|
[1]
|
Pezzella, P. (2022) The ICD‐11 Is Now Officially in Effect. World Psychiatry, 21, 331-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Soehle, M., Dittmann, A., Ellerkmann, R.K., Baumgarten, G., Putensen, C. and Guenther, U. (2015) Intraoperative Burst Suppression Is Associated with Postoperative Delirium Following Cardiac Surgery: A Prospective, Observational Study. BMC Anesthesiology, 15, Article No. 61. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Shokhirev, M.N. and Johnson, A.A. (2022) An Integrative Machine-Learning Meta-Analysis of High-Throughput Omics Data Identifies Age-Specific Hallmarks of Alzheimer’s Disease. Ageing Research Reviews, 81, Article ID: 101721. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sepulveda, E., Franco, J.G., Trzepacz, P.T., Gaviria, A.M., Meagher, D.J., Palma, J., et al. (2016) Delirium Diagnosis Defined by Cluster Analysis of Symptoms versus Diagnosis by DSM and ICD Criteria: Diagnostic Accuracy Study. BMC Psychiatry, 16, Article No. 167. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
van der Mast, R.C. (1998) Pathophysiology of Delirium. Journal of Geriatric Psychiatry and Neurology, 11, 138-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hirsch, J., DePalma, G., Tsai, T.T., Sands, L.P. and Leung, J.M. (2015) Impact of Intraoperative Hypotension and Blood Pressure Fluctuations on Early Postoperative Delirium after Non-Cardiac Surgery. British Journal of Anaesthesia, 115, 418-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Racine, A.M., Tommet, D., D’Aquila, M.L., Fong, T.G., Gou, Y., Tabloski, P.A., et al. (2020) Machine Learning to Develop and Internally Validate a Predictive Model for Post-Operative Delirium in a Prospective, Observational Clinical Cohort Study of Older Surgical Patients. Journal of General Internal Medicine, 36, 265-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Abdar, M., Książek, W., Acharya, U.R., Tan, R., Makarenkov, V. and Pławiak, P. (2019) A New Machine Learning Technique for an Accurate Diagnosis of Coronary Artery Disease. Computer Methods and Programs in Biomedicine, 179, Article ID: 104992. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, Y., Xu, J., Wang, Y., Zhang, Y., Jiang, W., Shen, B., et al. (2020) A Novel Machine Learning Algorithm, Bayesian Networks Model, to Predict the High‐Risk Patients with Cardiac Surgery‐associated Acute Kidney Injury. Clinical Cardiology, 43, 752-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yang, T., Yang, H., Liu, Y., Liu, X., Ding, Y., Li, R., et al. (2024) Postoperative Delirium Prediction after Cardiac Surgery Using Machine Learning Models. Computers in Biology and Medicine, 169, Article ID: 107818. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Nowakowska, K., Sakellarios, A., Kaźmierski, J., Fotiadis, D.I. and Pezoulas, V.C. (2023) AI-Enhanced Predictive Modeling for Identifying Depression and Delirium in Cardiovascular Patients Scheduled for Cardiac Surgery. Diagnostics, 14, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhao, X., Li, J., Xie, X., Fang, Z., Feng, Y., Zhong, Y., et al. (2024) Online Interpretable Dynamic Prediction Models for Postoperative Delirium after Cardiac Surgery under Cardiopulmonary Bypass Developed Based on Machine Learning Algorithms: A Retrospective Cohort Study. Journal of Psychosomatic Research, 176, Article ID: 111553. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mufti, H.N., Hirsch, G.M., Abidi, S.R. and Abidi, S.S.R. (2019) Exploiting Machine Learning Algorithms and Methods for the Prediction of Agitated Delirium after Cardiac Surgery: Models Development and Validation Study. JMIR Medical Informatics, 7, e14993. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, Q., Li, J., Chen, J., Zhao, X., Zhuang, J., Zhong, G., et al. (2024) A Machine Learning-Based Prediction Model for Postoperative Delirium in Cardiac Valve Surgery Using Electronic Health Records. BMC Cardiovascular Disorders, 24, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Nagata, C., Hata, M., Miyazaki, Y., Masuda, H., Wada, T., Kimura, T., et al. (2023) Development of Postoperative Delirium Prediction Models in Patients Undergoing Cardiovascular Surgery Using Machine Learning Algorithms. Scientific Reports, 13, Article No. 21090. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Han, C., Kim, H.I., Soh, S., Choi, J.W., Song, J.W. and Yoon, D. (2024) Machine Learning with Clinical and Intraoperative Biosignal Data for Predicting Postoperative Delirium after Cardiac Surgery. iScience, 27, Article ID: 109932. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
黄琦, 关美娇, 邹彬, 等. 机器学习模型预测心脏外科手术患者术后谵妄的有效性[J]. 临床麻醉学杂志, 2023, 39(4): 363-369.
|
|
[18]
|
左都坤, 吴卓熙, 龙宗泓, 等. 基于机器学习算法构建心脏手术患者术后早期谵妄风险预测模型[J]. 陆军军医大学学报, 2023, 45(8): 753-758.
|
|
[19]
|
伍侨. 老年术后谵妄发生率及危险因素的系统评价[D]: [硕士学位论文]. 成都: 成都中医药大学, 2021.
|