|
[1]
|
GBD 2023 Kidney Failure with Replacement Therapy Collaborators (2025) Global, Regional, and National Prevalence of Kidney Failure with Replacement Therapy and Associated Aetiologies, 1990-2023: A Systematic Analysis for the Global Burden of Disease Study 2023. Lancet Glob Health, 13, e1378-e1395.
|
|
[2]
|
Chan, C.T., Blankestijn, P.J., Dember, L.M., Gallieni, M., Harris, D.C.H., Lok, C.E., et al. (2019) Dialysis Initiation, Modality Choice, Access, and Prescription: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney International, 96, 37-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Torreggiani, M., Piccoli, G.B., Moio, M.R., Conte, F., Magagnoli, L., Ciceri, P., et al. (2023) Choice of the Dialysis Modality: Practical Considerations. Journal of Clinical Medicine, 12, Article 3328. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Roumeliotis, A., Roumeliotis, S., Leivaditis, K., Salmas, M., Eleftheriadis, T. and Liakopoulos, V. (2021) APD or CAPD: One Glove Does Not Fit All. International Urology and Nephrology, 53, 1149-1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Johnson, D.W., Hawley, C.M., McDonald, S.P., Brown, F.G., Rosman, J.B., Wiggins, K.J., et al. (2010) Superior Survival of High Transporters Treated with Automated versus Continuous Ambulatory Peritoneal Dialysis. Nephrology Dialysis Transplantation, 25, 1973-1979. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, X., Xu, H., Chen, N., Ni, Z., Chen, M., Chen, L., et al. (2018) The Effect of Automated versus Continuous Ambulatory Peritoneal Dialysis on Mortality Risk in China. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 38, 25-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Domenici, A. and Giuliani, A. (2021) Automated Peritoneal Dialysis: Patient Perspectives and Outcomes. International Journal of Nephrology and Renovascular Disease, 14, 385-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jain, A.K., Blake, P., Cordy, P. and Garg, A.X. (2012) Global Trends in Rates of Peritoneal Dialysis. Journal of the American Society of Nephrology, 23, 533-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
中国医师协会肾脏内科医师分会, 中国中西医结合学会肾脏疾病专业委员会, 国家肾病专业医疗质量管理与控制中心. 自动化腹膜透析中国专家共识[J]. 中华医学杂志, 2021, 101(6): 388-399.
|
|
[10]
|
Driehuis, E., Eshuis, M., Abrahams, A., François, K. and Vernooij, R.W. (2024) Automated Peritoneal Dialysis versus Continuous Ambulatory Peritoneal Dialysis for People with Kidney Failure. Cochrane Database of Systematic Reviews, No. 9, CD006515. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Paniagua, R., Ramos, A., Ávila, M., Ventura, M., Nevarez-Sida, A., Qureshi, A.R., et al. (2025) Remote Monitoring of Automated Peritoneal Dialysis Reduces Mortality, Adverse Events and Hospitalizations: A Cluster-Randomized Controlled Trial. Nephrology Dialysis Transplantation, 40, 588-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Milan Manani, S., Rosner, M.H., Virzì, G.M., Giuliani, A., Berti, S., Crepaldi, C., et al. (2019) Longitudinal Experience with Remote Monitoring for Automated Peritoneal Dialysis Patients. Nephron, 142, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yeter, H.H., Akcay, O.F., Ronco, C. and Derici, U. (2020) Automated Remote Monitoring for Peritoneal Dialysis and Its Impact on Blood Pressure. Cardiorenal Medicine, 10, 198-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cao, X.-Y., He, Y.-N., Zhou, J.-H., Sun, S.-R., Miao, L.-N., Chen, W., et al. (2018) Safety, Effectiveness, and Manipulability of Peritoneal Dialysis Machines Made in China: A Randomized, Crossover, Multicenter Clinical Study. Chinese Medical Journal, 131, 2785-2791.
|
|
[15]
|
Yang, C., Liu, J., Gong, N., Lin, Y., He, Y., Yi, Z., et al. (2018) Automated Peritoneal Dialysis Could Rapidly Improve Left Heart Failure by Increasing Peritoneal Dialysis Ultrafiltration: A Single-Center Observational Clinical Study. Clinical Nephrology, 89, 422-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Öberg, C.M. and Rippe, B. (2017) Optimizing Automated Peritoneal Dialysis Using an Extended 3-Pore Model. Kidney International Reports, 2, 943-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Van Biesen, W., Verger, C., Heaf, J., Vrtovsnik, F., Britto, Z.M.L., Do, J., et al. (2019) Evolution over Time of Volume Status and PD-Related Practice Patterns in an Incident Peritoneal Dialysis Cohort. Clinical Journal of the American Society of Nephrology, 14, 882-893. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, I., Yu, T., Yen, T., Lin, S., Chang, C., Lai, P., et al. (2020) Comparison of Patient Survival and Technique Survival between Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 40, 563-572. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bitar, W., Helve, J., Honkanen, E., Rauta, V., Haapio, M. and Finne, P. (2022) Similar Survival on Home Haemodialysis and Automated Peritoneal Dialysis: An Inception Cohort Study. Nephrology Dialysis Transplantation, 37, 1545-1551. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Öberg, C.M. (2021) Optimization of Bimodal Automated Peritoneal Dialysis Prescription Using the Three-Pore Model. Peritoneal Dialysis International: Journal of the International Society for Peritoneal Dialysis, 41, 381-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vera, M., Cheak, B.B., Chmelíčková, H., Bavanandan, S., Goh, B.L., Abdul Halim, A.G., et al. (2021) Current Clinical Practice in Adapted Automated Peritoneal Dialysis (aAPD)—A Prospective, Non-Interventional Study. PLOS ONE, 16, e0258440. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yang, F., Luo, N., Lau, T., Yu, Z.L., Foo, M.W.Y. and Griva, K. (2018) Health-Related Quality of Life in Patients Treated with Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis in Singapore. PharmacoEconomics-Open, 2, 203-208. [Google Scholar] [CrossRef] [PubMed]
|