|
[1]
|
Ning, D., Zhang, J., Murali, A., Lan, Y., Chen, C., Yang, S., et al. (2024) Advancements in Organic Pollutant Remediation: The Role of Nitrogen-Doped rGO-CeO2 in Photocatalytic Efficiency Enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 685, Article 133282. [Google Scholar] [CrossRef]
|
|
[2]
|
Li, K., Liu, C., Li, J., Wang, G. and Wang, K. (2024) Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with G-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 40, Article 2403009. [Google Scholar] [CrossRef]
|
|
[3]
|
Hu, C., Tu, S., Tian, N., Ma, T., Zhang, Y. and Huang, H. (2021) Photocatalysis Enhanced by External Fields. Angewandte Chemie International Edition, 60, 16309-16328. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Mateo, D., Cerrillo, J.L., Durini, S. and Gascon, J. (2021) Fundamentals and Applications of Photo-Thermal Catalysis. Chemical Society Reviews, 50, 2173-2210. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
You, H., Ma, X., Wu, Z., Fei, L., Chen, X., Yang, J., et al. (2018) Piezoelectrically/Pyroelectrically-Driven Vibration/Cold-Hot Energy Harvesting for Mechano-/Pyro-Bi-Catalytic Dye Decomposition of NaNbO3 Nanofibers. Nano Energy, 52, 351-359. [Google Scholar] [CrossRef]
|
|
[6]
|
Tu, S., Guo, Y., Zhang, Y., Hu, C., Zhang, T., Ma, T., et al. (2020) Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials, 30, Article 2005158. [Google Scholar] [CrossRef]
|
|
[7]
|
Ma, J., Xu, L., Yin, Z., Li, Z., Dong, X., Song, Z., et al. (2024) “One Stone Four Birds” Design Atom Co-Sharing BioBr/Bi2S3 S-Scheme Heterojunction Photothermal Synergistic Enhanced Full-Spectrum Photocatalytic Activity. Applied Catalysis B: Environmental, 344, Article 123601. [Google Scholar] [CrossRef]
|
|
[8]
|
Xu, S., Zhu, W., Wu, L., Zhang, X., Li, C., Wang, Y., et al. (2023) Pyro-Photocatalytic Coupled Effect in Ferroelectric Bi0.5Na0.5TiO3 Nanoparticles for Enhanced Dye Degradation. ACS Applied Materials & Interfaces, 15, 1276-1285. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Liu, X., Fan, B., Wang, Z., Guo, Z., Tang, B., Lv, S., et al. (2021) Dynamic Internal Field Engineering in BaTiO3-TiO2 Nanostructures for Photocatalytic Dye Degradation. ACS Applied Nano Materials, 4, 3742-3749. [Google Scholar] [CrossRef]
|
|
[10]
|
Qian, W., Wu, Z., Jia, Y., Hong, Y., Xu, X., You, H., et al. (2017) Thermo-Electrochemical Coupling for Room Temperature Thermocatalysis in Pyroelectric ZnO Nanorods. Electrochemistry Communications, 81, 124-127. [Google Scholar] [CrossRef]
|
|
[11]
|
Chen, M., Jia, Y., Li, H., Wu, Z., Huang, T. and Zhang, H. (2021) Enhanced Pyrocatalysis of the Pyroelectric Bifeo3/g-C3n4 Heterostructure for Dye Decomposition Driven by Cold-Hot Temperature Alternation. Journal of Advanced Ceramics, 10, 338-346. [Google Scholar] [CrossRef]
|
|
[12]
|
Liu, S., Zhang, Y., Guo, Y., Cheng, Z., Yuan, M., Xu, Z., et al. (2025) Step-Scheme/Mott-Schottky Integrated Heteroiunctions in BiFeO3/ZnIn2S4/Ag Hollow Nanospheres: Facilitating Efficient Piezo-Photocatalytic Activation of Peroxydisulfate to Enhance Nizatidine Degradation and Antibacterial Activity. Journal of Colloid and Interface Science, 686, 45-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liu, S., Liu, Z. and Meng, Y. (2022) Doping Regulates Pyro-Photo-Electric Catalysis to Achieve Efficient Water Splitting in Ba1−xSrxTiO3 through Solar Energy and Thermal Resources. New Journal of Chemistry, 46, 17292-17302. [Google Scholar] [CrossRef]
|
|
[14]
|
Yang, Y., Jung, J.H., Yun, B.K., Zhang, F., Pradel, K.C., Guo, W., et al. (2012) Flexible Pyroelectric Nanogenerators Using a Composite Structure of Lead-Free KnBo3 Nanowires. Advanced Materials, 24, 5357-5362. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, D., Zhou, X., Hu, Z., Zheng, L., Tian, Y., Tu, Y., et al. (2024) Pyroelectric Field Drived Photocatalysis by ZnFe2O4/NaNbO3 Heterojunction for Dye Degradation through Integration of Solar and Thermal Energy. Arabian Journal of Chemistry, 17, Article 105996. [Google Scholar] [CrossRef]
|
|
[16]
|
Wu, Z., Xu, T., Wang, X., Zhang, L., Zhao, C., Wu, W., et al. (2023) Natural Tourmaline for Pyroelectric Dye Decomposition under 25˚C-60˚C Room-Temperature Cold-Hot Fluctuation. Separation and Purification Technology, 327, Article 124971. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, S., Zhang, B., Chen, D., Guo, Z., Ruan, M. and Liu, Z. (2021) Promising Pyro-Photo-Electric Catalysis in NaNbO3 via Integrating Solar and Cold-Hot Alternation Energy in Pyroelectric-Assisted Photoelectrochemical System. Nano Energy, 79, Article 105485. [Google Scholar] [CrossRef]
|
|
[18]
|
You, H., Wu, Z., Wang, L., Jia, Y., Li, S. and Zou, J. (2018) Highly Efficient Pyrocatalysis of Pyroelectric NaNbO3 Shape-Controllable Nanoparticles for Room-Temperature Dye Decomposition. Chemosphere, 199, 531-537. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, T., Liu, Z. and Meng, Y. (2022) Two-Dimensional Ultra-Thin Nanosheets Optimize the Surface Reaction Dynamics and Photo/Pyro-Generated Carrier Transfer of NaNbO3 for an Efficient Pyro-Photo-Electric Catalytic System. Sustainable Energy & Fuels, 6, 4227-4239. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, Y., Sun, X., Ma, J., Yi, Z., Wang, S., Liu, G., et al. (2024) Coupled Piezo-Pyro-Photocatalysis of Oxygen Vacancies and Bi Quantum Dots Co-Modified BaTiO3 for Highly Efficient Removal of Ciprofloxacin. Separation and Purification Technology, 337, Article 126392. [Google Scholar] [CrossRef]
|
|
[21]
|
Feng, Y., Cao, Y., Zhu, J., Han, H., Liu, Y., Li, X., et al. (2024) Enhanced Photoelectric Performance of ZnFe2O4 Catalysts for Oxidative Carboxylation of Styrene by Tuning Crystal Planes and Thermal and Electrical Conductivity. Journal of Cleaner Production, 440, Article 141002. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, X., Li, B., Li, R., Yao, Y., Fan, N., Qi, R., et al. (2023) Synthesis of an Efficient Paramagnetic ZnFe2O4 Agent for NIR-I/II Responsive Photothermal Performance. Journal of Alloys and Compounds, 936, Article 168161. [Google Scholar] [CrossRef]
|
|
[23]
|
Ye, Z. and Lv, D. (2023) Preparation Technology and Crystal Structure Analysis of NaNbO3 Microcrystalline Powders with Different Crystal Orientations and Morphologies by Molten Salt Method. Ferroelectrics, 602, 184-195. [Google Scholar] [CrossRef]
|
|
[24]
|
Huang, S., Xiong, F., Yu, M., Zhou, Y., Xu, J. and Liu, J. (2025) Synthesis of Ag-Loaded NaNbO3/g-C3N4 Heterojunction for Enhanced Photocatalytic Degradation of Methyl Orange. Materials Science in Semiconductor Processing, 192, Article 109401. [Google Scholar] [CrossRef]
|
|
[25]
|
Wei, Y., Zhu, Q., Xie, W., Wang, X., Li, S. and Chen, Z. (2024) Biocatalytic Enhancement of Laccase Immobilized on ZnFe2O4 Nanoparticles and Its Application for Degradation of Textile Dyes. Chinese Journal of Chemical Engineering, 68, 216-223. [Google Scholar] [CrossRef]
|
|
[26]
|
Nguyen, N.T.T., Nguyen, T.T.T., Nguyen, D.T.C. and Tran, T.V. (2023) Green Synthesis of ZnFe2O4 Nanoparticles Using Plant Extracts and Their Applications: A Review. Science of The Total Environment, 872, Article 162212. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Klein, J., Kampermann, L., Mockenhaupt, B., Behrens, M., Strunk, J. and Bacher, G. (2023) Limitations of the Tauc Plot Method. Advanced Functional Materials, 33, Article 2304523. [Google Scholar] [CrossRef]
|
|
[28]
|
Fuentes-Pérez, M., Sotelo-Lerma, M., Fuentes-Ríos, J.L., Morales-Espinoza, E.G., Serrano, M. and Nicho, M.E. (2021) Synthesis and Study of Physicochemical Properties of Fe3O4@ZnFe2O4 Core/Shell Nanoparticles. Journal of Materials Science: Materials in Electronics, 32, 16786-16799. [Google Scholar] [CrossRef]
|
|
[29]
|
Hasan, S. and Azhdar, B. (2023) NiFe2O4 and ZnFe2O4 Nanoparticles Synthesis by Sol-Gel Auto-Combustion for Humidity Sensor Applications. Journal of Sol-Gel Science and Technology, 105, 416-429. [Google Scholar] [CrossRef]
|
|
[30]
|
Yuan, C., Tian, N., Gao, L., Huang, H. and Zhang, Y. (2025) Efficient Dual Functional Hydrogen Production Synergistic Degradation of Organic Pollutants by Hydroxyl and Cyano Group Modified Crystalline G-C3N4 under Visible Light. Chemical Engineering Journal, 503, Article 158645. [Google Scholar] [CrossRef]
|
|
[31]
|
Goutham, C., Ashok Kumar, K.V., Kumar Raavi, S.S., Subrahmanyam, C. and Asthana, S. (2022) Enhanced Electrical and Photocatalytic Activities in Na0.5Bi0.5TiO3 through Structural Modulation by Using Anatase and Rutile Phases of TiO2. Journal of Materiomics, 8, 18-29. [Google Scholar] [CrossRef]
|
|
[32]
|
Cai, M., Liu, Y., Dong, K., Chen, X. and Li, S. (2023) Floatable S-Scheme Bi2WO6/C3N4/Carbon Fiber Cloth Composite Photocatalyst for Efficient Water Decontamination. Chinese Journal of Catalysis, 52, 239-251. [Google Scholar] [CrossRef]
|
|
[33]
|
Zhang, S., Shen, Y., Lu, J., Chen, Z., Li, L., Guo, F., et al. (2024) Tannic Acid-Modified G-C3N4 Nanosheets/Polydimethylsiloxane as a Photothermal-Responsive Self-Healing Composite Coating for Smart Corrosion Protection. Chemical Engineering Journal, 483, Article 149232. [Google Scholar] [CrossRef]
|