|
[1]
|
Lee, J., Bagheri, B. and Kao, H. (2015) A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manufacturing Letters, 3, 18-23. [Google Scholar] [CrossRef]
|
|
[2]
|
Kagermann, H. and Wahlster, W. (2022) Ten Years of Industrie 4.0. Sci, 4, Article 26. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, Y., Wu, M., Li, X., Xie, L. and Chen, Z. (2025) A Survey on Graph Neural Networks for Remaining Useful Life Prediction: Methodologies, Evaluation and Future Trends. Mechanical Systems and Signal Processing, 229, Article ID: 112449. [Google Scholar] [CrossRef]
|
|
[4]
|
Lei, Y., Li, N., Guo, L., Li, N., Yan, T. and Lin, J. (2018) Machinery Health Prognostics: A Systematic Review from Data Acquisition to RUL Prediction. Mechanical Systems and Signal Processing, 104, 799-834. [Google Scholar] [CrossRef]
|
|
[5]
|
李炳金, 韩晓霞, 张文杰, 等. 锂离子电池剩余使用寿命预测方法综述[J]. 储能科学与技术, 2024, 13(4): 1266-1276.
|
|
[6]
|
张金豹, 邹天刚, 王敏, 等. 滚动轴承剩余使用寿命预测综述[J]. 机械科学与技术, 2023, 42(1): 1-23.
|
|
[7]
|
罗欢, 张定华, 罗明. 航空难加工材料切削刀具磨损与剩余寿命预测研究进展[J]. 中国机械工程, 2021, 32(22): 2647-2666.
|
|
[8]
|
Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L. and Siegel, D. (2014) Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications. Mechanical Systems and Signal Processing, 42, 314-334. [Google Scholar] [CrossRef]
|
|
[9]
|
Kordestani, M., Saif, M., Orchard, M.E., Razavi-Far, R. and Khorasani, K. (2021) Failure Prognosis and Applications—A Survey of Recent Literature. IEEE Transactions on Reliability, 70, 728-748. [Google Scholar] [CrossRef]
|
|
[10]
|
Liu, Y., Wen, J. and Wang, G. (2025) A Comprehensive Overview of Remaining Useful Life Prediction: From Traditional Literature Review to Scientometric Analysis. Machine Learning with Applications, 21, Article ID: 100704. [Google Scholar] [CrossRef]
|
|
[11]
|
王雅君, 崔海峰, 刘云松, 等. 基于数字孪生和Informer-LSTM的滚动轴承剩余寿命预测[J]. 组合机床与自动化加工技术, 2025(7): 135-140.
|
|
[12]
|
Ma, H., Fan, C., Zhang, Y., Wang, Q., Yu, K. and Ma, Z. (2025) Digital Twin-Inspired Methods for Rotating Machinery Intelligent Fault Diagnosis and Remaining Useful Life Prediction: A State-of-the-Art Review and Future Challenges. Mechanical Systems and Signal Processing, 232, Article ID: 112770. [Google Scholar] [CrossRef]
|
|
[13]
|
党伟超, 李涛, 白尚旺. 基于LSTM网络的Web软件系统实时剩余寿命预测[J]. 计算机系统应用, 2021, 30(7): 253-258.
|
|
[14]
|
党伟超, 李涛, 白尚旺, 等. 基于自注意力长短期记忆网络的Web软件系统实时剩余寿命预测方法[J]. 计算机应用, 2021, 41(8): 2346-2351.
|
|
[15]
|
Deng, S. and Zhou, J. (2024) Prediction of Remaining Useful Life of Aero-Engines Based on CNN-LSTM-Attention. International Journal of Computational Intelligence Systems, 17, Article No. 232. [Google Scholar] [CrossRef]
|
|
[16]
|
Lopez-Salazar, C., Ekwaro-Osire, S., Dabetwar, S. and Alemayehu, F. (2025) A Comprehensive Framework for Estimating the Remaining Useful Life of Li-Ion Batteries under Limited Data Conditions with No Temporal Identifier. Reliability Engineering & System Safety, 253, Article ID: 110517. [Google Scholar] [CrossRef]
|
|
[17]
|
Saxena, A., Goebel, K., Simon, D. and Eklund, N. (2008) Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation. 2008 International Conference on Prognostics and Health Management, Denver, 6-9 October 2008, 1-9. [Google Scholar] [CrossRef]
|
|
[18]
|
Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82, 35-45. [Google Scholar] [CrossRef]
|
|
[19]
|
Gordon, N.J., Salmond, D.J. and Smith, A.F.M. (1993) Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proceedings F, 140, 107-113.
|
|
[20]
|
Daigle, M., Saha, B. and Goebel, K. (2012) A Comparison of Filter-Based Approaches for Model-Based Prognostics. 2012 IEEE Aerospace Conference, Big Sky, 3-10 March 2012, 1-10. [Google Scholar] [CrossRef]
|
|
[21]
|
Lei, Y., Lin, J., He, Z. and Zuo, M.J. (2013) A Review on Empirical Mode Decomposition in Fault Diagnosis of Rotating Machinery. Mechanical Systems and Signal Processing, 35, 108-126. [Google Scholar] [CrossRef]
|
|
[22]
|
Cubillo, A., Perinpanayagam, S. and Esperon-Miguez, M. (2016) A Review of Physics-Based Models in Prognostics: Application to Gears and Bearings of Rotating Machinery. Advances in Mechanical Engineering, 8, 1-21. [Google Scholar] [CrossRef]
|
|
[23]
|
Gebraeel, N., Lei, Y., Li, N., et al. (2023) Prognostics and Remaining Useful Life Prediction of Machinery: Advances, Opportunities and Challenges. Journal of Dynamics, Monitoring and Diagnostics, 2023, 1-12.
|
|
[24]
|
Wang, T., Yu, J.B., Siegel, D. and Lee, J. (2008) A Similarity-Based Prognostics Approach for Remaining Useful Life Estimation of Engineered Systems. 2008 International Conference on Prognostics and Health Management, Denver, 6-9 October 2008, 1-6. [Google Scholar] [CrossRef]
|
|
[25]
|
Widodo, A. and Yang, B. (2007) Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis. Mechanical Systems and Signal Processing, 21, 2560-2574. [Google Scholar] [CrossRef]
|
|
[26]
|
Gebraeel, N.Z., Lawley, M.A., Li, R. and Ryan, J.K. (2005) Residual-Life Distributions from Component Degradation Signals: A Bayesian Approach. IIE Transactions, 37, 543-557. [Google Scholar] [CrossRef]
|
|
[27]
|
王玉静, 李少鹏, 康守强, 等. 结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J]. 振动、测试与诊断, 2021, 41(3): 439-446+617.
|
|
[28]
|
Wang, S., Jin, S., Bai, D., Fan, Y., Shi, H. and Fernandez, C. (2021) A Critical Review of Improved Deep Learning Methods for the Remaining Useful Life Prediction of Lithium-Ion Batteries. Energy Reports, 7, 5562-5574. [Google Scholar] [CrossRef]
|
|
[29]
|
Ferreira, C. and Gonçalves, G. (2022) Remaining Useful Life Prediction and Challenges: A Literature Review on the Use of Machine Learning Methods. Journal of Manufacturing Systems, 63, 550-562. [Google Scholar] [CrossRef]
|
|
[30]
|
Zio, E. (2009) Reliability Engineering: Old Problems and New Challenges. Reliability Engineering & System Safety, 94, 125-141. [Google Scholar] [CrossRef]
|
|
[31]
|
Lei, Y., Jia, F., Lin, J., Xing, S. and Ding, S.X. (2016) An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Transactions on Industrial Electronics, 63, 3137-3147. [Google Scholar] [CrossRef]
|
|
[32]
|
Zio, E. and Di Maio, F. (2010) A Data-Driven Fuzzy Approach for Predicting the Remaining Useful Life in Dynamic Failure Scenarios of a Nuclear System. Reliability Engineering & System Safety, 95, 49-57. [Google Scholar] [CrossRef]
|
|
[33]
|
Liao, L. and Kottig, F. (2014) Review of Hybrid Prognostics Approaches for Remaining Useful Life Prediction of Engineered Systems, and an Application to Battery Life Prediction. IEEE Transactions on Reliability, 63, 191-207. [Google Scholar] [CrossRef]
|
|
[34]
|
Wang, H., Li, B., Gong, J. and Xuan, F. (2023) Machine Learning-Based Fatigue Life Prediction of Metal Materials: Perspectives of Physics-Informed and Data-Driven Hybrid Methods. Engineering Fracture Mechanics, 284, Article ID: 109242. [Google Scholar] [CrossRef]
|
|
[35]
|
Li, H., Zhang, Z., Li, T. and Si, X. (2024) A Review on Physics-Informed Data-Driven Remaining Useful Life Prediction: Challenges and Opportunities. Mechanical Systems and Signal Processing, 209, Article ID: 111120. [Google Scholar] [CrossRef]
|
|
[36]
|
Chen, C. (2004) Searching for Intellectual Turning Points: Progressive Knowledge Domain Visualization. Proceedings of the National Academy of Sciences, 101, 5303-5310. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
刘君强, 谢吉伟, 左洪福, 等. 基于随机Wiener过程的航空发动机剩余寿命预测[J]. 航空学报, 2015, 36(2): 564-574.
|
|
[38]
|
李志高, 徐冉, 王欣, 等. 基于深度学习的装备系统剩余寿命预测研究综述[J]. 机床与液压, 2025, 53(14): 33-45.
|
|
[39]
|
张继冬, 邹益胜, 邓佳林, 等. 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30(18): 2231-2235.
|
|
[40]
|
屈超雄, 夏小东, 张洋, 等. 融合注意力机制与时空图卷积网络的航空发动机剩余使用寿命预测[J]. 计算机应用, 2025, 45(S1): 372-376.
|
|
[41]
|
李银, 王建峰, 莫伟权, 等. 基于数据驱动的锂离子电池剩余寿命预测综述[J/OL]. 电源学报: 1-16. https://link.cnki.net/urlid/12.1420.TM.20230613.1715.002, 2025-08-30.
|
|
[42]
|
王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报, 2021, 41(4): 1445-1457+1550.
|
|
[43]
|
张波, 胡昌华, 张浩, 等. 机器学习应用于随机退化设备剩余寿命预测的综述[J]. 哈尔滨工程大学学报, 2024, 45(9): 1783-1790.
|
|
[44]
|
郭忠义, 李永华, 李关辉, 等. 装备系统剩余使用寿命预测技术研究进展[J]. 南京航空航天大学学报, 2022, 54(3): 341-364.
|
|
[45]
|
Chen, C. (2016) CiteSpace: A Practical Guide for Mapping Scientific Literature. Nova Science Publishers Hauppauge.
|
|
[46]
|
郑凯, 李少波. 基于联想神经网络的轴承剩余使用寿命预测[J]. 机械设计与制造, 2020(11): 203-206.
|
|
[47]
|
申中杰, 陈雪峰, 何正嘉, 等. 基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测[J]. 机械工程学报, 2013, 49(2): 183-189.
|
|
[48]
|
曹正志, 叶春明. 考虑转动周期的轴承剩余使用寿命预测[J]. 计算机集成制造系统, 2023, 29(8): 2743-2750.
|
|
[49]
|
康守强, 叶立强, 王玉静, 等. 基于MCEA-KPCA和组合SVR的滚动轴承剩余使用寿命预测[J]. 电子测量与仪器学报, 2017, 31(9): 1365-1371.
|
|
[50]
|
陈保家, 郭凯敏, 陈法法, 等. 基于残差NLSTM网络和注意力机制的航空发动机剩余使用寿命预测[J]. 航空动力学报, 2023, 38(5): 1176-1184.
|
|
[51]
|
丁劲涛, 罗美君, 呙晓兵, 等. 航空锂离子电池剩余容量及RUL预测建模[J]. 电池, 2019, 49(4): 329-333.
|
|
[52]
|
李杰, 贾渊杰, 张志新, 李润然. 基于融合神经网络的航空发动机剩余寿命预测[J]. 推进技术, 2021, 42(8): 1725-1734.
|
|
[53]
|
Kalman, R.E. (1960) A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82, 35-45. [Google Scholar] [CrossRef]
|
|
[54]
|
Pan, J., Sun, B., Wu, Z., Yi, Z., Feng, Q., Ren, Y., et al. (2024) Probabilistic Remaining Useful Life Prediction without Lifetime Labels: A Bayesian Deep Learning and Stochastic Process Fusion Method. Reliability Engineering & System Safety, 250, Article ID: 110313. [Google Scholar] [CrossRef]
|
|
[55]
|
Ren, X., Qin, Y., Wang, B., Cheng, X. and Jia, L. (2024) A Complementary Continual Learning Framework Using Incremental Samples for Remaining Useful Life Prediction of Machinery. IEEE Transactions on Industrial Informatics, 20, 14330-14340. [Google Scholar] [CrossRef]
|
|
[56]
|
Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 65, 386-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Chen, C. (2005) CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature. Journal of the American Society for Information Science and Technology, 57, 359-377. [Google Scholar] [CrossRef]
|
|
[58]
|
奚立峰, 黄润青, 李兴林, 等. 基于神经网络的球轴承剩余寿命预测[J]. 机械工程学报, 2007(10): 137-143.
|
|
[59]
|
Xu, A., Wang, R., Weng, X., Wu, Q. and Zhuang, L. (2025) Strategic Integration of Adaptive Sampling and Ensemble Techniques in Federated Learning for Aircraft Engine Remaining Useful Life Prediction. Applied Soft Computing, 175, Article ID: 113067. [Google Scholar] [CrossRef]
|
|
[60]
|
Xu, L.D., Xu, E.L. and Li, L. (2018) Industry 4.0: State of the Art and Future Trends. International Journal of Production Research, 56, 2941-2962. [Google Scholar] [CrossRef]
|
|
[61]
|
Zheng, Y., Chen, L., Bao, X., Zhao, F., Zhong, J. and Wang, C. (2025) Prediction Model Optimization of Gas Turbine Remaining Useful Life Based on Transfer Learning and Simultaneous Distillation Pruning Algorithm. Reliability Engineering & System Safety, 253, Article ID: 110562. [Google Scholar] [CrossRef]
|
|
[62]
|
张建宇, 王留震, 肖勇, 等. 滚动轴承的退化特征信息融合与剩余寿命预测[J]. 中国机械工程, 2025, 36(7): 1553-1561.
|
|
[63]
|
张发振, 张清华, 秦宾宾, 等. 基于CNN-Transformer网络融合时频域的滚动轴承剩余使用寿命预测[J]. 机床与液压, 2025, 53(14): 7-14.
|
|
[64]
|
赵志宏, 张然, 孙诗胜. 基于关系网络的轴承剩余使用寿命预测方法[J]. 自动化学报, 2023, 49(7): 1549-1557.
|
|
[65]
|
赵申坤, 姜潮, 龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12): 115-124.
|
|
[66]
|
李晓黎. 人工智能技术在机器设备剩余使用寿命预测中的应用[J]. 山西大学学报(自然科学版), 2022, 45(3): 622-630.
|
|
[67]
|
Yin, C., Li, Y., Wang, Y. and Dong, Y. (2025) Physics-Guided Degradation Trajectory Modeling for Remaining Useful Life Prediction of Rolling Bearings. Mechanical Systems and Signal Processing, 224, Article ID: 112192. [Google Scholar] [CrossRef]
|
|
[68]
|
He, D., Zhao, J., Jin, Z., Huang, C., Yi, C. and Wu, J. (2025) DCAGGCN: A Novel Method for Remaining Useful Life Prediction of Bearings. Reliability Engineering & System Safety, 260, Article ID: 110978. [Google Scholar] [CrossRef]
|
|
[69]
|
刘浩, 王忠谦, 孙旭光. 老化火电设备的剩余寿命预测法[J]. 汽轮机技术, 1992(2): 42-46.
|
|
[70]
|
龙建雄. 利用机油光谱数据预测发动机剩余工作寿命[J]. 长沙铁道学院学报, 1992(4): 22-28.
|
|
[71]
|
王兆强, 胡昌华, 王文彬, 董广静. 基于Wiener过程的钢厂风机剩余使用寿命实时预测[J]. 工程科学学报, 2014, 36(10): 1361-1368.
|
|
[72]
|
Zhang, Z., Song, W., Wu, Q., Sun, W., Li, Q. and Jia, L. (2025) A Novel Local Enhanced Channel Self-Attention Based on Transformer for Industrial Remaining Useful Life Prediction. Engineering Applications of Artificial Intelligence, 141, Article ID: 109815. [Google Scholar] [CrossRef]
|
|
[73]
|
朱振威, 苗嘉伟, 祝夏雨, 等. 基于机器学习方法的锂电池剩余寿命预测研究进展[J]. 储能科学与技术, 2024, 13(9): 3134-3149.
|
|
[74]
|
宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7): 1611-1619.
|