节蛋白(IRPs)和铁结合蛋白等的精密调控。当这些调控机制受损时(如Nrf2-HO-1-Fe2+通路的失衡),都会导致LIP中Fe2+浓度异常升高[34],另一方面,铁蛋白自噬的关键因子核受体共激活因子4(NCOA4)的过表达,会促进铁蛋白的降解,释放出游离铁,同样增加LIP中的Fe2+水平[16]。高浓度的Fe2+具有高度的反应活性,能通过芬顿反应产生强氧化性的羟自由基(·OH)。·OH能直接侵袭细胞膜上的PUFA,启动脂质过氧化链式的反应,脂质ROS爆发生成,最终驱动铁死亡。

2.4. 脂质过氧化物集聚

脂质过氧化,特别是含有多不饱和脂肪酸的磷脂(PUFA-PL)的过氧化,是铁死亡的核心执行机制[35]。其中花生四烯酸(AA),肾上腺酸(AdA)因其结构特性,其氧化敏感性极高,是最易发生氧化反应的PUFA。

AdA与AA与辅酶A(CoA)结合,经乙酰辅酶A合成酶长链家族成员4 (ACSL4)的催化,形成肾上腺酰–辅酶A (AdA-CoA)和花生四烯酰–辅酶A(AA-CoA) [36]。随后,这些活化的PUFA-CoA通过以下两个途径:一种途径是形成AA-PE和AdA-PE,经溶血磷脂酰胆碱酰基转移酶3 (LPCAT3)的催化,将其酯化为磷脂酰乙醇胺(PEs) [37],另一种途径是在甾醇O-酰基转移酶1(SOAT1)的催化下,将其酯化为胆固醇酯(CE) [38]。形成的含PUFA的脂质(特别是AA-PE和AdA-PE)是脂氧合酶(LOXs)的主要底物,LOXs催化这些PUFA-PLs发生氧化,生成相应的脂质氢过氧化物(如AA-PE-OOH和AdA-PE-OOH) [39] [40]。这些脂质过氧化物在细胞膜上持续积累,导致膜流动性改变、通透性增加、功能受损,最终引发细胞膜崩解和铁死亡。

3. 动脉粥样硬化(AS)的发病机制

动脉粥样硬化(AS)是一种慢性炎症疾病,以动脉血管壁内脂质斑块(粥样斑块)的形成和积聚为特征[41]。斑块进展导致动脉管腔狭窄,血流量降低,引起组织缺血。在心血管系统中,主要是冠状动脉的脂质斑块形成,冠状动脉狭窄,导致心肌缺血,严重时引发心肌梗死。

3.1. 低密度脂蛋白的滞留与氧化

脂质斑块形成机制与低密度脂蛋白(LDL)密切相关,当血液中LDL水平过高时,易沉积于因内皮功能障碍或损伤而通透性增加的血管内膜下。沉积的LDL被主要通过芬顿反应等产生的ROS氧化修饰,形成氧化修饰低密度脂蛋白(ox-LDL) [42]

3.2. 内皮细胞的活化与炎症启动

Ox-LDL激活内皮细胞(EC),诱导EC表达白细胞黏附分子,如血管细胞黏附分子1 (VCAM-1) [43]。血液中的单核细胞携带VCAM-1反受体,因此被激活的EC募集和黏附。

3.3. 单核细胞的迁移和分化

内皮下间隙产生的趋化因子会刺激被募集和黏附的单核细胞穿过内皮细胞间隙,迁移至内膜。内膜中的巨噬细胞集落刺激因子(M-CSF)使迁入的单核细胞分化成巨噬细胞,这是非常关键的一步[44] [45]

3.4. 泡沫细胞的形成

巨噬细胞表面的“探测器”(清道夫受体)大量摄取ox-LDL [46]。Ox-LDL在溶酶体内被分解,释放出的胆固醇本应被转运出细胞,但当摄取量过大时,胆固醇以脂滴的形式在胞质内过度积累,使巨噬细胞转变为泡沫细胞(MDFC),这是动脉粥样硬化的典型细胞。研究也表明[47],血管平滑肌细胞(VSMC)也可摄取脂质分化为泡沫细胞。

3.5. 脂质斑块进展与坏死核心形成

泡沫细胞不断堆积最终导致了动脉粥样硬化。随着平滑肌细胞迁移增殖、巨噬细胞的不断聚集以及细胞外基质沉积,斑块体积逐渐增大。斑块内部由于营养供应不足和氧化应激加剧,因此在动脉粥样硬化的不断发展过程中,平滑肌细胞、巨噬细胞等就会发生多种形式的程序性死亡,包括铁死亡和细胞凋亡等[48]。死亡细胞大量积累,形成富含脂质和坏死碎屑的坏死核心。

3.6. 斑块不稳定与破裂

坏死核心的大小、纤维帽的薄厚是决定斑块稳定性的关键,晚期动脉粥样硬化的斑块内常伴有病理性新生血管形成。这些新生血管结构不完整、易破裂渗漏,导致斑块内出血。通过促进巨噬细胞浸润、红细胞和游离胆固醇的沉积等因素,并进一步募集炎症细胞,最后促使斑块不稳定并可能破裂,引发急性血栓[49] [50]

4. 铁死亡在动脉粥样硬化中的作用

铁死亡参与动脉粥样硬化发生发展的多个环节,影响不同细胞类型。

4.1. 血管内皮细胞的铁死亡

EC是血管的第一道屏障和维护血管功能的关键,内皮细胞功能障碍是动脉粥样硬化发展过程的起始。铁死亡通过促进脂质过氧化,加速血管内皮细胞功能障碍并引发炎症反应,从而促进动脉粥样硬化。有研究表明[51],在使用铁死亡抑制剂铁抑制素-1 (Fer-1)作用在高脂饮食诱导的ApoE/动脉粥样硬化小鼠模型中,可以有效缓解动脉粥样硬化病变,并上调SCL7A11和GPX4的表达,减轻了铁积累和脂质过氧化。Fer-1还能减轻ox-LDL对于EC的损伤,证实了铁死亡参与了动脉粥样硬化早期阶段。Zeng等发现[52],在动脉粥样硬化小鼠和ox-LDL处理的主动脉内皮细胞中,E3泛素化连接酶Itch的表达升高。下调Itch表达可显著减轻ox-LDL诱导的内皮损伤和功能障碍。其机制是通过降低Itch表达抑制了ox-LDL诱导的内皮细胞铁死亡。

4.2. 巨噬细胞的铁死亡

巨噬细胞是动脉粥样硬化发展过程中贡献最大的免疫细胞,其命运直接影响斑块的进展。Liu等研究发现[53],在ApoE/小鼠动脉粥样硬化模型中,紫杉醇(Paclitaxel)不仅能降低ox-LDL处理的RAW264.7巨噬细胞中的ROS水平和脂质积累,还能调节铁含量和铁代谢相关标志物。此外,SIRT1抑制剂和基因敲低技术,证实了紫杉醇通过激活SIRT1/Nrf2/GPX4信号通路来抑制巨噬细胞的铁死亡。证实了泡沫细胞形成过程与巨噬细胞铁死亡密切相关。而巨噬细胞的铁死亡也发生在晚期的斑块中,其中斑块内出血是晚期斑块不稳定的重要因素,常由脆弱的新生血管破裂引起。Puylaert等研究发现[54],巨噬细胞的红细胞吞噬作用会诱导铁死亡,其特征是血红素加氧酶1 (HO-1)和铁蛋白的表达增加。在动脉粥样硬化小鼠斑块富含红细胞的区域,也观察到HO-1和铁蛋白的高表达。铁死亡抑制剂UAMC-3203可以通过抑制HO-1和铁蛋白的表达,有效减少斑块厚度,尤其是在富含新生血管的斑块区域。

4.3. 血管平滑肌细胞铁死亡

VSMC迁移至内膜并分泌细胞外基质并形成纤维帽,对于维持斑块稳定性至关重要。研究表明[55],Yes关联蛋白1 (YAP1)可保护VSMC免受ox-LDL诱导的铁死亡。Yap1通过上调谷氨酰胺酶1 (GLS1)的表达,促进谷氨酸和谷胱甘肽的合成,从而抑制铁死亡。总之,抑制VSMC铁死亡有助于通过YAP1/GLS1轴稳定动脉粥样斑块。表明VSMC的铁死亡参与并影响着AS斑块稳定性,是AS发展过程中的一个重要环节。

5. 中药通过抑制铁死亡来治疗动脉粥样硬化

5.1. 丹参酮IIA (Tanshinone IIA, TSA)

TSA是从丹参根中提取的活性亲脂成分[56]。具有抗动脉粥样硬化、降脂和抗氧化等作用[57]。在人冠状动脉内皮细胞中,TSA通过激活Nrf2通路抑制铁死亡。它能减少谷胱甘肽含量、降低细胞内游离铁水平和防止脂质过氧化升高,从而起到对人冠状动脉内皮细胞的保护作用[58]

5.2. 黄芪甲苷IV (Astragaloside IV, AS-IV)

AS-IV,有抗炎、抗氧化等作用,是从黄芪中提取的成分[59]。在ApoE/动脉粥样硬化小鼠中,AS-IV干预可上调Nrf2、HO-1、GPX4以及铁储存蛋白FTH1和FTL的表达,降低游离铁含量,改善线粒体形态。其机制可能是通过激活Nrf2-HO-1-GPX4信号通路抑制内皮细胞的铁死亡[60]

5.3. 芍药醇(Paeonol, Pae)

Pae萃取自芍药根皮,被证实具有抗炎、抗肿瘤、抗心血管疾病等作用[61]。给予ApoE/动脉粥样硬化小鼠Pae,可显著降低小鼠的主动脉铁死亡和脂质积累。进一步研究表明,Pae通过激活SIRT1-Nrf2-GPX4通路来抑制巨噬细胞铁死亡[62]

5.4. 6-姜酚(6-Gingerol)

6-姜酚是从生姜中提取出来的物质,具有显著的抗氧化的功能[63]。研究发现[64],6-姜酚通过激活Nrf2-HO-1通路抑制内皮细胞铁死亡,从而改善动脉粥样硬化小鼠的脂质代谢异常。

5.5. 三七皂苷R1 (Notoginsenoside R1, NGR1)

NGR1是从三七的干燥根及根茎中提取的皂苷类化合物,具有降脂、抗炎、抗动脉粥样硬化等作用[65]。研究表明[66],NGR1通过激活Nrf2-SLC7A11-GPX4信号通路来提高细胞抗氧化能力,减少脂质过氧化,从而抑制铁死亡。

5.6. 小檗碱(Berberine, BBR)

BBR,又称黄连素,是一种生物碱,其来源主要是黄连,具有抗真菌、抗病毒、抗动脉粥样硬化、抗菌、抗高血脂及对心血管的保护等作用[67]。Yang等发现[68],BBR是ACSL4的抑制剂。它通过抑制ACSL4,从而阻止血管内皮细胞铁死亡,改善动脉粥样硬化。同时BBR还可以抑制主动脉脂质沉积、胶原蛋白沉积和斑块形成,从而减缓AS的进程和发展。

5.7. 黄芩苷(Baicalin)

黄芩苷作为黄芩的主要活性物质,是一种源自其根部的黄酮类化合物[69]。研究发现[70],通过100 μg/ml的ox-LDL作用于RAW264.7巨噬细胞,将其诱导成泡沫细胞。采用黄芩苷进行干预,能显著减少泡沫细胞内的脂滴积累,改善线粒体结构,降低ROS、脂质过氧化物和游离铁水平,升高谷胱甘肽水平。其机制通过下调HIF-1α蛋白表达,上调SLC7A11和GPX4表达,表明黄芩苷可能通过调节HIF-1α-SLC7A11-GPX4轴抑制ox-LDL诱导的巨噬细胞形成泡沫细胞及铁死亡。

5.8. 瓜蒌–薤白药对(Gualou-Xiebai Herb Pair)

瓜蒌–薤白药对是中医治疗胸痹的经典药对。研究表明[71],瓜蒌–薤白可降低炎症因子和黏附因子水平,减轻EC的损伤。并证实了其机制是通过激活Nrf2-SLC7A11-GPX4信号通路抑制铁死亡,从而保护人血管内皮细胞。

5.9. 茱萸丸(Zhuyu Pills)

茱萸丸出自《太平圣惠方》,由黄连、吴茱萸1:1配伍组成,具有调畅中焦气机,化脂降浊之功效。研究发现[72],茱萸丸能够抑制p53蛋白表达,同时上调SLC7A11、GPX4和铁蛋白的表达。这表明其通过促进System Xc-GSH-GPX4途径,以及降低细胞内游离铁水平来抑制铁死亡。

5.10. 豁痰解毒通络饮(Huotan Jiedu Tongluo Decoction, HJTD)

HJTD由中医经典方剂四妙勇安汤化裁而来。全方是由金银花、水蛭、红景天、瓜蒌、玄参、丹参、当归、甘松、生甘草组成。具有豁痰化瘀,解毒通络的功效。研究表明[73] [74],HJTD通过激活Nrf2-自噬轴来减少巨噬细胞铁死亡,并改善动脉粥样硬化病变。

5.11. 黄芪赤风汤(Huangqi Chifeng Decoction, HQCF)

HQCF,是由黄芪、赤芍、防风组成,出自清代王清任所著的《医林改错》中,具有益气活血,疏风通窍的功效。研究发现[75],HQCF通过调节TXN-xCT-GPX4通路,保护VSMC免受铁死亡。

6. 结语

铁死亡与AS的发生发展密切相关,铁死亡参与了AS发展进程的多个关键阶段,包括内皮细胞损伤、炎症反应、泡沫细胞形成以及坏死核心扩大等。而且靶向抑制铁死亡可以有效减缓AS的进展。深入阐明铁死亡在AS中的具体作用机制,并探索中药通过调控铁死亡防治AS的有效成分及作用靶点,为AS的防治指明了新方向。

参考文献

[1] Mills, G.C. (1957) Hemoglobin Catabolism. I. Glutathione Peroxidase, an Erythrocyte Enzyme Which Protects Hemoglobin from Oxidative Breakdown Journal of Biological Chemistry, 229, 189-197. [Google Scholar] [CrossRef] [PubMed]
[2] Flohe, L., Günzler, W.A. and Schock, H.H. (1973) Glutathione Peroxidase: A Selenoenzyme. FEBS Letters, 32, 132-134. [Google Scholar] [CrossRef] [PubMed]
[3] Ursini, F., Maiorino, M., Valente, M., Ferri, L. and Gregolin, C. (1982) Purification from Pig Liver of a Protein Which Protects Liposomes and Biomembranes from Peroxidative Degradation and Exhibits Glutathione Peroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 710, 197-211. [Google Scholar] [CrossRef] [PubMed]
[4] Bannai, S. and Kitamura, E. (1980) Transport Interaction of L-Cystine and L-Glutamate in Human Diploid Fibroblasts in Culture. Journal of Biological Chemistry, 255, 2372-2376. [Google Scholar] [CrossRef] [PubMed]
[5] Chambers, S.J., Lambert, N. and Williamson, G. (1994) Purification of a Cytosolic Enzyme from Human Liver with Phospholipid Hydroperoxide Glutathione Peroxidase Activity. International Journal of Biochemistry, 26, 1279-1286. [Google Scholar] [CrossRef] [PubMed]
[6] Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. [Google Scholar] [CrossRef] [PubMed]
[7] Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. [Google Scholar] [CrossRef] [PubMed]
[8] Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. [Google Scholar] [CrossRef] [PubMed]
[9] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
[10] Qiu, B., Zandkarimi, F., Bezjian, C.T., Reznik, E., Soni, R.K., Gu, W., et al. (2024) Phospholipids with Two Polyunsaturated Fatty Acyl Tails Promote Ferroptosis. Cell, 187, 1177-1190.e18. [Google Scholar] [CrossRef] [PubMed]
[11] Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., et al. (2023) Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy, 19, 1982-1996. [Google Scholar] [CrossRef] [PubMed]
[12] Chen, P., Wu, J., Xu, Y., Ding, C.C., Mestre, A.A., Lin, C., et al. (2021) Zinc Transporter ZIP7 Is a Novel Determinant of Ferroptosis. Cell Death & Disease, 12, Article No. 198. [Google Scholar] [CrossRef] [PubMed]
[13] Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., et al. (2019) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363.e3. [Google Scholar] [CrossRef] [PubMed]
[14] Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., et al. (2017) The Tumor Suppressor P53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 20, 1692-1704. [Google Scholar] [CrossRef] [PubMed]
[15] Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., et al. (2020) Cytochrome P450 Oxidoreductase Contributes to Phospholipid Peroxidation in Ferroptosis. Nature Chemical Biology, 16, 302-309. [Google Scholar] [CrossRef] [PubMed]
[16] Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. [Google Scholar] [CrossRef] [PubMed]
[17] Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409. [Google Scholar] [CrossRef] [PubMed]
[18] Yin, H., Xu, L. and Porter, N.A. (2011) Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews, 111, 5944-5972. [Google Scholar] [CrossRef] [PubMed]
[19] Sato, H., Tamba, M., Ishii, T. and Bannai, S. (1999) Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins. Journal of Biological Chemistry, 274, 11455-11458. [Google Scholar] [CrossRef] [PubMed]
[20] Sato, H., Tamba, M., Kuriyama-Matsumura, K., Okuno, S. and Bannai, S. (2000) Molecular Cloning and Expression of Human xCT, the Light Chain of Amino Acid Transport System xc. Antioxidants & Redox Signaling, 2, 665-671. [Google Scholar] [CrossRef] [PubMed]
[21] Brigelius-Flohé, R. and Maiorino, M. (2013) Glutathione Peroxidases. Biochimica et Biophysica Acta (BBA)—General Subjects, 1830, 3289-3303. [Google Scholar] [CrossRef] [PubMed]
[22] Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975. [Google Scholar] [CrossRef] [PubMed]
[23] Louandre, C., Ezzoukhry, Z., Godin, C., Barbare, J., Mazière, J., Chauffert, B., et al. (2013) Iron‐Dependent Cell Death of Hepatocellular Carcinoma Cells Exposed to Sorafenib. International Journal of Cancer, 133, 1732-1742. [Google Scholar] [CrossRef] [PubMed]
[24] Jiang, L., Kon, N., Li, T., Wang, S., Su, T., Hibshoosh, H., et al. (2015) Ferroptosis as a p53-Mediated Activity during Tumour Suppression. Nature, 520, 57-62. [Google Scholar] [CrossRef] [PubMed]
[25] Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
[26] Horikoshi, N., Cong, J., Kley, N. and Shenk, T. (1999) Isolation of Differentially Expressed cDNAs from p53-Dependent Apoptotic Cells: Activation of the Human Homologue of the Drosophila Peroxidasin Gene. Biochemical and Biophysical Research Communications, 261, 864-869. [Google Scholar] [CrossRef] [PubMed]
[27] Elguindy, M.M. and Nakamaru-Ogiso, E. (2015) Apoptosis-Inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-Sensitive NADH: Ubiquinone Oxidoreductases (NDH-2). Journal of Biological Chemistry, 290, 20815-20826. [Google Scholar] [CrossRef] [PubMed]
[28] Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. [Google Scholar] [CrossRef] [PubMed]
[29] Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. [Google Scholar] [CrossRef] [PubMed]
[30] Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590. [Google Scholar] [CrossRef] [PubMed]
[31] Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., et al. (2019) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 6, 41-53. [Google Scholar] [CrossRef] [PubMed]
[32] Andrews, N.C. and Schmidt, P.J. (2007) Iron Homeostasis. Annual Review of Physiology, 69, 69-85. [Google Scholar] [CrossRef] [PubMed]
[33] El Hout, M., Dos Santos, L., Hamaï, A. and Mehrpour, M. (2018) A Promising New Approach to Cancer Therapy: Targeting Iron Metabolism in Cancer Stem Cells. Seminars in Cancer Biology, 53, 125-138. [Google Scholar] [CrossRef] [PubMed]
[34] Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. [Google Scholar] [CrossRef] [PubMed]
[35] Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. [Google Scholar] [CrossRef] [PubMed]
[36] Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. [Google Scholar] [CrossRef] [PubMed]
[37] Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147. [Google Scholar] [CrossRef] [PubMed]
[38] Lin, Z., Liu, J., Long, F., Kang, R., Kroemer, G., Tang, D., et al. (2022) The Lipid Flippase SLC47A1 Blocks Metabolic Vulnerability to Ferroptosis. Nature Communications, 13, Article No. 7965. [Google Scholar] [CrossRef] [PubMed]
[39] Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21. [Google Scholar] [CrossRef] [PubMed]
[40] Wenzel, S.E., Tyurina, Y.Y., Zhao, J., St. Croix, C.M., Dar, H.H., Mao, G., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.e26. [Google Scholar] [CrossRef] [PubMed]
[41] Libby, P. (2024) Inflammation and the Pathogenesis of Atherosclerosis. Vascular Pharmacology, 154, Article ID: 107255. [Google Scholar] [CrossRef] [PubMed]
[42] Xu, S., Ilyas, I., Little, P.J., Li, H., Kamato, D., Zheng, X., et al. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73, 924-967. [Google Scholar] [CrossRef] [PubMed]
[43] Cybulsky, M.I. and Gimbrone, M.A. (1991) Endothelial Expression of a Mononuclear Leukocyte Adhesion Molecule during Atherogenesis. Science, 251, 788-791. [Google Scholar] [CrossRef] [PubMed]
[44] Smith, J.D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J. and Miyata, M. (1995) Decreased Atherosclerosis in Mice Deficient in both Macrophage Colony-Stimulating Factor (op) and Apolipoprotein E. Proceedings of the National Academy of Sciences, 92, 8264-8268. [Google Scholar] [CrossRef] [PubMed]
[45] Boring, L., Gosling, J., Cleary, M. and Charo, I.F. (1998) Decreased Lesion Formation in CCR2−/− Mice Reveals a Role for Chemokines in the Initiation of Atherosclerosis. Nature, 394, 894-897. [Google Scholar] [CrossRef] [PubMed]
[46] Alquraini, A. and El Khoury, J. (2020) Scavenger Receptors. Current Biology, 30, R790-R795. [Google Scholar] [CrossRef] [PubMed]
[47] Bennett, M.R., Sinha, S. and Owens, G.K. (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 118, 692-702. [Google Scholar] [CrossRef] [PubMed]
[48] Kockx, M. and Herman, A.G. (2000) Apoptosis in Atherosclerosis: Beneficial or Detrimental? Cardiovascular Research, 45, 736-746. [Google Scholar] [CrossRef] [PubMed]
[49] Kolodgie, F.D., Gold, H.K., Burke, A.P., Fowler, D.R., Kruth, H.S., Weber, D.K., et al. (2003) Intraplaque Hemorrhage and Progression of Coronary Atheroma. New England Journal of Medicine, 349, 2316-2325. [Google Scholar] [CrossRef] [PubMed]
[50] Martinet, W., Coornaert, I., Puylaert, P. and De Meyer, G.R.Y. (2019) Macrophage Death as a Pharmacological Target in Atherosclerosis. Frontiers in Pharmacology, 10, Article No. 306. [Google Scholar] [CrossRef] [PubMed]
[51] Bai, T., Li, M., Liu, Y., Qiao, Z. and Wang, Z. (2020) Inhibition of Ferroptosis Alleviates Atherosclerosis through Attenuating Lipid Peroxidation and Endothelial Dysfunction in Mouse Aortic Endothelial Cell. Free Radical Biology and Medicine, 160, 92-102. [Google Scholar] [CrossRef] [PubMed]
[52] Zeng, Y., Fu, S., Xia, Y., Meng, G. and Xu, X. (2024) Itchy E3 Ubiquitin Ligase-Mediated Ubiquitination of Ferritin Light Chain Contributes to Endothelial Ferroptosis in Atherosclerosis. International Journal of Molecular Sciences, 25, Article No. 13524. [Google Scholar] [CrossRef] [PubMed]
[53] Liu, Z., Cheng, S., Zheng, X., Wang, X., Lu, W., Wang, X., et al. (2025) Paclitaxel Attenuates Atherosclerosis by Suppressing Macrophage Ferroptosis and Improving Lipid Metabolism via the Sirt1/Nrf2/GPX4 Pathway. The FASEB Journal, 39, e70917. [Google Scholar] [CrossRef] [PubMed]
[54] Puylaert, P., Roth, L., Van Praet, M., Pintelon, I., Dumitrascu, C., van Nuijs, A., et al. (2023) Effect of Erythrophagocytosis-Induced Ferroptosis during Angiogenesis in Atherosclerotic Plaques. Angiogenesis, 26, 505-522. [Google Scholar] [CrossRef] [PubMed]
[55] Chen, Y., Cui, Y., Li, M., Xia, M., Xiang, Q., Mao, Y., et al. (2024) A Novel Mechanism of Ferroptosis Inhibition‐enhanced Atherosclerotic Plaque Stability: YAP1 Suppresses Vascular Smooth Muscle Cell Ferroptosis through Gls1. The FASEB Journal, 38, e23850. [Google Scholar] [CrossRef] [PubMed]
[56] Ansari, M.A., Khan, F.B., Safdari, H.A., Almatroudi, A., Alzohairy, M.A., Safdari, M., et al. (2021) Prospective Therapeutic Potential of Tanshinone IIA: An Updated Overview. Pharmacological Research, 164, Article ID: 105364. [Google Scholar] [CrossRef] [PubMed]
[57] Shang, Q., Xu, H. and Huang, L. (2012) Tanshinone IIA: A Promising Natural Cardioprotective Agent. Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 716459. [Google Scholar] [CrossRef] [PubMed]
[58] He, L., Liu, Y., Wang, K., Li, C., Zhang, W., Li, Z., et al. (2021) Tanshinone IIA Protects Human Coronary Artery Endothelial Cells from Ferroptosis by Activating the NRF2 Pathway. Biochemical and Biophysical Research Communications, 575, 1-7. [Google Scholar] [CrossRef] [PubMed]
[59] Liang, Y., Chen, B., Liang, D., Quan, X., Gu, R., Meng, Z., et al. (2023) Pharmacological Effects of Astragaloside IV: A Review. Molecules, 28, Article No. 6118. [Google Scholar] [CrossRef] [PubMed]
[60] Qin, H.W., Sun, M.Y., Wang, M.N., et al. (2024) Mechanism of Astragaloside Ⅳ Modulation of Nrf2/HO-1/GPX4 Pathway to Inhibit Ferroptosis and Ameliorate Atherosclerosis in ApoE⁻/⁻ Mice. China Journal of Chinese Materia Medica, 49, 3619-3626.
[61] Zhang, L., Li, D. and Liu, L. (2019) Paeonol: Pharmacological Effects and Mechanisms of Action. International Immunopharmacology, 72, 413-421. [Google Scholar] [CrossRef] [PubMed]
[62] Gao, M., Dong, L., Yang, Y., Yan, J., Liang, Y., Ma, X., et al. (2024) The Anti-Atherosclerotic Effect of Paeonol against the Lipid Accumulation in Macrophage-Derived Foam Cells by Inhibiting Ferroptosis via the SIRT1/NRF2/GPX4 Signaling Pathway. Biochemical and Biophysical Research Communications, 708, Article ID: 149788. [Google Scholar] [CrossRef] [PubMed]
[63] Dugasani, S., Pichika, M.R., Nadarajah, V.D., Balijepalli, M.K., Tandra, S. and Korlakunta, J.N. (2010) Comparative Antioxidant and Anti-Inflammatory Effects of [6]-Gingerol, [8]-Gingerol, [10]-Gingerol and [6]-Shogaol. Journal of Ethnopharmacology, 127, 515-520. [Google Scholar] [CrossRef] [PubMed]
[64] Wang, S., Song, X., Gao, H., Zhang, Y., Zhou, X. and Wang, F. (2025) 6-Gingerol Inhibits Ferroptosis in Endothelial Cells in Atherosclerosis by Activating the NRF2/HO-1 Pathway. Applied Biochemistry and Biotechnology, 197, 3890-3906. [Google Scholar] [CrossRef] [PubMed]
[65] Yang, X., Xiong, X., Wang, H. and Wang, J. (2014) Protective Effects of Panax Notoginseng Saponins on Cardiovascular Diseases: A Comprehensive Overview of Experimental Studies. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 204840. [Google Scholar] [CrossRef] [PubMed]
[66] 张梦, 萧闵, 蔡婷, 等. 三七皂苷R1调控Nrf2介导的铁死亡途径改善ApoE⁻/⁻小鼠动脉粥样硬化[J]. 中草药, 2024, 55(15): 5135-5144.
[67] Wang, J., Wang, L., Lou, G., Zeng, H., Hu, J., Huang, Q., et al. (2019) Coptidis Rhizoma: A Comprehensive Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology and Toxicology. Pharmaceutical Biology, 57, 193-225. [Google Scholar] [CrossRef] [PubMed]
[68] Hong, Y., Feng, J., Dou, Z., Sun, X., Hu, Y., Chen, Z., et al. (2024) Berberine as a Novel ACSL4 Inhibitor to Suppress Endothelial Ferroptosis and Atherosclerosis. Biomedicine & Pharmacotherapy, 177, Article ID: 117081. [Google Scholar] [CrossRef] [PubMed]
[69] 姚雪, 吴国真, 赵宏伟, 等. 黄芩中化学成分及药理作用研究进展[J]. 辽宁中医杂志, 2020, 47(7): 215-220.
[70] 于宁, 宋囡, 隋国媛, 等. 黄芩苷调节HIF-1α/SLC7A11/GPX4轴抑制ox-LDL诱导的巨噬细胞源性泡沫细胞形成[J]. 中国病理生理杂志, 2025, 41(5): 909-918.
[71] Zhu, L., Bao, Y., Liu, Z., Liu, J., Li, Z., Sun, X., et al. (2024) Gualou-Xiebai Herb Pair Ameliorate Atherosclerosis in HFD-Induced Apoe−/− Mice and Inhibit the ox-LDL-Induced Injury of HUVECs by Regulating the Nrf2-Mediated Ferroptosis. Journal of Ethnopharmacology, 326, Article ID: 117892. [Google Scholar] [CrossRef] [PubMed]
[72] Song, W., Zhang, Z., Zhang, X.B., et al. (2024) Zhuyu Pills Regulate p53/SLC7A11 Signaling Pathway-Mediated Oxidative Damage and Ferroptosis to Treat Atherosclerosis. China Journal of Chinese Materia Medica, 49, 4118-4127.
[73] Gao, D., Tian, T., Yu, K., Shao, X., Shi, R., Xue, W., et al. (2025) Huotan Jiedu Tongluo Decoction Targets Nrf2-Mediated Macrophage Autophagy to Inhibit Ferroptosis and Reduce Atherosclerotic Lesions. Phytomedicine, 145, Article ID: 157012. [Google Scholar] [CrossRef] [PubMed]
[74] Gao, D., Tian, T.H., Yu, K.Y., et al. (2025) Huotan Jiedu Tongluo Decoction Inhibits Ferroptosis by Regulating Nrf2/GPX4 Pathway to Ameliorate Atherosclerotic Lesions in ApoE⁻/⁻ Mice. China Journal of Chinese Materia Medica, 50, 1908-1919.
[75] Fu, J., Liu, H., Liang, Y., Shi, Y., Gao, X., Chen, P., et al. (2025) Study on the Mechanism of Huangqi Chifeng Decoction Regulating Ferroptosis Inhibiting Smooth Muscle Cells Derived Foam Cell Formation. Journal of Ethnopharmacology, 344, Article ID: 119507. [Google Scholar] [CrossRef] [PubMed]