|
[1]
|
Fernandez-Prado, R., Esteras, R., Perez-Gomez, M., Gracia-Iguacel, C., Gonzalez-Parra, E., Sanz, A., et al. (2017) Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients, 9, Article 489. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Chen, W., Chen, Q., Chen, Q., Cui, C., Duan, S., Kang, Y., et al. (2022) Biomedical Polymers: Synthesis, Properties, and Applications. Science China Chemistry, 65, 1010-1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Song, S. and Lee, J.E. (2018) Dietary Patterns Related to Triglyceride and High-Density Lipoprotein Cholesterol and the Incidence of Type 2 Diabetes in Korean Men and Women. Nutrients, 11, Article 8. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Jeon, J., Jang, J. and Park, K. (2018) Effects of Consuming Calcium-Rich Foods on the Incidence of Type 2 Diabetes Mellitus. Nutrients, 11, Article 31. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
余江毅, 倪青, 刘苏. 糖尿病肾病病证结合诊疗指南[J]. 中医杂志, 2022, 63(2): 190-197.
|
|
[6]
|
《中国老年型糖尿病防治临床指南》编写组. 中国老年2型糖尿病防治临床指南(2022年版) [J]. 中国糖尿病杂志, 2022, 30(1): 2-51.
|
|
[7]
|
玉霞, 沈馨, 赵佳, 等. 2型糖尿病患者肠道菌群特征[J]. 中国微生态学杂志, 2024, 36(7): 753-760.
|
|
[8]
|
Meijers, B.K.I. and Evenepoel, P. (2011) The Gut-Kidney Axis: Indoxyl Sulfate, P-Cresyl Sulfate and CKD Progression. Nephrology Dialysis Transplantation, 26, 759-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lu, C., Hu, Z., Wang, R., Hong, Z., Lu, J., Chen, P., et al. (2020) Gut Microbiota Dysbiosis-Induced Activation of the Intrarenal Renin-Angiotensin System Is Involved in Kidney Injuries in Rat Diabetic Nephropathy. Acta Pharmacologica Sinica, 41, 1111-1118. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kumar, R., Priyadarshi, R.N. and Anand, U. (2021) Chronic Renal Dysfunction in Cirrhosis: A New Frontier in Hepatology. World Journal of Gastroenterology, 27, 990-1005. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Felizardo, R.J.F., Castoldi, A., Andrade‐Oliveira, V. and Câmara, N.O.S. (2016) The Microbiota and Chronic Kidney Diseases: A Double‐Edged Sword. Clinical & Translational Immunology, 5, e86. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Pluznick, J.L. (2016) Gut Microbiota in Renal Physiology: Focus on Short-Chain Fatty Acids and Their Receptors. Kidney International, 90, 1191-1198. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Pryde, S.E., Duncan, S.H., Hold, G.L., Stewart, C.S. and Flint, H.J. (2002) The Microbiology of Butyrate Formation in the Human Colon. FEMS Microbiology Letters, 217, 133-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Augenlicht, L.H., Mariadason, J.M., Wilson, A., Arango, D., Yang, W., Heerdt, B.G., et al. (2002) Short Chain Fatty Acids and Colon Cancer. The Journal of Nutrition, 132, 3804S-3808S. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Segain, J., Raingeard de la Bletiere, D., Bourreille, A., et al. (2000) Butyrate Inhibits Inflammatory Responses through Nfkappa B Inhibition: Implications for Crohn’s Disease. Gut, 47, 397-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
于卓腾, 杭苏琴, 姚文, 等. 肠道产丁酸细菌及其丁酸产生机制的研究进展[J]. 世界华人消化杂志, 2006, 14(25): 2531-2534.
|
|
[17]
|
Drucker, D.J. (2006) The Biology of Incretin Hormones. Cell Metabolism, 3, 153-165. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Muskiet, M.H.A., Smits, M.M., Morsink, L.M. and Diamant, M. (2014) The Gut-Renal Axis: Do Incretin-Based Agents Confer Renoprotection in Diabetes? Nature Reviews Nephrology, 10, 88-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chen, Z., Zhu, S. and Xu, G. (2016) Targeting Gut Microbiota: A Potential Promising Therapy for Diabetic Kidney Disease. American Journal of Translational Research, 8, 4009-4016.
|
|
[20]
|
Pluznick, J.L., Protzko, R.J., Gevorgyan, H., Peterlin, Z., Sipos, A., Han, J., et al. (2013) Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proceedings of the National Academy of Sciences, 110, 4410-4415. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lu, C.C., Ma, K.L., Ruan, X.Z. and Liu, B.C. (2018) Intestinal Dysbiosis Activates Renal Renin-Angiotensin System Contributing to Incipient Diabetic Nephropathy. International Journal of Medical Sciences, 15, 816-822. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., et al. (2013) Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nature Medicine, 19, 576-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gruppen, E.G., Garcia, E., Connelly, M.A., Jeyarajah, E.J., Otvos, J.D., Bakker, S.J.L., et al. (2017) TMAO Is Associated with Mortality: Impact of Modestly Impaired Renal Function. Scientific Reports, 7, Article No. 13781. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Seldin, M.M., Meng, Y., Qi, H., Zhu, W., Wang, Z., Hazen, S.L., et al. (2016) Trimethylamine N‐Oxide Promotes Vascular Inflammation through Signaling of Mitogen‐Activated Protein Kinase and Nuclear Factor‐κB. Journal of the American Heart Association, 5, e002767. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ma, G., Pan, B., Chen, Y., Guo, C., Zhao, M., Zheng, L., et al. (2017) Trimethylamine N-Oxide in Atherogenesis: Impairing Endothelial Self-Repair Capacity and Enhancing Monocyte Adhesion. Bioscience Reports, 37, BSR20160244. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Oellgaard, J., Winther, S.A., Hansen, T.S., Rossing, P. and von Scholten, B.J. (2017) Trimethylamine N-Oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Current Pharmaceutical Design, 23, 3699-3712. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sun, G., Yin, Z., Liu, N., Bian, X., Yu, R., Su, X., et al. (2017) Gut Microbial Metabolite TMAO Contributes to Renal Dysfunction in a Mouse Model of Diet-Induced Obesity. Biochemical and Biophysical Research Communications, 493, 964-970. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Niewczas, M.A., Sirich, T.L., Mathew, A.V., Skupien, J., Mohney, R.P., Warram, J.H., et al. (2014) Uremic Solutes and Risk of End-Stage Renal Disease in Type 2 Diabetes: Metabolomic Study. Kidney International, 85, 1214-1224. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gryp, T., Vanholder, R., Vaneechoutte, M. and Glorieux, G. (2017) P-Cresyl Sulfate. Toxins, 9, Article 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
van der Kloet, F.M., Tempels, F.W.A., Ismail, N., van der Heijden, R., Kasper, P.T., Rojas-Cherto, M., et al. (2012) Discovery of Early-Stage Biomarkers for Diabetic Kidney Disease Using Ms-Based Metabolomics (Finndiane Study). Metabolomics, 8, 109-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Brennan, E., Kantharidis, P., Cooper, M.E. and Godson, C. (2021) Pro-Resolving Lipid Mediators: Regulators of Inflammation, Metabolism and Kidney Function. Nature Reviews Nephrology, 17, 725-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Srivastava, A., Tomar, B., Sharma, D. and Rath, S.K. (2023) Mitochondrial Dysfunction and Oxidative Stress: Role in Chronic Kidney Disease. Life Sciences, 319, Article 121432. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ni, Y., Zheng, L., Nan, S., Ke, L., Fu, Z. and Jin, J. (2022) Enterorenal Crosstalks in Diabetic Nephropathy and Novel Therapeutics Targeting the Gut Microbiota. Acta Biochimica et Biophysica Sinica, 54, 1406-1420. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yadegar, A., Bar-Yoseph, H., Monaghan, T.M., Pakpour, S., Severino, A., Kuijper, E.J., et al. (2024) Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clinical Microbiology Reviews, 37, e0006022. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Porcari, S., Benech, N., Valles-Colomer, M., Segata, N., Gasbarrini, A., Cammarota, G., et al. (2023) Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic. Cell Host & Microbe, 31, 712-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cheng, M., Ren, L., Jia, X., Wang, J. and Cong, B. (2024) Understanding the Action Mechanisms of Metformin in the Gastrointestinal Tract. Frontiers in Pharmacology, 15, Article ID: 1347047. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Meng, F., Zhang, F., Meng, M., Chen, Q., Yang, Y., Wang, W., et al. (2023) Effects of the Synbiotic Composed of Mangiferin and Lactobacillus Reuteri 1-12 on Type 2 Diabetes Mellitus Rats. Frontiers in Microbiology, 14, Article ID: 1158652. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ma, J., Lyu, Y., Liu, X., Jia, X., Cui, F., Wu, X., et al. (2022) Engineered Probiotics. Microbial Cell Factories, 21, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wang, X., Chen, W., Jin, R., Xu, X., Wei, J., Huang, H., et al. (2023) Engineered Probiotics Clostridium Butyricum‐pmtl007‐GLP‐1 Improves Blood Pressure via Producing GLP‐1 and Modulating Gut Microbiota in Spontaneous Hypertension Rat Models. Microbial Biotechnology, 16, 799-812. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Chen, X., Chen, C. and Fu, X. (2022) Hypoglycemic Effect of the Polysaccharides from Astragalus membranaceus on Type 2 Diabetic Mice Based on the “Gut Microbiota-Mucosal Barrier”. Food & Function, 13, 10121-10133. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
高婷婷, 罗广波, 方春平, 等. 基于肠道菌群研究黄芪治疗慢性肾炎[J]. 时珍国医国药, 2022, 33(1): 5-9.
|
|
[42]
|
张文杰, 赖星海, 陈佳薇. 山药多糖治疗肥胖糖尿病肾病大鼠的效果观察及对其肾功能和肠道微生态的影响[J]. 中国微生态学杂志, 2021, 33(1): 37-42.
|
|
[43]
|
Shrivastava, S., Sharma, A., Saxena, N., Bhamra, R. and Kumar, S. (2023) Addressing the Preventive and Therapeutic Perspective of Berberine against Diabetes. Heliyon, 9, e21233. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Y., Gu, Y., Ren, H., Wang, S., Zhong, H., Zhao, X., et al. (2020) Gut Microbiome-Related Effects of Berberine and Probiotics on Type 2 Diabetes (The PREMOTE Study). Nature Communications, 11, Article No. 5015. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yang, J., Dong, H., Wang, Y., Jiang, Y., Zhang, W., Lu, Y., et al. (2020) Cordyceps Cicadae Polysaccharides Ameliorated Renal Interstitial Fibrosis in Diabetic Nephropathy Rats by Repressing Inflammation and Modulating Gut Microbiota Dysbiosis. International Journal of Biological Macromolecules, 163, 442-456. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
梁静涛, 王尧, 何晓艳, 等. 基于16S rDNA测序探讨大黄蛰虫丸调控肠道菌群抑制大鼠肾纤维化的作用机制[J]. 中国实验方剂学杂志, 2023, 29(22): 37-46.
|
|
[47]
|
郭凤, 郝蕊, 陈鹏德, 等. 基于肠道菌群和肠黏膜屏障探讨玉液汤防治气阴两虚证糖尿病肾病大鼠的作用研究[J]. 世界科学技术: 中医药现代化, 2024, 26(5): 1308-1319.
|
|
[48]
|
王毅强, 越东杰, 王俪娟, 等. 金匮肾气丸对阴阳两虚型糖尿病肾病患者的临床疗效[J]. 中成药, 2023, 45(12): 4179-4184.
|
|
[49]
|
陈吕, 张庚鑫, 韩雪, 等. 基于ERIC-PCR技术分析黄连解毒汤对2型糖尿病大鼠肠道菌群结构及DNA同源性的影响[J]. 河南中医, 2024, 44(4): 549-555.
|