|
[1]
|
Mills, G.C. (1957) Hemoglobin Catabolism. I. Glutathione Peroxidase, an Erythrocyte Enzyme Which Protects Hemoglobin from Oxidative Breakdown Journal of Biological Chemistry, 229, 189-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Flohe, L., Günzler, W.A. and Schock, H.H. (1973) Glutathione Peroxidase: A Selenoenzyme. FEBS Letters, 32, 132-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ursini, F., Maiorino, M., Valente, M., Ferri, L. and Gregolin, C. (1982) Purification from Pig Liver of a Protein Which Protects Liposomes and Biomembranes from Peroxidative Degradation and Exhibits Glutathione Peroxidase Activity on Phosphatidylcholine Hydroperoxides. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 710, 197-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bannai, S. and Kitamura, E. (1980) Transport Interaction of L-Cystine and L-Glutamate in Human Diploid Fibroblasts in Culture. Journal of Biological Chemistry, 255, 2372-2376. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chambers, S.J., Lambert, N. and Williamson, G. (1994) Purification of a Cytosolic Enzyme from Human Liver with Phospholipid Hydroperoxide Glutathione Peroxidase Activity. International Journal of Biochemistry, 26, 1279-1286. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Qiu, B., Zandkarimi, F., Bezjian, C.T., Reznik, E., Soni, R.K., Gu, W., et al. (2024) Phospholipids with Two Polyunsaturated Fatty Acyl Tails Promote Ferroptosis. Cell, 187, 1177-1190.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., et al. (2023) Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy, 19, 1982-1996. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, P., Wu, J., Xu, Y., Ding, C.C., Mestre, A.A., Lin, C., et al. (2021) Zinc Transporter ZIP7 Is a Novel Determinant of Ferroptosis. Cell Death & Disease, 12, Article No. 198. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gao, M., Yi, J., Zhu, J., Minikes, A.M., Monian, P., Thompson, C.B., et al. (2019) Role of Mitochondria in Ferroptosis. Molecular Cell, 73, 354-363.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xie, Y., Zhu, S., Song, X., Sun, X., Fan, Y., Liu, J., et al. (2017) The Tumor Suppressor P53 Limits Ferroptosis by Blocking DPP4 Activity. Cell Reports, 20, 1692-1704. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., et al. (2020) Cytochrome P450 Oxidoreductase Contributes to Phospholipid Peroxidation in Ferroptosis. Nature Chemical Biology, 16, 302-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yin, H., Xu, L. and Porter, N.A. (2011) Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews, 111, 5944-5972. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sato, H., Tamba, M., Ishii, T. and Bannai, S. (1999) Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins. Journal of Biological Chemistry, 274, 11455-11458. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sato, H., Tamba, M., Kuriyama-Matsumura, K., Okuno, S. and Bannai, S. (2000) Molecular Cloning and Expression of Human xCT, the Light Chain of Amino Acid Transport System xc−. Antioxidants & Redox Signaling, 2, 665-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Brigelius-Flohé, R. and Maiorino, M. (2013) Glutathione Peroxidases. Biochimica et Biophysica Acta (BBA)—General Subjects, 1830, 3289-3303. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Louandre, C., Ezzoukhry, Z., Godin, C., Barbare, J., Mazière, J., Chauffert, B., et al. (2013) Iron‐Dependent Cell Death of Hepatocellular Carcinoma Cells Exposed to Sorafenib. International Journal of Cancer, 133, 1732-1742. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Jiang, L., Kon, N., Li, T., Wang, S., Su, T., Hibshoosh, H., et al. (2015) Ferroptosis as a p53-Mediated Activity during Tumour Suppression. Nature, 520, 57-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Horikoshi, N., Cong, J., Kley, N. and Shenk, T. (1999) Isolation of Differentially Expressed cDNAs from p53-Dependent Apoptotic Cells: Activation of the Human Homologue of the Drosophila Peroxidasin Gene. Biochemical and Biophysical Research Communications, 261, 864-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Elguindy, M.M. and Nakamaru-Ogiso, E. (2015) Apoptosis-Inducing Factor (AIF) and Its Family Member Protein, AMID, Are Rotenone-Sensitive NADH: Ubiquinone Oxidoreductases (NDH-2). Journal of Biological Chemistry, 290, 20815-20826. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., et al. (2019) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 6, 41-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Andrews, N.C. and Schmidt, P.J. (2007) Iron Homeostasis. Annual Review of Physiology, 69, 69-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
El Hout, M., Dos Santos, L., Hamaï, A. and Mehrpour, M. (2018) A Promising New Approach to Cancer Therapy: Targeting Iron Metabolism in Cancer Stem Cells. Seminars in Cancer Biology, 53, 125-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Conrad, M. and Pratt, D.A. (2019) The Chemical Basis of Ferroptosis. Nature Chemical Biology, 15, 1137-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Lin, Z., Liu, J., Long, F., Kang, R., Kroemer, G., Tang, D., et al. (2022) The Lipid Flippase SLC47A1 Blocks Metabolic Vulnerability to Ferroptosis. Nature Communications, 13, Article No. 7965. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ingold, I., Berndt, C., Schmitt, S., Doll, S., Poschmann, G., Buday, K., et al. (2018) Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell, 172, 409-422.e21. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wenzel, S.E., Tyurina, Y.Y., Zhao, J., St. Croix, C.M., Dar, H.H., Mao, G., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.e26. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Libby, P. (2024) Inflammation and the Pathogenesis of Atherosclerosis. Vascular Pharmacology, 154, Article ID: 107255. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xu, S., Ilyas, I., Little, P.J., Li, H., Kamato, D., Zheng, X., et al. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73, 924-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Cybulsky, M.I. and Gimbrone, M.A. (1991) Endothelial Expression of a Mononuclear Leukocyte Adhesion Molecule during Atherogenesis. Science, 251, 788-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Smith, J.D., Trogan, E., Ginsberg, M., Grigaux, C., Tian, J. and Miyata, M. (1995) Decreased Atherosclerosis in Mice Deficient in both Macrophage Colony-Stimulating Factor (op) and Apolipoprotein E. Proceedings of the National Academy of Sciences, 92, 8264-8268. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Boring, L., Gosling, J., Cleary, M. and Charo, I.F. (1998) Decreased Lesion Formation in CCR2−/− Mice Reveals a Role for Chemokines in the Initiation of Atherosclerosis. Nature, 394, 894-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Alquraini, A. and El Khoury, J. (2020) Scavenger Receptors. Current Biology, 30, R790-R795. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bennett, M.R., Sinha, S. and Owens, G.K. (2016) Vascular Smooth Muscle Cells in Atherosclerosis. Circulation Research, 118, 692-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kockx, M. and Herman, A.G. (2000) Apoptosis in Atherosclerosis: Beneficial or Detrimental? Cardiovascular Research, 45, 736-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kolodgie, F.D., Gold, H.K., Burke, A.P., Fowler, D.R., Kruth, H.S., Weber, D.K., et al. (2003) Intraplaque Hemorrhage and Progression of Coronary Atheroma. New England Journal of Medicine, 349, 2316-2325. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Martinet, W., Coornaert, I., Puylaert, P. and De Meyer, G.R.Y. (2019) Macrophage Death as a Pharmacological Target in Atherosclerosis. Frontiers in Pharmacology, 10, Article No. 306. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bai, T., Li, M., Liu, Y., Qiao, Z. and Wang, Z. (2020) Inhibition of Ferroptosis Alleviates Atherosclerosis through Attenuating Lipid Peroxidation and Endothelial Dysfunction in Mouse Aortic Endothelial Cell. Free Radical Biology and Medicine, 160, 92-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zeng, Y., Fu, S., Xia, Y., Meng, G. and Xu, X. (2024) Itchy E3 Ubiquitin Ligase-Mediated Ubiquitination of Ferritin Light Chain Contributes to Endothelial Ferroptosis in Atherosclerosis. International Journal of Molecular Sciences, 25, Article No. 13524. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Liu, Z., Cheng, S., Zheng, X., Wang, X., Lu, W., Wang, X., et al. (2025) Paclitaxel Attenuates Atherosclerosis by Suppressing Macrophage Ferroptosis and Improving Lipid Metabolism via the Sirt1/Nrf2/GPX4 Pathway. The FASEB Journal, 39, e70917. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Puylaert, P., Roth, L., Van Praet, M., Pintelon, I., Dumitrascu, C., van Nuijs, A., et al. (2023) Effect of Erythrophagocytosis-Induced Ferroptosis during Angiogenesis in Atherosclerotic Plaques. Angiogenesis, 26, 505-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chen, Y., Cui, Y., Li, M., Xia, M., Xiang, Q., Mao, Y., et al. (2024) A Novel Mechanism of Ferroptosis Inhibition‐enhanced Atherosclerotic Plaque Stability: YAP1 Suppresses Vascular Smooth Muscle Cell Ferroptosis through Gls1. The FASEB Journal, 38, e23850. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ansari, M.A., Khan, F.B., Safdari, H.A., Almatroudi, A., Alzohairy, M.A., Safdari, M., et al. (2021) Prospective Therapeutic Potential of Tanshinone IIA: An Updated Overview. Pharmacological Research, 164, Article ID: 105364. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Shang, Q., Xu, H. and Huang, L. (2012) Tanshinone IIA: A Promising Natural Cardioprotective Agent. Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 716459. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
He, L., Liu, Y., Wang, K., Li, C., Zhang, W., Li, Z., et al. (2021) Tanshinone IIA Protects Human Coronary Artery Endothelial Cells from Ferroptosis by Activating the NRF2 Pathway. Biochemical and Biophysical Research Communications, 575, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liang, Y., Chen, B., Liang, D., Quan, X., Gu, R., Meng, Z., et al. (2023) Pharmacological Effects of Astragaloside IV: A Review. Molecules, 28, Article No. 6118. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Qin, H.W., Sun, M.Y., Wang, M.N., et al. (2024) Mechanism of Astragaloside Ⅳ Modulation of Nrf2/HO-1/GPX4 Pathway to Inhibit Ferroptosis and Ameliorate Atherosclerosis in ApoE⁻/⁻ Mice. China Journal of Chinese Materia Medica, 49, 3619-3626.
|
|
[61]
|
Zhang, L., Li, D. and Liu, L. (2019) Paeonol: Pharmacological Effects and Mechanisms of Action. International Immunopharmacology, 72, 413-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Gao, M., Dong, L., Yang, Y., Yan, J., Liang, Y., Ma, X., et al. (2024) The Anti-Atherosclerotic Effect of Paeonol against the Lipid Accumulation in Macrophage-Derived Foam Cells by Inhibiting Ferroptosis via the SIRT1/NRF2/GPX4 Signaling Pathway. Biochemical and Biophysical Research Communications, 708, Article ID: 149788. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Dugasani, S., Pichika, M.R., Nadarajah, V.D., Balijepalli, M.K., Tandra, S. and Korlakunta, J.N. (2010) Comparative Antioxidant and Anti-Inflammatory Effects of [6]-Gingerol, [8]-Gingerol, [10]-Gingerol and [6]-Shogaol. Journal of Ethnopharmacology, 127, 515-520. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Wang, S., Song, X., Gao, H., Zhang, Y., Zhou, X. and Wang, F. (2025) 6-Gingerol Inhibits Ferroptosis in Endothelial Cells in Atherosclerosis by Activating the NRF2/HO-1 Pathway. Applied Biochemistry and Biotechnology, 197, 3890-3906. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Yang, X., Xiong, X., Wang, H. and Wang, J. (2014) Protective Effects of Panax Notoginseng Saponins on Cardiovascular Diseases: A Comprehensive Overview of Experimental Studies. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 204840. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
张梦, 萧闵, 蔡婷, 等. 三七皂苷R1调控Nrf2介导的铁死亡途径改善ApoE⁻/⁻小鼠动脉粥样硬化[J]. 中草药, 2024, 55(15): 5135-5144.
|
|
[67]
|
Wang, J., Wang, L., Lou, G., Zeng, H., Hu, J., Huang, Q., et al. (2019) Coptidis Rhizoma: A Comprehensive Review of Its Traditional Uses, Botany, Phytochemistry, Pharmacology and Toxicology. Pharmaceutical Biology, 57, 193-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Hong, Y., Feng, J., Dou, Z., Sun, X., Hu, Y., Chen, Z., et al. (2024) Berberine as a Novel ACSL4 Inhibitor to Suppress Endothelial Ferroptosis and Atherosclerosis. Biomedicine & Pharmacotherapy, 177, Article ID: 117081. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
姚雪, 吴国真, 赵宏伟, 等. 黄芩中化学成分及药理作用研究进展[J]. 辽宁中医杂志, 2020, 47(7): 215-220.
|
|
[70]
|
于宁, 宋囡, 隋国媛, 等. 黄芩苷调节HIF-1α/SLC7A11/GPX4轴抑制ox-LDL诱导的巨噬细胞源性泡沫细胞形成[J]. 中国病理生理杂志, 2025, 41(5): 909-918.
|
|
[71]
|
Zhu, L., Bao, Y., Liu, Z., Liu, J., Li, Z., Sun, X., et al. (2024) Gualou-Xiebai Herb Pair Ameliorate Atherosclerosis in HFD-Induced Apoe−/− Mice and Inhibit the ox-LDL-Induced Injury of HUVECs by Regulating the Nrf2-Mediated Ferroptosis. Journal of Ethnopharmacology, 326, Article ID: 117892. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Song, W., Zhang, Z., Zhang, X.B., et al. (2024) Zhuyu Pills Regulate p53/SLC7A11 Signaling Pathway-Mediated Oxidative Damage and Ferroptosis to Treat Atherosclerosis. China Journal of Chinese Materia Medica, 49, 4118-4127.
|
|
[73]
|
Gao, D., Tian, T., Yu, K., Shao, X., Shi, R., Xue, W., et al. (2025) Huotan Jiedu Tongluo Decoction Targets Nrf2-Mediated Macrophage Autophagy to Inhibit Ferroptosis and Reduce Atherosclerotic Lesions. Phytomedicine, 145, Article ID: 157012. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Gao, D., Tian, T.H., Yu, K.Y., et al. (2025) Huotan Jiedu Tongluo Decoction Inhibits Ferroptosis by Regulating Nrf2/GPX4 Pathway to Ameliorate Atherosclerotic Lesions in ApoE⁻/⁻ Mice. China Journal of Chinese Materia Medica, 50, 1908-1919.
|
|
[75]
|
Fu, J., Liu, H., Liang, Y., Shi, Y., Gao, X., Chen, P., et al. (2025) Study on the Mechanism of Huangqi Chifeng Decoction Regulating Ferroptosis Inhibiting Smooth Muscle Cells Derived Foam Cell Formation. Journal of Ethnopharmacology, 344, Article ID: 119507. [Google Scholar] [CrossRef] [PubMed]
|