异质结ZnFe2O4/NaNbO3的制备及其热释电辅助光催化性能研究
Preparation of ZnFe2O4/NaNbO3 Heterojunction and Study on Its Pyroelectric-Assisted Photocatalytic Performance
DOI: 10.12677/ms.2025.1510205, PDF, HTML, XML,   
作者: 汪 柯, 周 迪*:江汉大学光电材料与技术学院,湖北 武汉;周小桔, 胡正龙:湖北科技学院电子与信息工程学院,湖北 咸宁
关键词: 铌酸钠铁酸锌异质结热释电效应光催化Sodium Niobate Zinc Ferrite Heterojunction Pyroelectric Effect Photocatalysis
摘要: 采用水热法成功合成了具有异质结结构的新型ZnFe2O4/NaNbO3纳米棒复合材料。利用ZnFe2O4的光热效应对NaNbO3纳米棒进行原位加热,随后冷却至室温,实现了ZnFe2O4/NaNbO3的循环式加热–冷却过程。通过亚甲基蓝降解实验评估该复合材料的热释电–光催化活性,结果显示90 min内降解效率达98%以上,降解速率常数为0.043 min1,达到单一组分的1.7~17.2倍。这一优异性能源于NNO的热释电效应与光催化的协同作用。研究证实,光生电子和热释电诱导电荷产生的超氧自由基( O 2 )和羟基自由基(∙OH)是主要活性物种。本研究阐明热释电效应与光催化的耦合增强机制,可为热释电–光催化协同作用提供新的策略,同时为污染物处理提供潜在的应用方向。
Abstract: A novel ZnFe2O4/NaNbO3 nanorod composite with a heterojunction structure was successfully synthesized via a hydrothermal method. An in-situ heating process of NaNbO3 nanorods was achieved through the photothermal effect of ZnFe2O4, followed by cooling to room temperature, realizing a cyclic heating-cooling process for ZnFe2O4/NaNbO3. The pyroelectric-photocatalytic activity of the composite was evaluated via methylene blue degradation experiments, showing a degradation efficiency of over 98% within 90 minutes and a degradation rate constant of 0.043 min1, which is 1.7~17.2 times higher than that of the individual components. This excellent performance is attributed to the synergistic effect of the pyroelectric effect of NaNbO3 and photocatalysis. The study confirms that superoxide radicals ( O 2 ) and hydroxyl radicals (·OH), generated by photogenerated electrons and pyroelectric-induced charges, are the primary active species. This research elucidates the coupling enhancement mechanism of the pyroelectric effect and photocatalysis, provides a new strategy for the synergistic interaction between pyroelectricity and photocatalysis, and offers potential applications for pollutant treatment.
文章引用:汪柯, 周迪, 周小桔, 胡正龙. 异质结ZnFe2O4/NaNbO3的制备及其热释电辅助光催化性能研究[J]. 材料科学, 2025, 15(10): 1920-1929. https://doi.org/10.12677/ms.2025.1510205

1. 引言

光催化技术是利用太阳能的重要手段,在缓解全球环境污染与能源危机方面具有巨大潜力。自1972年Fujishima和Honda发表开创性研究以来,光催化领域已取得显著进展。然而,光催化降解污染物的实际应用仍面临两大核心挑战,即电子–空穴对复合率高以及太阳光利用率低[1]-[3]。除太阳能外,自然环境中的温度波动也是一种取之不尽的能源[4] [5],因此开发利用温差处理染料废水的新型环保催化技术具有极大的应用潜力。

热释电效应是指,材料随温度变化时,其自发极化状态发生改变的特性[5]。研究发现,在热释电材料和压电材料中,温度波动与机械振动会导致偶极矩变化,进而引发离子位移,使材料表面产生净电荷与电势。这种本征电场可有效抑制体相内载流子的快速复合[5]-[7]。此外,热释电诱导的表面电荷还能生成活性氧物种(Reactive Oxygen Species, ROS),包括羟基自由基(·OH)、超氧自由基( O 2 )、单线态氧(1O2)和过氧化氢(H2O2) [8] [9]。目前普遍认为,热释电产生的ROS在消毒与染料处理领域具有广阔应用前景。Qian等将ZnO纳米棒的热释电效应与电化学氧化结合,研究表明在22℃~62℃的加热–冷却循环下,罗丹明B (RhB)溶液的降解率可达约98.15% [10]。Jia等报道了热释电材料BiFeO3纳米颗粒在27℃~38℃热循环下的热释催化降解染料活性和抗菌性能[11] [12]。Liu等发现Ba1-xSrxTiO3催化剂的热释电–光电性能显著提升,其原因是热释电材料中的内建极化电场加速了载流子分离与转移效率[13]

铌酸钠(NaNbO3, NNO)是一种具有半导体特性的钙钛矿材料,因其优异的非线性光学性能、铁电性、离子导电性和光折变性能而受到广泛关注[14]。此外,NNO还具有出色的热释电性能,其热释电系数约为100 μC∙m2∙K1,居里温度高达370℃,这些特性使其成为室温热释电催化过程的理想候选材料[15] [16]。Zhang等证实了在NNO基体系中耦合热释电催化与光电化学催化的有效性,验证了热释电辅助光电化学性能的可行性[17]。You等研究了不同形貌NNO在23℃~50℃加热–冷却循环下的热释催化降解性能[18];Liu等通过优化NNO纳米结构发现,优化后的热释电效应与表面反应动力学的协同作用可提升光生和热释生载流子的转移动力学性能[19]。Wang等还证实了NNO纳米纤维的压电/热释电驱动机械/热释双催化协同效应[5] [20]。然而,NNO存在宽禁带(3.3 eV)的固有缺陷,这极大地限制了其在太阳光谱区域的光响应能力,导致原始NNO光催化剂无法有效利用大部分太阳能。

基于上述考虑,本研究采用水热法合成了铁酸锌(ZnFe2O4, ZFO)修饰的NNO的复合光催化剂。一方面,ZFO具有约1.9 eV的窄禁带宽度,能够有效利用太阳能[21]。另一方面,ZFO作为光热剂展现出高效且稳定的光热转换能力[22]。在这种热释电–光热材料复合结构中,光照射对催化剂进行加热,而周围环境则对其进行冷却,形成循环加热–冷却过程。本研究有望实现太阳能、热能等多种能源的共同利用,推动热释电效应辅助光催化技术的发展,是一种极具潜力的环境修复策略。

2. 实验部分

2.1. 样品制备

通过水热反应结合后续热处理合成了NNO纳米棒(NNO NRs) [23]。首先,将0.57 g Nb2O5粉末加入40 mL 10 M NaOH水溶液中,搅拌2 h。然后,将所得悬浮液转移至聚四氟乙烯内衬不锈钢反应釜中,在160℃下进行水热反应4 h。反应结束后,将反应釜取出并在室温下自然冷却,过滤得到沉淀物,用去离子水和乙醇洗涤至上清液呈中性,随后在80℃下干燥12 h。最后在500℃下热处理2 h,得到NNO NRs。

采用溶剂热法合成ZFO/NNO复合材料[15]。首先,将一定质量的上述水热产物NNO NRs投入含有0.06 mmol Fe (NO3)3∙9H2O和0.03 mmol Zn (CH3COO)2∙2H2O的乙二醇/异丙醇混合溶液(体积比5:3)中,搅拌至完全溶解。然后,将悬浊液转移至50 mL聚四氟乙烯内衬反应釜中,在180℃下反应12 h;自然冷却至室温后,离心分离产物,用纯水洗涤3次、无水乙醇洗涤1次,最后在80℃下干燥10 h,得到褐色粉末ZFO/NNO纳米棒复合产物(简称ZFO/NNO NRs)。按本流程,另取一份原料而不投入NNO NRs,在同样反应条件下可制备ZFO纳米颗粒。

2.2. 材料表征

采用粉末X射线衍射仪(D8-Advance,Cu靶Kα射线,λ = 0.15418 nm)对样品的物相进行表征,扫描步长0.02˚,扫描速度为5˚/min。采用紫外–可见光分光光度计(UV-2600,日本岛津)测试样品的紫外–可见漫反射吸收光谱(UV-Visible diffuse Reflection Spectrum);采用扫描电子显微镜(SEM,S4800,日本日立)和透射电子显微镜(TEM,2100F,日本JEOL)观察样品的微观形貌。采用上海辰华(中国)仪器有限公司的CHI660E型电化学工作站测试催化剂的光电化学性能。测试采用三电极体系:饱和甘汞电极(SCE)为参比电极,铂片为对电极,0.5 M Na2SO4溶液为电解液。工作电极制备方法:将5 mg样品粉末加入2 mL乙醇中,超声分散均匀后,均匀涂覆在1 cm × 1 cm的预处理氟掺杂氧化锡(FTO)玻璃上,在393 K下空气干燥24 h。电化学阻抗谱(EIS)测试频率范围为0.1 Hz~1 MHz,交流电压振幅为5 mV。

2.3. 热释电–光催化表征

本实验以有机染料亚甲基蓝(Methylene Blue, MB)的降解反应评估所制备样品的光催化性能。首先,将50 mg所制备光催化剂加入盛有50 mL MB降解溶液的石英烧杯中,在黑暗条件下搅拌1 h,以达到催化剂与染料分子之间的吸附–脱附平衡。随后,将整个体系置于模拟太阳光(300 W氙灯光源,配置AM1.5G滤光片)下照射90 min,每15 min取3 mL悬浮液,在8000 rpm下离心分离后,采用分光光度计记录664 nm波长处的吸收值,表示上清液中MB的浓度。催化剂的降解性能通常用染料的相对浓度表示,计算公式如下:

X= C C 0 ×100%

其中,C0C分别为初始时刻(t = 0)和t时刻MB的浓度。

3. 结果与讨论

3.1. 催化剂的结构与形貌

图1(a)所示为所制备样品(NNO、ZFO、ZFO/NNO)的XRD图谱。NNO NRs的XRD谱在2θ = 22.9˚、32.6˚、46.5˚、52.6˚、58.1˚和68.1˚处出现强衍射峰,与正交相NNO标准卡片(JCPDS 33-1270)完全匹配[24]。ZFO样品的XRD图谱在2θ = 29.9˚、35.3˚、42.8˚、53.1˚、56.6˚和62.2˚处出现主要衍射峰,对应立方相ZFO (JCPDS 22-1012) [25],各衍射角对应的晶面指数已在图中标注。ZFO/NNO NRs的XRD图谱呈现出ZFO和NNO两相的叠加特征,且未观察到其他物相的衍射峰,表明在溶剂热过程中NNO与ZFO未发生化学反应。对ZFO/NNO衍射谱进行拟合精修后可计算得到两物相质量百分比,结果如图1(b)所示,ZFO与NNO质量比约为m(ZFO):m(NNO) = 28:72。

图2所示为实验制备样品的SEM和TEM图片。由图2(a)可见,纯的NNO呈棒状形貌,长度达数微米,表面较光滑。由图2(b)可见,纯ZFO产物为轻微团聚的纳米颗粒,由于尺寸较小需通过TEM进一步精确测定。由图2(c)可见,NNO和ZFO分别保持各自形貌,且ZFO纳米颗粒均匀分布在NNO NRs表面。图2(d)为ZFO/NNO的TEM形貌图,由图可见,NNO NRs的直径约为100 nm,表面附着不规则形状纳米颗粒,其中红色方框处的高分辨TEM图如图2(e)所示。由图可见,NNO NRs表面可观察到一组清晰的晶格条纹,其晶面间距为0.28 nm,对应NNO的(200)晶面。ZFO纳米颗粒表面可观察到两组清晰的晶格条纹,其晶面间距分别为0.25 nm和0.29 nm,分别对应(311)和(220)晶面[26]

Figure 1. (a) XRD patterns of the prepared samples; (b) ZFO/NNO content analysis

1. (a) 实验制备样品的XRD图谱;(b) ZFO/NNO的含量分析

3.2. 光吸收性能

光吸收性能是半导体光催化剂的关键特性。如图3所示为实验所制备的NNO、ZFO和ZFO/NNO复合材料的紫外–可见光吸收光谱。未经修饰的NNO在约375 nm处出现强紫外吸收边。纯ZFO则表现出从紫外到可见光区域(约650 nm处)的宽光谱吸收,这一特性有利于拓宽复合材料的光吸收范围。ZFO/NNO复合材料的吸收光谱包含ZFO与NNO的吸收谱特征的叠加,展现出NNO和ZFO的吸收带边。此外,基于Kubelka-Munk方法,可由Tauc公式计算样品的光学禁带宽度[27]

( αhv ) 1 n =A( hv E g )

其中,A为比例常数,α为吸收系数,h为普朗克常数,ν为光子频率,Eg为禁带宽度。对于NNO和ZFO,n值均为2,这是间接禁带半导体的特征[28] [29]。由上述公式作图可得,NNO、ZFO和ZFO/NNO的禁带宽度(Eg)分别为3.33 eV、1.85 eV和2.87 eV。

Figure 2. SEM morphology of (a) NNO nanorods, (b) ZFO nanoparticles and (c) ZFO/NNO samples; (d) TEM morphology and (e) high resolution TEM of ZFO/NNO

2. (a) NNO纳米棒、(b) ZFO纳米颗粒和(c) ZFO/NNO样品的SEM形貌图;(d) ZFO/NNO样品的TEM形貌图和(e) ZFO/NNO样品的高分辨TEM图

Figure 3. (a) UV-Vis absorption spectra of NNO, ZFO and ZFO/NNO; (b) Tauc plots and bandgap widths

3. (a) NNO、ZFO和ZFO/NNO的紫外–可见光吸收光谱;(b) Tauc图及带隙宽度

3.3. 载流子动力学

光生载流子的分离效率极大地影响着光催化剂的性能。图4(a)所示为由催化剂制备的光电极在间歇瞬态光照射下的电流–时间(I-t)响应曲线。由图可见,所有样品对光的开关循环表现出清晰响应且响应信号稳定、可重复。其中,ZFO/NNO复合光催化剂表现出最高的光电流强度,约为ZFO的2.5倍,NNO的17倍。实验还通过电化学阻抗谱(EIS)分析了样品的电荷转移能力。如图4(b)所示为三种催化剂样品的EIS-Nyquist图。通常认为,Nyquist曲线的圆弧半径与界面处的电荷转移阻抗成正比[30]。由图可见,ZFO/NNO复合材料的圆弧半径明显小于NNO和ZFO,表明复合产物的电荷转移阻抗最低,即载流子的分离与转移效率最高。

Figure 4. (a) Transient photocurrent curves and (b) EIS Nyquist plots of NNO, ZFO and ZFO/NNO

4. (a) 瞬态光电流曲线;(b) NNO、ZFO和ZFO/NNO样品的电化学阻抗–能奎斯特曲线

Figure 5. Degradation performance of catalysts NNO, ZFO and ZFO/NNO: (a) relative concentration-time curve; (b) reaction kinetics fitting curve; (c) cyclic degradation curve; (d) ROS trapping experiments

5. 催化剂NNO、ZFO和ZFO/NNO对MB的降解性能:(a) 相对浓度–时间曲线;(b) 反应动力学拟合曲线;(c) 循环降解曲线;(d) 反应活性物俘获实验

3.4. 热释电–光催化实验

图5展示了分别以NNO、ZFO和ZFO/NNO异质结为催化剂时MB的降解性能。由图5(a)可见,无论使用何种催化剂,在光照条件下MB均发生一定程度的降解。当以ZFO/NNO异质结为催化剂时,在温度波动条件下(温度随时间在25℃~50℃循环变化,温度-时间曲线如图5(a)),MB的降解效果显著提升,这表明利用温度波动促进热释电催化剂的染料降解是一种有效策略。图5(b)为相应的降解反应的动力学图谱,采用Langmuir-Hinshelwood动力学模型对反应进行拟合,该模型方程如下[31]

ln( C/ C 0 )=kt

其中k代表反应动力学常数。由图可见,MB的相对浓度比的自然对数(−ln(C/C₀))与时间t呈线性关系,即各催化剂样品对MB的降解均符合一级反应动力学模型,反应速率k和拟合度(R2)见表1所示。

为评估ZFO/NNO复合材料在实际应用中的可重复使用性,考察了其在光照与温度变化条件下循环降解的光催化稳定性。实验结果表明(图5(c)),经过连续五次循环后,ZFO/NNO纳米棒异质结的降解效率仍然维持较高水平,展现出良好的稳定性。

为鉴别参与反应的主要活性物种,我们在ZFO/NNO降解MB溶液中添加了不同的自由基捕获剂:叔丁醇(TBA)用于捕获羟基自由基(∙OH),对苯醌(BQ)用于捕获超氧自由基( O 2 ),乙二胺四乙酸(EDTA)用于捕获空穴(h+) [8] [32]。如图5(d)所示,经过90 min光催化反应后,MB的降解率因不同捕获剂的抑制而呈现差异,表明活性物种包括∙OH、 O 2 h+。添加BQ后降解率仅为23%,说明 O 2 是降解过程中的主要活性物种。通过添加TBA捕获∙OH后,MB的降解率为27%,表明∙OH在降解过程中同样起重要作用。而添加EDTA后MB降解率仅受到轻微抑制,说明h+在光热催化降解过程中的影响相对有限。

Table 1. The degradation rate and fitting degree of MB by each catalyst sample

1. 各催化剂样品对MB的降解速率与拟合度

Catalysts

NNO

ZFO

ZFO/NNO

Reaction Conditions

Light

Light + ΔT

Light

Light

Light + ΔT

k

0.0025

0.0058

0.015

0.025

0.043

R2

0.99

0.97

0.99

0.99

0.99

Figure 6. Schematic diagram of pyroelectric and photocatalytic degradation mechanism of ZFO/NNO

6. ZFO/NNO热释电–光催化降解机制示意图

3.5. 热释电–光催化机理分析

基于以上实验结果,提出ZFO/NNO热释电–光催化降解MB的机制。如图6所示,展示了NNO和ZFO接触后的能级排列和载流子迁移过程。NNO和ZFO接触后,形成II型异质结结构,在界面处产生内建电场。当受到模拟太阳光照射时,ZFO和NNO价带(VB)中的电子被激发至空的导带(CB),ZFO导带中的电子通过结区内建电场进一步转移至NNO导带,而NNO价带中的空穴则转移至ZFO价带。导带电子(e⁻)具有强还原性,可以参与还原反应,将吸附氧O2还原为超氧自由基( O 2 ),价带空穴(h⁺)具有强氧化性,可以参与氧化反应,例如将水(H2O)或氢氧根(OH⁻)氧化为羟基自由基(·OH),或直接降解有机污染物。在这一过程中,当热释电材料同时受到光照而引起微小的局部温度变化时,材料内部的自发极化强度(Ps)会随之改变。热释电场会作用于这些光生载流子,迫使电子和空穴沿电场方向反向剧烈分离(电子被扫向正极一侧,空穴被扫向负极一侧) [33]。这个过程极大地抑制了电子和空穴的复合概率,使得有更多的自由载流子可以参与后续的催化反应。催化反应方程式如下所示:

ZnF 2 O 4 hv ZnF 2 O 4 ( e + h + )

NaNbO 3 ΔT NaNbO 3 ( q + + q )

O 2 + e ( q ) O 2

O H + h + ( q + )OH

O 2  and OH+DyeDecomposition production

4. 结论

本研究通过水热法成功构建了ZnFe2O4/NaNbO3 (ZFO/NNO)异质结纳米棒复合材料,创新性地利用ZnFe2O4的光热效应驱动NaNbO3的热释电响应,实现了热–光多场协同催化过程,探究了热释电效应辅助下的光催化性能。结果表明,ZFO的光热效应可实现对NNO的原位周期性加热–冷却,从而激发NNO的热释电响应。在模拟太阳光照射与温度波动协同作用下,该复合材料在90分钟内对亚甲基蓝(MB)的降解率高达98%以上,反应动力学常数为0.043 min1,显著优于单一组分。机理研究表明,热释电内建电场有效促进了光生载流子的分离与迁移,并诱导产生大量 O 2 和·OH等活性物种,进而显著提升降解效率。此外,复合材料表现出良好的循环稳定性与可重复使用性。本研究阐明了温度调节作用下极化电场增强催化性能的作用机制,为耦合热释电效应与光催化过程提供了新策略,在环境污染物治理领域具有潜在应用价值。

致 谢

感谢湖北科技学院科研项目(项目编号:2024-2025X08)的基金支持。

NOTES

*通讯作者。

参考文献

[1] Ning, D., Zhang, J., Murali, A., Lan, Y., Chen, C., Yang, S., et al. (2024) Advancements in Organic Pollutant Remediation: The Role of Nitrogen-Doped rGO-CeO2 in Photocatalytic Efficiency Enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685, Article 133282. [Google Scholar] [CrossRef
[2] Li, K., Liu, C., Li, J., Wang, G. and Wang, K. (2024) Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with G-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 40, Article 2403009. [Google Scholar] [CrossRef
[3] Hu, C., Tu, S., Tian, N., Ma, T., Zhang, Y. and Huang, H. (2021) Photocatalysis Enhanced by External Fields. Angewandte Chemie International Edition, 60, 16309-16328. [Google Scholar] [CrossRef] [PubMed]
[4] Mateo, D., Cerrillo, J.L., Durini, S. and Gascon, J. (2021) Fundamentals and Applications of Photo-Thermal Catalysis. Chemical Society Reviews, 50, 2173-2210. [Google Scholar] [CrossRef] [PubMed]
[5] You, H., Ma, X., Wu, Z., Fei, L., Chen, X., Yang, J., et al. (2018) Piezoelectrically/Pyroelectrically-Driven Vibration/Cold-Hot Energy Harvesting for Mechano-/Pyro-Bi-Catalytic Dye Decomposition of NaNbO3 Nanofibers. Nano Energy, 52, 351-359. [Google Scholar] [CrossRef
[6] Tu, S., Guo, Y., Zhang, Y., Hu, C., Zhang, T., Ma, T., et al. (2020) Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 30, Article 2005158. [Google Scholar] [CrossRef
[7] Ma, J., Xu, L., Yin, Z., Li, Z., Dong, X., Song, Z., et al. (2024) “One Stone Four Birds” Design Atom Co-Sharing BioBr/Bi2S3 S-Scheme Heterojunction Photothermal Synergistic Enhanced Full-Spectrum Photocatalytic Activity. Applied Catalysis B: Environmental, 344, Article 123601. [Google Scholar] [CrossRef
[8] Xu, S., Zhu, W., Wu, L., Zhang, X., Li, C., Wang, Y., et al. (2023) Pyro-Photocatalytic Coupled Effect in Ferroelectric Bi0.5Na0.5TiO3 Nanoparticles for Enhanced Dye Degradation. ACS Applied Materials & Interfaces, 15, 1276-1285. [Google Scholar] [CrossRef] [PubMed]
[9] Liu, X., Fan, B., Wang, Z., Guo, Z., Tang, B., Lv, S., et al. (2021) Dynamic Internal Field Engineering in BaTiO3-TiO2 Nanostructures for Photocatalytic Dye Degradation. ACS Applied Nano Materials, 4, 3742-3749. [Google Scholar] [CrossRef
[10] Qian, W., Wu, Z., Jia, Y., Hong, Y., Xu, X., You, H., et al. (2017) Thermo-Electrochemical Coupling for Room Temperature Thermocatalysis in Pyroelectric ZnO Nanorods. Electrochemistry Communications, 81, 124-127. [Google Scholar] [CrossRef
[11] Chen, M., Jia, Y., Li, H., Wu, Z., Huang, T. and Zhang, H. (2021) Enhanced Pyrocatalysis of the Pyroelectric Bifeo3/g-C3n4 Heterostructure for Dye Decomposition Driven by Cold-Hot Temperature Alternation. Journal of Advanced Ceramics, 10, 338-346. [Google Scholar] [CrossRef
[12] Liu, S., Zhang, Y., Guo, Y., Cheng, Z., Yuan, M., Xu, Z., et al. (2025) Step-Scheme/Mott-Schottky Integrated Heteroiunctions in BiFeO3/ZnIn2S4/Ag Hollow Nanospheres: Facilitating Efficient Piezo-Photocatalytic Activation of Peroxydisulfate to Enhance Nizatidine Degradation and Antibacterial Activity. Journal of Colloid and Interface Science, 686, 45-62. [Google Scholar] [CrossRef] [PubMed]
[13] Liu, S., Liu, Z. and Meng, Y. (2022) Doping Regulates Pyro-Photo-Electric Catalysis to Achieve Efficient Water Splitting in Ba1−xSrxTiO3 through Solar Energy and Thermal Resources. New Journal of Chemistry, 46, 17292-17302. [Google Scholar] [CrossRef
[14] Yang, Y., Jung, J.H., Yun, B.K., Zhang, F., Pradel, K.C., Guo, W., et al. (2012) Flexible Pyroelectric Nanogenerators Using a Composite Structure of Lead-Free KnBo3 Nanowires. Advanced Materials, 24, 5357-5362. [Google Scholar] [CrossRef] [PubMed]
[15] Zhou, D., Zhou, X., Hu, Z., Zheng, L., Tian, Y., Tu, Y., et al. (2024) Pyroelectric Field Drived Photocatalysis by ZnFe2O4/NaNbO3 Heterojunction for Dye Degradation through Integration of Solar and Thermal Energy. Arabian Journal of Chemistry, 17, Article 105996. [Google Scholar] [CrossRef
[16] Wu, Z., Xu, T., Wang, X., Zhang, L., Zhao, C., Wu, W., et al. (2023) Natural Tourmaline for Pyroelectric Dye Decomposition under 25˚C-60˚C Room-Temperature Cold-Hot Fluctuation. Separation and Purification Technology, 327, Article 124971. [Google Scholar] [CrossRef
[17] Zhang, S., Zhang, B., Chen, D., Guo, Z., Ruan, M. and Liu, Z. (2021) Promising Pyro-Photo-Electric Catalysis in NaNbO3 via Integrating Solar and Cold-Hot Alternation Energy in Pyroelectric-Assisted Photoelectrochemical System. Nano Energy, 79, Article 105485. [Google Scholar] [CrossRef
[18] You, H., Wu, Z., Wang, L., Jia, Y., Li, S. and Zou, J. (2018) Highly Efficient Pyrocatalysis of Pyroelectric NaNbO3 Shape-Controllable Nanoparticles for Room-Temperature Dye Decomposition. Chemosphere, 199, 531-537. [Google Scholar] [CrossRef] [PubMed]
[19] Li, T., Liu, Z. and Meng, Y. (2022) Two-Dimensional Ultra-Thin Nanosheets Optimize the Surface Reaction Dynamics and Photo/Pyro-Generated Carrier Transfer of NaNbO3 for an Efficient Pyro-Photo-Electric Catalytic System. Sustainable Energy & Fuels, 6, 4227-4239. [Google Scholar] [CrossRef
[20] Wang, Y., Sun, X., Ma, J., Yi, Z., Wang, S., Liu, G., et al. (2024) Coupled Piezo-Pyro-Photocatalysis of Oxygen Vacancies and Bi Quantum Dots Co-Modified BaTiO3 for Highly Efficient Removal of Ciprofloxacin. Separation and Purification Technology, 337, Article 126392. [Google Scholar] [CrossRef
[21] Feng, Y., Cao, Y., Zhu, J., Han, H., Liu, Y., Li, X., et al. (2024) Enhanced Photoelectric Performance of ZnFe2O4 Catalysts for Oxidative Carboxylation of Styrene by Tuning Crystal Planes and Thermal and Electrical Conductivity. Journal of Cleaner Production, 440, Article 141002. [Google Scholar] [CrossRef
[22] Li, X., Li, B., Li, R., Yao, Y., Fan, N., Qi, R., et al. (2023) Synthesis of an Efficient Paramagnetic ZnFe2O4 Agent for NIR-I/II Responsive Photothermal Performance. Journal of Alloys and Compounds, 936, Article 168161. [Google Scholar] [CrossRef
[23] Ye, Z. and Lv, D. (2023) Preparation Technology and Crystal Structure Analysis of NaNbO3 Microcrystalline Powders with Different Crystal Orientations and Morphologies by Molten Salt Method. Ferroelectrics, 602, 184-195. [Google Scholar] [CrossRef
[24] Huang, S., Xiong, F., Yu, M., Zhou, Y., Xu, J. and Liu, J. (2025) Synthesis of Ag-Loaded NaNbO3/g-C3N4 Heterojunction for Enhanced Photocatalytic Degradation of Methyl Orange. Materials Science in Semiconductor Processing, 192, Article 109401. [Google Scholar] [CrossRef
[25] Wei, Y., Zhu, Q., Xie, W., Wang, X., Li, S. and Chen, Z. (2024) Biocatalytic Enhancement of Laccase Immobilized on ZnFe2O4 Nanoparticles and Its Application for Degradation of Textile Dyes. Chinese Journal of Chemical Engineering, 68, 216-223. [Google Scholar] [CrossRef
[26] Nguyen, N.T.T., Nguyen, T.T.T., Nguyen, D.T.C. and Tran, T.V. (2023) Green Synthesis of ZnFe2O4 Nanoparticles Using Plant Extracts and Their Applications: A Review. Science of The Total Environment, 872, Article 162212. [Google Scholar] [CrossRef] [PubMed]
[27] Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J. and Bacher, G. (2023) Limitations of the Tauc Plot Method. Advanced Functional Materials, 33, Article 2304523. [Google Scholar] [CrossRef
[28] Fuentes-Pérez, M., Sotelo-Lerma, M., Fuentes-Ríos, J.L., Morales-Espinoza, E.G., Serrano, M. and Nicho, M.E. (2021) Synthesis and Study of Physicochemical Properties of Fe3O4@ZnFe2O4 Core/Shell Nanoparticles. Journal of Materials Science: Materials in Electronics, 32, 16786-16799. [Google Scholar] [CrossRef
[29] Hasan, S. and Azhdar, B. (2023) NiFe2O4 and ZnFe2O4 Nanoparticles Synthesis by Sol-Gel Auto-Combustion for Humidity Sensor Applications. Journal of Sol-Gel Science and Technology, 105, 416-429. [Google Scholar] [CrossRef
[30] Yuan, C., Tian, N., Gao, L., Huang, H. and Zhang, Y. (2025) Efficient Dual Functional Hydrogen Production Synergistic Degradation of Organic Pollutants by Hydroxyl and Cyano Group Modified Crystalline G-C3N4 under Visible Light. Chemical Engineering Journal, 503, Article 158645. [Google Scholar] [CrossRef
[31] Goutham, C., Ashok Kumar, K.V., Kumar Raavi, S.S., Subrahmanyam, C. and Asthana, S. (2022) Enhanced Electrical and Photocatalytic Activities in Na0.5Bi0.5TiO3 through Structural Modulation by Using Anatase and Rutile Phases of TiO2. Journal of Materiomics, 8, 18-29. [Google Scholar] [CrossRef
[32] Cai, M., Liu, Y., Dong, K., Chen, X. and Li, S. (2023) Floatable S-Scheme Bi2WO6/C3N4/Carbon Fiber Cloth Composite Photocatalyst for Efficient Water Decontamination. Chinese Journal of Catalysis, 52, 239-251. [Google Scholar] [CrossRef
[33] Zhang, S., Shen, Y., Lu, J., Chen, Z., Li, L., Guo, F., et al. (2024) Tannic Acid-Modified G-C3N4 Nanosheets/Polydimethylsiloxane as a Photothermal-Responsive Self-Healing Composite Coating for Smart Corrosion Protection. Chemical Engineering Journal, 483, Article 149232. [Google Scholar] [CrossRef