|
[1]
|
Augustyn, V., Simon, P. and Dunn, B. (2014) Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy & Environmental Science, 7, 1597-1614. [Google Scholar] [CrossRef]
|
|
[2]
|
Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for a Sustainable Energy Future. Nature, 488, 294-303. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, R., Elzatahry, A., Chao, D. and Zhao, D. (2022) Making MXenes More Energetic in Aqueous Battery. Matter, 5, 8-10. [Google Scholar] [CrossRef]
|
|
[4]
|
Song, M., Tan, H., Chao, D. and Fan, H.J. (2018) Recent Advances in Zn‐Ion Batteries. Advanced Functional Materials, 28, Article ID: 1802564. [Google Scholar] [CrossRef]
|
|
[5]
|
Dunn, B., Kamath, H. and Tarascon, J. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yi, J., Guo, S., He, P. and Zhou, H. (2017) Status and Prospects of Polymer Electrolytes for Solid-State Li-O2(Air) Batteries. Energy & Environmental Science, 10, 860-884. [Google Scholar] [CrossRef]
|
|
[7]
|
Li, Q., Liu, Y., Guo, S. and Zhou, H. (2017) Solar Energy Storage in the Rechargeable Batteries. Nano Today, 16, 46-60. [Google Scholar] [CrossRef]
|
|
[8]
|
Simon, P., Gogotsi, Y. and Dunn, B. (2014) Where Do Batteries End and Supercapacitors Begin? Science, 343, 1210-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chao, D., DeBlock, R., Lai, C., Wei, Q., Dunn, B. and Fan, H.J. (2021) Amorphous VO2: A Pseudocapacitive Platform for High‐Rate Symmetric Batteries. Advanced Materials, 33, e2103736. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Pan, Z., Yang, J., Li, L., Gao, X., Kang, L., Zhang, Y., et al. (2020) All-in-One Stretchable Coaxial-Fiber Strain Sensor Integrated with High-Performing Supercapacitor. Energy Storage Materials, 25, 124-130. [Google Scholar] [CrossRef]
|
|
[11]
|
Schmidt, O., Hawkes, A., Gambhir, A. and Staffell, I. (2017) The Future Cost of Electrical Energy Storage Based on Experience Rates. Nature Energy, 2, Article No. 17110. [Google Scholar] [CrossRef]
|
|
[12]
|
Du, W., Ang, E.H., Yang, Y., Zhang, Y., Ye, M. and Li, C.C. (2020) Challenges in the Material and Structural Design of Zinc Anode Towards High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Science, 13, 3330-3360. [Google Scholar] [CrossRef]
|
|
[13]
|
Liu, D., Mai, Y., Chen, S., Liu, S., Ang, E.H., Ye, M., et al. (2021) A 1D-3D Interconnected δ-MnO2 Nanowires Network as High-Performance and High Energy Efficiency Cathode Material for Aqueous Zinc-Ion Batteries. Electrochimica Acta, 370, Article ID: 137740. [Google Scholar] [CrossRef]
|
|
[14]
|
Islam, S., Alfaruqi, M.H., Putro, D.Y., Park, S., Kim, S., Lee, S., et al. (2021) In Situ Oriented Mn Deficient ZnMn2O4@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc‐Ion Batteries. Advanced Science, 8, Article ID: 2002636. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tan, Q., Li, X., Zhang, B., Chen, X., Tian, Y., Wan, H., et al. (2020) Valence Engineering via in Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery. Advanced Energy Materials, 10, Article ID: 2001050. [Google Scholar] [CrossRef]
|
|
[16]
|
Cao, L., Lu, D., Zhong, D. and Lu, T. (2020) Prussian Blue Analogues and Their Derived Nanomaterials for Electrocatalytic Water Splitting. Coordination Chemistry Reviews, 407, Article ID: 213156. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, W., Zhang, X., Huang, Y., Jiang, B., Chang, Z., Xu, C., et al. (2021) β-MnO2 with Proton Conversion Mechanism in Rechargeable Zinc Ion Battery. Journal of Energy Chemistry, 56, 365-373. [Google Scholar] [CrossRef]
|
|
[18]
|
Yang, H., Zhou, W., Chen, D., Liu, J., Yuan, Z., Lu, M., et al. (2022) The Origin of Capacity Fluctuation and Rescue of Dead Mn-Based Zn-Ion Batteries: A Mn-Based Competitive Capacity Evolution Protocol. Energy & Environmental Science, 15, 1106-1118. [Google Scholar] [CrossRef]
|
|
[19]
|
Jiao, T., Yang, Q., Wu, S., Wang, Z., Chen, D., Shen, D., et al. (2019) Binder-Free Hierarchical VS2 Electrodes for High-Performance Aqueous Zn Ion Batteries Towards Commercial Level Mass Loading. Journal of Materials Chemistry A, 7, 16330-16338. [Google Scholar] [CrossRef]
|
|
[20]
|
Ding, J., Gao, H., Zhao, K., Zheng, H., Zhang, H., Han, L., et al. (2021) In-Situ Electrochemical Conversion of Vanadium Dioxide for Enhanced Zinc-Ion Storage with Large Voltage Range. Journal of Power Sources, 487, Article ID: 229369. [Google Scholar] [CrossRef]
|
|
[21]
|
Li, W., Han, C., Gu, Q., Chou, S., Wang, J., Liu, H., et al. (2020) Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc‐ion Batteries. Advanced Energy Materials, 10, Article ID: 2001852. [Google Scholar] [CrossRef]
|
|
[22]
|
Jiang, H., Zhang, Y., Pan, Z., Xu, L., Zheng, J., Gao, Z., et al. (2020) NH4V3O8∙0.5H2O Nanobelts with Intercalated Water Molecules as a High Performance Zinc Ion Battery Cathode. Materials Chemistry Frontiers, 4, 1434-1443. [Google Scholar] [CrossRef]
|
|
[23]
|
Li, X., Ma, L., Zhao, Y., Yang, Q., Wang, D., Huang, Z., et al. (2019) Hydrated Hybrid Vanadium Oxide Nanowires as the Superior Cathode for Aqueous Zn Battery. Materials Today Energy, 14, Article ID: 100361. [Google Scholar] [CrossRef]
|
|
[24]
|
Zhang, S., Long, S., Li, H. and Xu, Q. (2020) A High-Capacity Organic Cathode Based on Active N Atoms for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 400, Article ID: 125898. [Google Scholar] [CrossRef]
|
|
[25]
|
Jiang, B., Huang, T., Yang, P., Xi, X., Su, Y., Liu, R., et al. (2021) Solution-Processed Perylene Diimide-Ethylene Diamine Cathodes for Aqueous Zinc Ion Batteries. Journal of Colloid and Interface Science, 598, 36-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhao, L., Zhao, Y., Wu, Y., Wang, P., Liu, Z., Zhang, Q., et al. (2025) Everything in Aqueous Zinc-Ion Batteries May Be Prussian Blue Analogues: From Cathode Materials to Electrolyte Additives Applications. Energy Storage Materials, 78, Article ID: 104299. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, B., Han, Y., Wang, X., Bahlawane, N., Pan, H., Yan, M., et al. (2018) Prussian Blue Analogs for Rechargeable Batteries. iScience, 3, 110-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Qin, M., Ren, W., Jiang, R., Li, Q., Yao, X., Wang, S., et al. (2021) Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials & Interfaces, 13, 3999-4007. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shu, W., Huang, M., Geng, L., Qiao, F. and Wang, X. (2023) Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage. Small, 19, Article ID: 2207080. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Qi, Y., Li, F., Sheng, H., Zhang, H., Yuan, J., Ma, L., et al. (2024) Seed-Assisted Reversible Dissolution/Deposition of MnO2 for Long‐Cyclic and Green Aqueous Zinc‐Ion Batteries. Small, 20, Article ID: 2404312. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Syed, W.A., Kakarla, A.K., Bandi, H., Shanthappa, R. and Yu, J.S. (2024) Copper Substituted Manganese Prussian Blue Analogue Composite Nanostructures for Efficient Aqueous Zinc-Ion Batteries. Journal of Energy Storage, 99, Article ID: 113325. [Google Scholar] [CrossRef]
|
|
[32]
|
Xue, Y., Zhou, H., Suo, X., Tao, J., Zhang, C., Ji, Z., et al. (2024) Polyaniline-Modified Amorphous Tin-Based Prussian Blue Analogue as Cathodes for Long-Life Aqueous Zinc Ion Batteries. Journal of Energy Storage, 98, Article ID: 113140. [Google Scholar] [CrossRef]
|
|
[33]
|
Yan, S., Zuo, Y., He, B., Tian, H., Meng, T., Zhang, H., et al. (2025) An Activated Prussian Blue Interphase Enhancing H+ Storage of MnO2 Cathode for Aqueous Zinc Ion Battery. Journal of Alloys and Compounds, 1036, Article ID: 181877. [Google Scholar] [CrossRef]
|