|
[1]
|
Ginès, P., Castera, L., Lammert, F., Graupera, I., Serra‐Burriel, M., Allen, A.M., et al. (2022) Population Screening for Liver Fibrosis: Toward Early Diagnosis and Intervention for Chronic Liver Diseases. Hepatology, 75, 219-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kisseleva, T. and Brenner, D. (2021) Molecular and Cellular Mechanisms of Liver Fibrosis and Its Regression. Nature Reviews Gastroenterology & Hepatology, 18, 151-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版) [J]. 中华肝脏病杂志, 2024, 32(5): 418-434.
|
|
[4]
|
Hagström, H., Shang, Y., Hegmar, H. and Nasr, P. (2024) Natural History and Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease. The Lancet Gastroenterology & Hepatology, 9, 944-956. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
|
|
[6]
|
Du, L., Zong, Y., Li, H., Wang, Q., Xie, L., Yang, B., et al. (2024) Hyperuricemia and Its Related Diseases: Mechanisms and Advances in Therapy. Signal Transduction and Targeted Therapy, 9, Article No. 212. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wen, S., Arakawa, H. and Tamai, I. (2024) Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacology & Therapeutics, 256, Article 108615. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
侯淑惠, 邓晓玲, 次白, 等. 尿酸参与代谢相关性脂肪性肝病发生、发展的分子机制研究进展[J]. 肝脏, 2023, 28(8): 990-994.
|
|
[9]
|
Mangan, M.S.J., Olhava, E.J., Roush, W.R., Seidel, H.M., Glick, G.D. and Latz, E. (2018) Erratum: Targeting the NLRP3 Inflammasome in Inflammatory Diseases. Nature Reviews Drug Discovery, 17, 688-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wen, L., Yang, H., Ma, L. and Fu, P. (2021) The Roles of NLRP3 Inflammasome-Mediated Signaling Pathways in Hyperuricemic Nephropathy. Molecular and Cellular Biochemistry, 476, 1377-1386. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dai, C., Fang, T., Hung, W., Tsai, H. and Tsai, Y. (2022) The Determinants of Liver Fibrosis in Patients with Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. Biomedicines, 10, Article 1487. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lee, J.M., Kim, H.W., Heo, S.Y., Do, K.Y., Lee, J.D., Han, S.K., et al. (2023) Associations of Serum Uric Acid Level with Liver Enzymes, Nonalcoholic Fatty Liver Disease, and Liver Fibrosis in Korean Men and Women: A Cross-Sectional Study Using Nationally Representative Data. Journal of Korean Medical Science, 38, e267. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yu, W., Xie, D., Yamamoto, T., Koyama, H. and Cheng, J. (2023) Mechanistic Insights of Soluble Uric Acid-Induced Insulin Resistance: Insulin Signaling and Beyond. Reviews in Endocrine and Metabolic Disorders, 24, 327-343. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xie, D., Zhao, H., Lu, J., He, F., Liu, W., Yu, W., et al. (2021) High Uric Acid Induces Liver Fat Accumulation via ROS/JNK/AP-1 Signaling. American Journal of Physiology-Endocrinology and Metabolism, 320, E1032-E1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ashraf, H., Anushiravani, A., Rayatpisheh, M., Hamidi Alamdari, D., Hossieni, A. and Kazeminezhad, B. (2025) Association between Oxidative Stress and Liver Fibrosis Severity in Non-Alcoholic Fatty Liver Disease: Insights from the Pro-Oxidant Antioxidant Balance Method in a Population from Tehran and Mashhad, Iran. Frontiers in Medicine, 12, Article ID: 1539605. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sun, X., Jiao, H., Zhao, J., Wang, X. and Lin, H. (2017) Unexpected Effect of Urate on Hydrogen Peroxide-Induced Oxidative Damage in Embryonic Chicken Cardiac Cells. Free Radical Research, 51, 693-707. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, J., Zheng, Q. and Chen, Z. (2022) The Nrf2 Pathway in Liver Diseases. Frontiers in Cell and Developmental Biology, 10, Article ID: 826204. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Mohs, A., Otto, T., Schneider, K.M., Peltzer, M., Boekschoten, M., Holland, C.H., et al. (2021) Hepatocyte-Specific Nrf2 Activation Controls Fibrogenesis and Carcinogenesis in Steatohepatitis. Journal of Hepatology, 74, 638-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, S., Zou, Y., Zhong, C., Zhou, Z., Peng, X. and Tang, C. (2025) Dual Role of Pyroptosis in Liver Diseases: Mechanisms, Implications, and Therapeutic Perspectives. Frontiers in Cell and Developmental Biology, 13, Article ID: 1522206. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Xu, Z., Tang, C., Song, X., Liu, Z., Zhou, J., Shi, Q., et al. (2025) High Uric Acid Exacerbates Nonalcoholic Steatohepatitis through NLRP3 Inflammasome and Gasdermin D-Mediated Pyroptosis. Journal of Biological Chemistry, 301, Article 110249. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, T., Xia, G., Li, X., Gong, M. and Lv, X. (2025) Endoplasmic Reticulum Stress in Liver Fibrosis: Mechanisms and Therapeutic Potential. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1871, Article 167695. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Choi, Y., Shin, H., Choi, H.S., Park, J., Jo, I., Oh, E., et al. (2014) Uric Acid Induces Fat Accumulation via Generation of Endoplasmic Reticulum Stress and Srebp-1c Activation in Hepatocytes. Laboratory Investigation, 94, 1114-1125. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lau, H.C.-H., Zhang, X. and Yu, J. (2025) Gut Microbiome in Metabolic Dysfunction-Associated Steatotic Liver Disease and Associated Hepatocellular Carcinoma. Nature Reviews Gastroenterology & Hepatology, 22, 619-638.
|
|
[24]
|
Zhou, X., Ji, S., Chen, L., Liu, X., Deng, Y., You, Y., et al. (2024) Gut Microbiota Dysbiosis in Hyperuricaemia Promotes Renal Injury through the Activation of Nlrp3 Inflammasome. Microbiome, 12, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nishikawa, T., Nagata, N., Shimakami, T., Shirakura, T., Matsui, C., Ni, Y., et al. (2020) Xanthine Oxidase Inhibition Attenuates Insulin Resistance and Diet-Induced Steatohepatitis in Mice. Scientific Reports, 10, Article No. 815. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sari, D.C.R., Soetoko, A.S., Soetoko, A.S., et al. (2020) Uric Acid Induces Liver Fibrosis Through Activation of Inflammatory Mediators and Proliferating Hepatic Stellate Cell in Mice. Medical Journal of Malaysia, 75, 14-18.
|
|
[27]
|
Kakimoto, M., Fujii, M., Sato, I., Honma, K., Nakayama, H., Kirihara, S., et al. (2023) Antioxidant Action of Xanthine Oxidase Inhibitor Febuxostat Protects the Liver and Blood Vasculature in SHRSP5/Dmcr Rats. Journal of Applied Biomedicine, 21, 80-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yokose, C., McCormick, N., Abhishek, A., Dalbeth, N., Pascart, T., Lioté, F., et al. (2024) The Clinical Benefits of Sodium-Glucose Cotransporter Type 2 Inhibitors in People with Gout. Nature Reviews Rheumatology, 20, 216-231. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hirayama, K., Koshizaka, M., Ishibashi, R., Shoji, M., Horikoshi, T., Sakurai, K., et al. (2025) Effects of the SGLT2 Inhibitor Ipragliflozin and Metformin on Hepatic Steatosis and Liver Fibrosis: Sub‐Analysis of a Randomized Controlled Study. Diabetes, Obesity and Metabolism, 27, 2059-2069. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ji, L., Jiang, H., Bi, Y., Li, H., Tian, J., Liu, D., et al. (2025) Once-Weekly Mazdutide in Chinese Adults with Obesity or Overweight. New England Journal of Medicine, 392, 2215-2225. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tanaka, Y., Nagoshi, T., Takahashi, H., Oi, Y., Yoshii, A., Kimura, H., et al. (2022) Urat1-Selective Inhibition Ameliorates Insulin Resistance by Attenuating Diet-Induced Hepatic Steatosis and Brown Adipose Tissue Whitening in Mice. Molecular Metabolism, 55, Article 101411. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Matsushita, D., Toyoda, Y., Lee, Y., Aoi, M., Matsuo, H., Takada, T., et al. (2025) Structural Basis of Urate Transport by Glucose Transporter 9. Cell Reports, 44, Article 115514. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shen, Z., Xu, L., Wu, T., Wang, H., Wang, Q., Ge, X., et al. (2024) Structural Basis for Urate Recognition and Apigenin Inhibition of Human Glut9. Nature Communications, 15, Article No. 5039. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hsu, M., Guo, B., Chen, C., Hu, P., Chen, W. and Lee, T. (2025) Rac1 Signaling Mediates the Protection of Apigenin against Hepatic Lipid Accumulation and Insulin Resistance. Biomedicine & Pharmacotherapy, 189, Article 118265. [Google Scholar] [CrossRef] [PubMed]
|