|
[1]
|
Devlin, H.B. and Goldman, M. (1966) Backache Due to Osteoporosis in an Industrial Population. A Survey of 481 Patients. Irish Journal of Medical Science, 41, 141-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ott, S.M. (1991) Methods of Determining Bone Mass. Journal of Bone and Mineral Research, 6, S71-S76. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ito, M., Hayashi, K., Yamada, M., Uetani, M. and Nakamura, T. (1993) Relationship of Osteophytes to Bone Mineral Density and Spinal Fracture in Men. Radiology, 189, 497-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yang, J., Pham, S. and Crabbe, D. (2003) Effects of Oestrogen Deficiency on Rat Mandibular and Tibial Microarchitecture. Dentomaxillofacial Radiology, 32, 247-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
尹梓名, 孙大运, 胡晓晖, 等. 人工智能在骨质疏松症中的应用研究综述[J]. 小型微型计算机系统, 2019, 40(9): 1839-1850.
|
|
[6]
|
Watanabe, M., Sakai, D., Yamamoto, Y., Sato, M. and Mochida, J. (2010) Upper Cervical Spine Injuries: Age-Specific Clinical Features. Journal of Orthopaedic Science, 15, 485-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Engelke, K., Libanati, C., Liu, Y., Wang, H., Austin, M., Fuerst, T., et al. (2009) Quantitative Computed Tomography (QCT) of the Forearm Using General Purpose Spiral Whole-Body CT Scanners: Accuracy, Precision and Comparison with Dual-Energy X-Ray Absorptiometry (DXA). Bone, 45, 110-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
崔洋洋, 宫赫, 关夏莉, 等. 基于髋部骨骼属性预测骨折风险研究进展[J]. 医用生物力学, 2019, 34(5): 555-559.
|
|
[9]
|
Lee, J.J.Y., Aghdassi, E., Cheung, A.M., Morrison, S., Cymet, A., Peeva, V., et al. (2012) Ten-Year Absolute Fracture Risk and Hip Bone Strength in Canadian Women with Systemic Lupus Erythematosus. The Journal of Rheumatology, 39, 1378-1384. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Feng-tan, L., Dong, L. and Zhang, Y-T. (2013) Influence of Tube Voltage on CT Attenuation, Radiation Dose, and Image Quality: Phantom Study. Chinese Journal of Radiology, 47, 458-461.
|
|
[11]
|
Li, N., Li, X., Xu, L., Sun, W., Cheng, X. and Tian, W. (2013) Comparison of QCT and DXA: Osteoporosis Detection Rates in Postmenopausal Women. International Journal of Endocrinology, 2013, Article ID: 895474. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yang, Z., Griffith, J.F., Leung, P.C. and Lee, R. (2009) Effect of Osteoporosis on Morphology and Mobility of the Lumbar Spine. Spine, 34, E115-E121. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Rand, T., Seidl, G., Kainberger, F., Resch, A., Hittmair, K., Schneider, B., et al. (1997) Impact of Spinal Degenerative Changes on the Evaluation of Bone Mineral Density with Dual Energy X-Ray Absorptiometry (DXA). Calcified Tissue International, 60, 430-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ensrud, K.E., Blackwell, T.L., Cawthon, P.M., Bauer, D.C., Fink, H.A., Schousboe, J.T., et al. (2016) Degree of Trauma Differs for Major Osteoporotic Fracture Events in Older Men versus Older Women. Journal of Bone and Mineral Research, 31, 204-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fechtenbaum, J., Etcheto, A., Kolta, S., Feydy, A., Roux, C. and Briot, K. (2016) Sagittal Balance of the Spine in Patients with Osteoporotic Vertebral Fractures. Osteoporosis International, 27, 559-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
陈刘萍, 余卓, 潘亚玲, 等. 人工智能骨密度测量系统与QCT测量骨密度的一致性研究[J]. 中国医学计算机成像杂志, 2023, 29(2): 178-183.
|
|
[17]
|
Pisani, P., Renna, M.D., Conversano, F., Casciaro, E., Di Paola, M., Quarta, E., et al. (2016) Major Osteoporotic Fragility Fractures: Risk Factor Updates and Societal Impact. World Journal of Orthopedics, 7, 171-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Engelke, K. (2017) Quantitative Computed Tomography—Current Status and New Developments. Journal of Clinical Densitometry, 20, 309-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xu, X., Li, N., Li, K., Li, X., Zhang, P., Xuan, Y., et al. (2019) Discordance in Diagnosis of Osteoporosis by Quantitative Computed Tomography and Dual-Energy X-Ray Absorptiometry in Chinese Elderly Men. Journal of Orthopaedic Translation, 18, 59-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Löffler, M.T., Jacob, A., Valentinitsch, A., Rienmüller, A., Zimmer, C., Ryang, Y., et al. (2019) Improved Prediction of Incident Vertebral Fractures Using Opportunistic QCT Compared to DXA. European Radiology, 29, 4980-4989. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
朱心雨, 郭立, 黄鹏, 等. CT纹理特征联合机器学习对发生骨质疏松性压缩骨折的预测价值[J]. 中国临床医学影像杂志, 2023, 34(6): 428-432.
|
|
[22]
|
Gausden, E.B., Nwachukwu, B.U., Schreiber, J.J., Lorich, D.G. and Lane, J.M. (2017) Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment. Journal of Bone and Joint Surgery, 99, 1580-1590. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wolterink, J.M., Leiner, T., de Vos, B.D., van Hamersvelt, R.W., Viergever, M.A. and Išgum, I. (2017) Automatic Coronary Artery Calcium Scoring in Cardiac CT Angiography Using Paired Convolutional Neural Networks. Medical Image Analysis, 34, 123-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
余科君. 深度学习模型在骨质疏松症诊断的初步研究[D]: [硕士学位论文]. 南充: 川北医学院, 2023.
|
|
[25]
|
Gulshan, V., Peng, L., Coram, M., Stumpe, M.C., Wu, D., Narayanaswamy, A., et al. (2016) Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316, 2402-2410. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
González, G., Ash, S.Y., Vegas-Sánchez-Ferrero, G., Onieva Onieva, J., Rahaghi, F.N., Ross, J.C., et al. (2018) Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. American Journal of Respiratory and Critical Care Medicine, 197, 193-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
田峰, 谢雁鸣. 绝经后骨质疏松症危险因素、预测模型和筛检工具研究[J]. 中国骨质疏松杂志, 2011, 17(2): 166-171.
|
|
[29]
|
Lee, S., Choe, E.K., Kang, H.Y., Yoon, J.W. and Kim, H.S. (2019) The Exploration of Feature Extraction and Machine Learning for Predicting Bone Density from Simple Spine X-Ray Images in a Korean Population. Skeletal Radiology, 49, 613-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Pan, Y., Shi, D., Wang, H., Chen, T., Cui, D., Cheng, X., et al. (2020) Automatic Opportunistic Osteoporosis Screening Using Low-Dose Chest Computed Tomography Scans Obtained for Lung Cancer Screening. European Radiology, 30, 4107-4116. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yasaka, K., Akai, H., Kunimatsu, A., Kiryu, S. and Abe, O. (2020) Prediction of Bone Mineral Density from Computed Tomography: Application of Deep Learning with a Convolutional Neural Network. European Radiology, 30, 3549-3557. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef]
|
|
[33]
|
Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Georgiev, V.T., Karahaliou, A.N., Skiadopoulos, S.G., Arikidis, N.S., Kazantzi, A.D., Panayiotakis, G.S., et al. (2012) Quantitative Visually Lossless Compression Ratio Determination of JPEG2000 in Digitized Mammograms. Journal of Digital Imaging, 26, 427-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Simard, P.Y., Steinkraus, D. and Platt, J. (2003) Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. Institute of Electrical and Electronics Engineers, Inc.
|
|
[36]
|
Wu, R., Yan, S., Shan, Y., Dang, Q. and Sun, G. (2015) Deep Image: Scaling up Image Recognition. arXiv: 1501.02876.
|
|
[37]
|
Genant, H.K., Wu, C.Y., van Kuijk, C. and Nevitt, M.C. (1993) Vertebral Fracture Assessment Using a Semiquantitative Technique. Journal of Bone and Mineral Research, 8, 1137-1148. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Taylor, G.W., Fergus, R., LeCun, Y. and Bregler, C. (2010) Convolutional Learning of Spatio-Temporal Features. In: Daniilidis, K., Maragos, P. and Paragios, N., Eds., Lecture Notes in Computer Science, Springer, 140-153. [Google Scholar] [CrossRef]
|