|
[1]
|
中国冶金百科全书总编辑委员会, 《金属塑性加工》卷编辑委员会, 冶金工业出版社, 《中国冶金百科全书》编辑部. 中国冶金百科全书: 金属塑性加工[M]. 北京: 冶金工业出版社, 1999: 923-924.
|
|
[2]
|
Quested, T.E. (2004) Understanding Mechanisms of Grain Refinement of Aluminium Alloys by Inoculation. Materials Science and Technology, 20, 1357-1369. [Google Scholar] [CrossRef]
|
|
[3]
|
黄俊辉, 孙明, 张燕艳, 等. Al-Ti-B在Al-Si合金中的晶粒细化行为的研究进展[J]. 有色金属材料与工程, 2022, 43(5): 47-60.
|
|
[4]
|
Sunitha, K. and Gurusami, K. (2021) Study of Al-Si Alloys Grain Refinement by Inoculation. Materials Today: Proceedings, 43, 1825-1829. [Google Scholar] [CrossRef]
|
|
[5]
|
Yashin, V.V., Aryshenskii, E.V., Drits, A.M., Grechnikov, F.V., Ragazin, A.A. and Bazhenov, V.E. (2021) Effect of Scandium on the Microstructure of the Al-Cu-Mn-Mg-Hf-Nb Alloy. Physics of Metals and Metallography, 122, 960-968. [Google Scholar] [CrossRef]
|
|
[6]
|
闫敬明, 黎平, 左孝青, 等. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
|
|
[7]
|
Abdel-Hamid, A.A. (1989) Effect of Other Elements on the Grain Refinement of Al by Ti or Ti and B. International Journal of Materials Research, 80, 566-569. [Google Scholar] [CrossRef]
|
|
[8]
|
张森, 韩延峰, 王俊, 等. Al-Ti-C中间合金研究进展[J]. 热加工工艺, 2012, 41(13): 49-52+55.
|
|
[9]
|
共研网. 2022年中国铝晶粒细化剂需求量及行业发展前景分析[EB/OL]. 2023-02-09. https://gonyn.com/industry/1318448.html, 2023-04-10.
|
|
[10]
|
中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N]. 人民日报, 2021-03-13(001).
|
|
[11]
|
黄元春, 邵虹榜, 肖政兵, 等. Al-Ti-B合金中AlB2、TiB2和TiAl3的第一性原理研究[J]. 中国有色金属学报, 2018, 28(8): 1491-1498.
|
|
[12]
|
Nikitin, K.V., Timoshkin, I.Y. and Nikitin, V.I. (2018) Influence of Methods of Producing the Alti Master Alloy on Its Structure and Efficiency in the Grain Refinement of Aluminum Alloy. Russian Journal of Non-Ferrous Metals, 59, 512-519. [Google Scholar] [CrossRef]
|
|
[13]
|
黄元春, 杜志勇, 肖政兵, 等. Al-Ti-C和Al-Ti-B对7050铝合金微观组织与力学性能的影响[J]. 材料工程, 2015, 43(12): 75-80.
|
|
[14]
|
Jiang, H.X., Sun, Q., Zhang, L.L., et al. (2018) Al-Ti-C Master Alloy with Nano-Sized TiC Particles Dispersed in the Matrix Prepared by Using Carbon Nanotubes as C Source. Journal of Alloys and Compounds, 748, 774-782. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, F., Hu, M., Liu, T., Jiang, B. and Ji, Z. (2022) Microstructure of Al-Ti-C Master Alloy Triggered by Rare-Earth Ce. Journal of Materials Research, 37, 1486-1496. [Google Scholar] [CrossRef]
|
|
[16]
|
Ma, X.G., Liu, X.F. and Ding, H.M. (2008) A United Refinement Technology for Commercial Pure Al by Al-10Ti and Al-Ti-C Master Alloys. Journal of Alloys and Compounds, 471, 56-59.
|
|
[17]
|
Liu, Y., Ding, C. and Li, Y. (2011) Grain Refining Mechanism of Al-3b Master Alloy on Hypoeutectic Al-Si Alloys. Transactions of Nonferrous Metals Society of China, 21, 1435-1440. [Google Scholar] [CrossRef]
|
|
[18]
|
Birol, Y. (2012) Grain Refinement of Pure Aluminium and Al-7Si with Al-3B Master Alloy. Materials Science and Technology, 28, 363-367. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, Z.N., Wang, T.M., Gao, L., et al. (2012) Grain Refinement and Tensile Properties Improvement of Aluminum Foundry Alloys by Inoculation with Al-B Master Alloy. Materials Science and Engineering: A, 553, 32-36. [Google Scholar] [CrossRef]
|
|
[20]
|
Dong, Y., Wang, M., Zhang, G. and Xu, H. (2021) Influence of Ti/C Mass Ratio on the Microstructure of Al-Ti-C Master Alloy and Refinement Effect on Pure Aluminum. Results in Physics, 23, Article 104000. [Google Scholar] [CrossRef]
|
|
[21]
|
Fan, Z., Wang, Y., Zhang, Y., Qin, T., Zhou, X.R., Thompson, G.E., et al. (2015) Grain Refining Mechanism in the Al/Al-Ti-B System. Acta Materialia, 84, 292-304. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, Y., Hu, B., Liu, B., Nie, A., Gu, Q., Wang, J., et al. (2020) Insight into Si Poisoning on Grain Refinement of Al-Si/Al-5Ti-B System. Acta Materialia, 187, 51-65. [Google Scholar] [CrossRef]
|
|
[23]
|
Wang, Y., Fang, C.M., Zhou, L., Hashimoto, T., Zhou, X., Ramasse, Q.M., et al. (2019) Mechanism for Zr Poisoning of Al-Ti-B Based Grain Refiners. Acta Materialia, 164, 428-439. [Google Scholar] [CrossRef]
|
|
[24]
|
肖政兵, 邓运来, 唐建国, 等. Al-Ti-C与Al-Ti-B晶粒细化剂的Zr中毒机理[J]. 中国有色金属学报, 2012, 22(2): 371-378.
|
|
[25]
|
Li, J., Zhang, B., Wang, L., et al. (2002) Combined Effect and Its Mechanism of Al-3wt.%Ti-4wt.%B and Al-10wt.%Sr Master Alloy on Microstructures of Al-Si-Cu Alloy. Materials Science & Engineering A, 328, 169-176.
|
|
[26]
|
Muangnoy, P. and Eidhed, K. (2021) Fading Mechanism on Grain Refinement and Modification with Al-B-Sr Master Alloys in an Aluminium-Silicon Cast Alloy. Archives of Metallurgy and Materials, 67, 1137-1144. [Google Scholar] [CrossRef]
|
|
[27]
|
赵宇光, 杨雪慧, 徐晓峰, 等. Al-10Sr变质剂状态、变质温度及变质时间对ZL114A合金组织的影响[J]. 吉林大学学报(工学版), 2018, 48(1): 212-220.
|
|
[28]
|
Zhang, Y., Zheng, H., Liu, Y., Shi, L., Xu, R. and Tian, X. (2014) Cluster-Assisted Nucleation of Silicon Phase in Hypoeutectic Al-Si Alloy with Further Inoculation. Acta Materialia, 70, 162-173. [Google Scholar] [CrossRef]
|
|
[29]
|
Zhang, Y., Zheng, H., Liu, Y., Xu, R., Shi, L. and Tian, X. (2014) Enhanced Nucleation of Primary Silicon in Al-20Si (wt%) Alloy Inoculated with Al-10Si-2Fe Master Alloy. Materials Letters, 123, 224-228. [Google Scholar] [CrossRef]
|
|
[30]
|
Nowak, M., Yeoh, W.K., Bolzoni, L. and Hari Babu, N. (2015) Development of Al-Nb-B Master Alloys Using Nb and KBF4 Powders. Materials & Design, 75, 40-46. [Google Scholar] [CrossRef]
|
|
[31]
|
Bolzoni, L. and Hari Babu, N. (2019) Towards Industrial Al-Nb-B Master Alloys for Grain Refining Al-Si Alloys. Journal of Materials Research and Technology, 8, 5631-5638. [Google Scholar] [CrossRef]
|
|
[32]
|
Wu, D.Y., Ma, S.D., Jing, T., et al. (2021) Revealing the Mechanism of Grain Refinement and Anti Si-Poisoning Induced by (Nb, Ti)B2 with a Sandwich-Like Structure. Acta Materialia, 219, Article 117265. [Google Scholar] [CrossRef]
|
|
[33]
|
Li, C., Liu, X.F. and Wu, Y.Y. (2007) Refinement and Modification Performance of Al-P Master Alloy on Primary Mg 2 Si in Al-Mg-Si Alloys. Journal of Alloys and Compounds, 465, 145-150. [Google Scholar] [CrossRef]
|
|
[34]
|
Li, Z., Li, C., Gao, Z., Liu, Y., Liu, X., Guo, Q., et al. (2015) Corrosion Behavior of Al-Mg2Si Alloys With/without Addition of Al-P Master Alloy. Materials Characterization, 110, 170-174. [Google Scholar] [CrossRef]
|
|
[35]
|
Zuo, M., Jiang, K. and Liu, X. (2010) Refinement of Hypereutectic Al-Si Alloy by a New Al-Zr-P Master Alloy. Journal of Alloys and Compounds, 503, L26-L30. [Google Scholar] [CrossRef]
|
|
[36]
|
Mahran, G.M.A. and Omran, A.M. (2022) Grain Refining of Aluminium and 6063 Alloys Using Al-V Alloy Containing Al3V Intermetallic Compound. Materials Science, 28, 41-47. [Google Scholar] [CrossRef]
|
|
[37]
|
Zhang, Y.H., Ye, C.Y., Shen, Y.P., Chang, W., StJohn, D.H., Wang, G., et al. (2020) Grain Refinement of Hypoeutectic Al-7wt.%Si Alloy Induced by an Al-V-B Master Alloy. Journal of Alloys and Compounds, 812, Article 152022. [Google Scholar] [CrossRef]
|
|
[38]
|
Zhao, C., Li, Y., Xu, J., Luo, Q., Jiang, Y., Xiao, Q., et al. (2021) Enhanced Grain Refinement of Al-Si Alloys by Novel Al-V-B Refiners. Journal of Materials Science & Technology, 94, 104-112. [Google Scholar] [CrossRef]
|
|
[39]
|
Li, P., Kandalova, E.G. and Nikitin, V.I. (2005) Grain Refining Performance of Al-Ti Master Alloys with Different Microstructures. Materials Letters, 59, 723-727. [Google Scholar] [CrossRef]
|
|
[40]
|
Yang, H.B., Gao, T., Wang, H.C., et al. (20170 Influence of C/Ti Stoichiometry in TiCx on the Grain Refinement Efficiency of Al-Ti-C Master Alloy. Journal of Materials Science & Technology, 33, 616-622.
|
|
[41]
|
Wu, X.Y., Zhang, H.R., Jiang, F., et al. (2018) Microstructure and Grain Refinement Performance of a New Al-5Nb-RE-B Master Alloy. Rare Metal Materials and Engineering, 47, 2017-2021.
|
|
[42]
|
Xu, J., Li, Y., Hu, B., Jiang, Y. and Li, Q. (2019) Development of Al-Nb-B Master Alloy with High Nb/b Ratio for Grain Refinement of Hypoeutectic Al-Si Cast Alloys. Journal of Materials Science, 54, 14561-14576. [Google Scholar] [CrossRef]
|
|
[43]
|
Rajagopalan, P.K., Sharma, I.G. and Krishnan, T.S. (1999) Production of Al-Zr Master Alloy Starting from ZrO2. Journal of Alloys and Compounds, 285, 212-215. [Google Scholar] [CrossRef]
|
|
[44]
|
Sreekumar, V.M. and Eskin, D.G. (2016) A New Al-Zr-Ti Master Alloy for Ultrasonic Grain Refinement of Wrought and Foundry Aluminum Alloys. JOM, 68, 3088-3093. [Google Scholar] [CrossRef]
|
|
[45]
|
Ding, W., Xu, C., Hou, X., Zhao, X., Chen, T., Zhao, W., et al. (2019) Preparation and Synthesis Thermokinetics of Novel Al-Ti-C-La Composite Master Alloys. Journal of Alloys and Compounds, 776, 904-911. [Google Scholar] [CrossRef]
|
|
[46]
|
Zhao, H., Song, Y., Li, M. and Guan, S. (2010) Grain Refining Efficiency and Microstructure of Al-Ti-C-RE Master Alloy. Journal of Alloys and Compounds, 508, 206-211. [Google Scholar] [CrossRef]
|
|
[47]
|
付莹, 付连生, 张宇博, 等. La对氟盐法制备Al-Ti-B-La反应机理及其细化效果的影响[J]. 中国有色金属学报, 2020, 30(8): 1781-1790.
|
|
[48]
|
Zhang, S., Zhang, G., Teng, D., Li, J. and Guan, R. (2023) Effect of Al-Ti-B Refiner on Microstructure and Properties of A356 Alloy by Continuous Rheo-extrusion. In: The Minerals, Metals & Materials Series, Springer, 599-604. [Google Scholar] [CrossRef]
|
|
[49]
|
Ding, J.H., Lu, C., Sun, Y.J., et al. (2021) Refining and Modification Effects of (Al, Zr, Si)-Al4Sr on Al-7Si-0.5Mg Alloy. Journal of Materials Research and Technology, 15, 1604-1612. [Google Scholar] [CrossRef]
|
|
[50]
|
Xu, J., Li, R. and Li, Q. (2021) Effect of Agglomeration on Nucleation Potency of Inoculant Particles in the Al-Nb-B Master Alloy: Modeling and Experiments. Metallurgical and Materials Transactions A, 52, 1077-1094. [Google Scholar] [CrossRef]
|