普鲁士蓝类似物在水系锌离子电池中的应用研究
Research on the Application of Prussian Blue Analogues in Aqueous Zinc-Ion Batteries
摘要: 水系锌离子电池凭借高安全性、低成本与环境友好等优势,在可持续能源存储领域展现出巨大的应用潜力。其中,普鲁士蓝类似物因具有独特的开放式骨架结构、可调控的化学组成以及优异的电化学性能,作为正极材料受到广泛关注。本文综述了普鲁士蓝类似物在水系锌离子电池中的研究进展,涵盖材料结构特性、改性策略,及界面工程等方面,并探讨了当前面临的挑战、未来的研究重点与发展方向。
Abstract: Aqueous zinc-ion batteries have demonstrated significant application potential in the field of sustainable energy storage, owing to their advantages of high safety, low cost, and environmental friendliness. Among various candidate materials, Prussian blue analogues have garnered widespread attention as cathode materials due to their unique open-framework structure, tunable chemical composition, and excellent electrochemical performance. This review summarizes the recent research progress on Prussian blue analogues for aqueous zinc-ion batteries, covering aspects of their material structural characteristics, modification strategies, and interface engineering. Furthermore, the current challenges and future research priorities and development directions are discussed.
文章引用:王涛涛, 叶盼盼, 任凌云. 普鲁士蓝类似物在水系锌离子电池中的应用研究[J]. 材料化学前沿, 2025, 13(4): 447-454. https://doi.org/10.12677/amc.2025.134046

1. 引言

进入21世纪,化石资源日益枯竭与环境污染不断加剧,促使全球积极寻求替代能源。风能、太阳能、潮汐能等清洁可再生能源逐渐成为关注焦点,但其固有的间歇性与不稳定性严重制约了大规模应用,这也进一步推动了对先进储能技术的迫切需求[1]-[4]。在此背景下,可靠的电化学储能系统被视作实现可再生能源高效存储与利用的关键支撑[5]-[10]。尽管锂离子电池在动力电池领域占据主导地位,却因其安全性欠佳、功率密度有限、成本较高及供应链易受地缘政治影响等因素,在固定式储能中的应用受到较大限制[11]

相比之下,水系锌离子电池(Aqueous Zinc-Ion Batteries, AZIBs)采用经济环保的锌金属负极与生物相容性优异的水系电解质,兼具低成本、高安全性、高功率密度和环境友好等优势,在大规模储能与可穿戴电子设备等领域展现出广泛的应用前景[12]。然而,水系锌离子电池的发展仍面临诸多挑战,尤其是正极材料在容量、循环稳定性和倍率性能方面往往表现不佳。在锰基氧化物[13]-[18]、钒基氧化物[19]-[23]等多种正极材料中,普鲁士蓝类似物(Prussian Blue Analogues, PBAs) [24] [25]凭借稳定的框架结构、可调控的化学组成、高比容量和长循环寿命等优势,受到研究者的广泛关注。PBAs开放的骨架通道允许锌离子可逆地嵌入和脱出,从而实现高能量密度和高容量的储能表现,并具备快速充放电能力。

2. 普鲁士蓝及其类似物的结构与特性

2.1. 基本结构

图1所示。普鲁士蓝(Prussian Blue, PB)是一种典型的配位框架材料,其分子通式可表示为AxM [M’(CN)6]1yy∙zH2O。其中,A表示嵌入框架间隙的碱金属阳离子(如K+、Na+等)。M和M’是由氰根(-C≡N-)桥连的过渡金属离子(如Fe、Mn、Co、Ni、Cu等),分别与氮(N)和碳(C)配位。□代表[M’(CN)6]空位。zH2O是结晶水,通常存在于空位中。普鲁士蓝类似物(PBAs)是通过改变M和M’位点的金属离子种类及比例衍生出的一系列材料,在结构和性能上表现出丰富的可调性。

2.2. 作为AZIBs正极材料的优势

作为水系锌离子电池的正极材料,PBAs凭借其独特的结构特性展现出多重优势。首先,其开放的框架结构为Zn2+的快速扩散与可逆嵌入/脱出提供了理想路径,从而赋予材料优异的高倍率性能。其次,某些过渡金属基PBAs (如Fe、Mn、Co基等)具有双氧化还原活性位点,M和M’位点均可发生氧化还原反应,理论上可实现两个阳离子的可逆存储,因此约有170 mAh∙g1的理论容量。此外,PBAs骨架中丰富的氰基(-C≡N-)能与锌离子产生强相互作用,不仅提升了储锌能力,也增强了材料的结构稳定性[27]。最后,PBAs的合成工艺简单(如共沉淀法),原料成本低,非常有利于大规模生产应用。

Figure 1. (a) Complete crystal structure of PBAs; (b) Crystal structure of PBAs with [Fe(CN)6] vacancies and crystal water [26]

1. (a) PBAs的完整晶体结构;(b) 含[Fe(CN)6]空位与结晶水的PBAs晶体结构[26]

2.3. 在AZIBs正极材料中面临的挑战

虽然PBAs作为AZIBs正极材料具备上述诸多优势,但其实际电化学性能仍受限于材料自身的固有缺陷。首先,在合成过程中(尤其是简单共沉淀法),易引入大量空位和结晶水。空位会破坏骨架结构完整性;而大量结晶水不仅占据Zn2+存储位点,还可能在高电位下参与副反应,引发电极极化与容量衰减。其次,在Zn2+反复嵌入/脱出过程中,PBA骨架承受显著的晶格应力,易引发相变或结构塌陷,导致容量快速下降。此外,传统方法合成的PBA晶体常存在形貌不均、尺寸分布宽等问题,影响电极的离子传输动力学。上述问题共同造成PBA的实际容量、倍率性能和循环寿命远低于理论预期。因此,必须通过有效的材料改性策略克服这些固有缺陷,以充分发挥其在AZIBs中的应用潜力。

3. 普鲁士蓝正极材料的改性策略

尽管PBAs具有开放的框架结构、高理论容量及合成简便等优点,但其电化学性能仍受限于晶体结构的稳定性不足和形貌不均匀等问题,导致实际容量、倍率性能和循环寿命往往未达到预期。为克服这些局限,研究人员已开发出多种改性策略,包括元素掺杂、表面包覆、形貌调控以及复合材料构建等,以优化其晶体稳定性、离子传输动力学和界面性质,从而全面提升PBAs在储能领域中的应用潜力。

3.1. 结晶度控制与缺陷工程

常规合成中共沉淀法可能导致形核过快,产生大量空位并被结晶水占据,从而降低结晶度。在合成过程中添加螯合剂(如柠檬酸钠)或络合剂,它们与过渡金属离子具有高络合能力,可以抑制PBAs的自发形核和沉淀,使结晶过程更缓慢、可控,从而减少空位缺陷,提高结晶度。例如:如图2(a)所示,Qin等[28]提出H⁺与柠檬酸钠协同的化学抑制策略来调控晶体的成核速率和生长速率,最终制备出高结晶度的H-PB。如图2(b)所示,Shu等[29]采用乙二胺四乙酸二钾盐作为螯合剂,制备出的KFeHCF-E比KFeHCF (不含EDTA制备)具有更高的结晶度。

Figure 2. (a) Schematic diagram for the synthesis of Prussian blue (Route 1: The conventional coprecipitation method for L-PB; Route 2: The advanced chemical-inhibited process for H-PB) [28]; (b) Schematic diagram of coprecipitation synthesis of KFeHCF-E with EDTA chelating agent [29]

2. (a) 普鲁士蓝合成示意图(路线1:用于L-PB的传统共沉淀法;路线2:用于H-PB的先进化学抑制法) [28];(b) 使用EDTA螯合剂的KFeHCF-E共沉淀合成示意图[29]

3.2. 元素掺杂与化学组成调控

研究表明,锌基普鲁士蓝类似物(Zn-PBA)凭借其独特的三维开放框架和较高的比表面积,受到广泛研究关注。该结构具有良好的离子吸附能力,可容纳单电荷及双电荷离子,因此被视为一种极具应用前景的水系锌离子电池正极材料。尽管如此,Zn-PBA在实际使用过程中仍存在循环稳定性较差的问题,其主要原因在于循环期间发生的显著相变和电化学溶解行为。为了解决上述问题,如图3(a)所示,Qi等[30]采用简便的共沉淀法,在冰浴条件下成功制备了ZnMn-PBA纳米立方体。该材料中锰的引入显著增强了PBAs的电化学性能。此外,ZnMn-PBA有效抑制了循环过程中常见的立方–菱方相变,促使储能过程主要由固溶反应机制主导。同时,该材料在水中的溶解度较低,从而减少了电极活性物质在电解液中的溶出损失,进一步提升了电池的循环寿命和结构完整性。

通过引入其他金属离子取代PBAs骨架中的部分原有金属离子,可以调节材料的电子结构,稳定晶体框架,抑制Jahn-Teller,并引入额外的氧化还原电对。如图3(b)~(d)所示,Syed等[31]通过Cu部分取代与Mn空位的形成抑制Mn-N6八面体的Jahn-Teller畸变、提升电极导电性及Zn2+扩散速率,其中CuMn PBA-2电极在0.5 A∙g1的比容量为175.14 mAh g1,在3 A∙g1下循环2000次后,仍能保持73.15 mAh∙g1的容量,表现出色的循环稳定性。

Figure 3. (a) Schematic diagram of ZnMn-PBA as a seed layer to assist MnO2 deposition-dissolution for cathode-free AZIBs [30]; (b) Schematic diagram for the synthesis process of CuMn PBA CNSs via a coprecipitation method; (c) Long-term cycling performance of CuMn PBA-2 electrode at 3 A∙g1; (d) Cycle performance of CuMn PBA-2 electrodes at 0.5 A∙g1 [31]

3. (a) ZnMn-PBA作为籽晶层辅助二氧化锰MnO2沉积–溶解用于无正极AZIBs的示意图[30];(b) 共沉淀法制备CuMn PBA CNSs的合成过程示意图;(c) CuMn PBA-2电极在3 A∙g−1下的长循环性能;(d) CuMn PBA-2电极在0.5 A∙g−1下的循环性能[31]

3.3. 界面工程

界面工程是提升电池性能的另一关键途径。研究表明,通过在正极材料表面构建功能性界面层,可以显著改善离子传导和结构稳定性。如图4(a)图4(b)所示,Xue等[32]合成了六氰基铁酸锡(SnHCF)和

Figure 4. (a) Schematic diagram of the synthetic pathway of SnHCF/PANI; (b) Long-term cycling performances of SnHCF/PANI and SnHCF electrodes at 2 A∙g1 [32]; (c) Schematic diagram of electrochemical deposition of PB interphase; (d) Cycle performance of PB-coated MnO2 and pristine MnO2 cathodes at 5 A∙g1 [33]

4. (a) SnHCF/PANI的合成路线示意图;(b) SnHCF/PANI电极与SnHCF电极在2 A∙g−1下的长循环性能[32];(c) PB界面层的电化学沉积示意图;(d) PB包覆的MnO2正极与原始二氧化锰MnO2正极在5 A∙g−1下的循环性能[33]

聚苯胺(PANI)的复合材料。导电聚合物PANI的引入不仅增加了电导率,而且由于PANI的高氧化还原活性,促进了Zn2+的储存,从而降低了Zn2+以及PBAs框架的静电相互作用。该复合正极展现出优异的电化学性能,在0.5 A∙g1电流密度下比容量达136.8 mAh g1,2 A∙g1下循环2500次后仍保持54.3 mAh∙g1的放电比容量。

图4(c)图4(d)所示,Yan等[33]通过在MnO2表面原位电化学沉积构建普鲁士蓝(PB)界面层,并对其进行放电活化。活化后的PB界面由立方晶系转变为非晶态,引入大量结构水以实现高效的Grotthuss质子传导。从而将MnO2的储能机制从Zn2+主导转变为H+主导,显著提升了其倍率性能和循环稳定性,并有效抑制了锰溶解问题。改性后的正极在0.2 A g⁻1下容量达343 mAh∙g⁻1,在20 A∙g⁻1的高电流密度下仍保持91 mAh∙g⁻1的容量,并在5 A∙g⁻1下循环2000次容量保持率为80.5%。

4. 总结与未来展望

普鲁士蓝类似物因其开放的框架结构、可调的化学组成和良好的电化学性能,被认为是极具潜力的水系锌离子电池正极材料。然而,其实际应用仍面临结晶缺陷多、结构稳定性差、界面副反应等问题。本文系统综述了近年来针对PBAs的多种改性策略,包括结晶度控制、元素掺杂、形貌调控及界面工程等,显著提升了其电化学性能。基于上述讨论,未来研究可聚焦以下几个具体方向:

1) 多策略协同改性:当前研究多集中于单一改性手段,未来应探索缺陷工程、元素掺杂与界面涂层的协同效应。例如,通过在掺杂基础上引入功能性包覆层,既能稳定晶体结构,又能抑制界面副反应,实现离子传输与结构稳定性的双重优化。

2) 动态结构演变的原位研究:结合原位XRD、原位Raman等先进表征手段,实时追踪PBAs在充放电过程中的晶体结构变化、Zn2+嵌入/脱出路径及水合行为,明确缺陷与结晶水在储能过程中的“双刃剑”作用,为精准调控材料结构提供理论依据。

3) 新型复合正极体系的设计:将PBAs与导电聚合物、碳材料或其他金属氧化物复合,构建多维导电网络或异质结构,进一步提升电子和离子传导速率,并缓解循环过程中的体积变化。例如,开发PBA@MXene或PBA/水凝胶复合材料,有望实现高负载量下的长循环稳定性。

参考文献

[1] Augustyn, V., Simon, P. and Dunn, B. (2014) Pseudocapacitive Oxide Materials for High-Rate Electrochemical Energy Storage. Energy & Environmental Science, 7, 1597-1614. [Google Scholar] [CrossRef
[2] Chu, S. and Majumdar, A. (2012) Opportunities and Challenges for a Sustainable Energy Future. Nature, 488, 294-303. [Google Scholar] [CrossRef] [PubMed]
[3] Zhao, R., Elzatahry, A., Chao, D. and Zhao, D. (2022) Making MXenes More Energetic in Aqueous Battery. Matter, 5, 8-10. [Google Scholar] [CrossRef
[4] Song, M., Tan, H., Chao, D. and Fan, H.J. (2018) Recent Advances in Zn‐Ion Batteries. Advanced Functional Materials, 28, Article ID: 1802564. [Google Scholar] [CrossRef
[5] Dunn, B., Kamath, H. and Tarascon, J. (2011) Electrical Energy Storage for the Grid: A Battery of Choices. Science, 334, 928-935. [Google Scholar] [CrossRef] [PubMed]
[6] Yi, J., Guo, S., He, P. and Zhou, H. (2017) Status and Prospects of Polymer Electrolytes for Solid-State Li-O2(Air) Batteries. Energy & Environmental Science, 10, 860-884. [Google Scholar] [CrossRef
[7] Li, Q., Liu, Y., Guo, S. and Zhou, H. (2017) Solar Energy Storage in the Rechargeable Batteries. Nano Today, 16, 46-60. [Google Scholar] [CrossRef
[8] Simon, P., Gogotsi, Y. and Dunn, B. (2014) Where Do Batteries End and Supercapacitors Begin? Science, 343, 1210-1211. [Google Scholar] [CrossRef] [PubMed]
[9] Chao, D., DeBlock, R., Lai, C., Wei, Q., Dunn, B. and Fan, H.J. (2021) Amorphous VO2: A Pseudocapacitive Platform for High‐Rate Symmetric Batteries. Advanced Materials, 33, e2103736. [Google Scholar] [CrossRef] [PubMed]
[10] Pan, Z., Yang, J., Li, L., Gao, X., Kang, L., Zhang, Y., et al. (2020) All-in-One Stretchable Coaxial-Fiber Strain Sensor Integrated with High-Performing Supercapacitor. Energy Storage Materials, 25, 124-130. [Google Scholar] [CrossRef
[11] Schmidt, O., Hawkes, A., Gambhir, A. and Staffell, I. (2017) The Future Cost of Electrical Energy Storage Based on Experience Rates. Nature Energy, 2, Article No. 17110. [Google Scholar] [CrossRef
[12] Du, W., Ang, E.H., Yang, Y., Zhang, Y., Ye, M. and Li, C.C. (2020) Challenges in the Material and Structural Design of Zinc Anode Towards High-Performance Aqueous Zinc-Ion Batteries. Energy & Environmental Science, 13, 3330-3360. [Google Scholar] [CrossRef
[13] Liu, D., Mai, Y., Chen, S., Liu, S., Ang, E.H., Ye, M., et al. (2021) A 1D-3D Interconnected δ-MnO2 Nanowires Network as High-Performance and High Energy Efficiency Cathode Material for Aqueous Zinc-Ion Batteries. Electrochimica Acta, 370, Article ID: 137740. [Google Scholar] [CrossRef
[14] Islam, S., Alfaruqi, M.H., Putro, D.Y., Park, S., Kim, S., Lee, S., et al. (2021) In Situ Oriented Mn Deficient ZnMn2O4@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc‐Ion Batteries. Advanced Science, 8, Article ID: 2002636. [Google Scholar] [CrossRef] [PubMed]
[15] Tan, Q., Li, X., Zhang, B., Chen, X., Tian, Y., Wan, H., et al. (2020) Valence Engineering via in Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery. Advanced Energy Materials, 10, Article ID: 2001050. [Google Scholar] [CrossRef
[16] Cao, L., Lu, D., Zhong, D. and Lu, T. (2020) Prussian Blue Analogues and Their Derived Nanomaterials for Electrocatalytic Water Splitting. Coordination Chemistry Reviews, 407, Article ID: 213156. [Google Scholar] [CrossRef
[17] Liu, W., Zhang, X., Huang, Y., Jiang, B., Chang, Z., Xu, C., et al. (2021) β-MnO2 with Proton Conversion Mechanism in Rechargeable Zinc Ion Battery. Journal of Energy Chemistry, 56, 365-373. [Google Scholar] [CrossRef
[18] Yang, H., Zhou, W., Chen, D., Liu, J., Yuan, Z., Lu, M., et al. (2022) The Origin of Capacity Fluctuation and Rescue of Dead Mn-Based Zn-Ion Batteries: A Mn-Based Competitive Capacity Evolution Protocol. Energy & Environmental Science, 15, 1106-1118. [Google Scholar] [CrossRef
[19] Jiao, T., Yang, Q., Wu, S., Wang, Z., Chen, D., Shen, D., et al. (2019) Binder-Free Hierarchical VS2 Electrodes for High-Performance Aqueous Zn Ion Batteries Towards Commercial Level Mass Loading. Journal of Materials Chemistry A, 7, 16330-16338. [Google Scholar] [CrossRef
[20] Ding, J., Gao, H., Zhao, K., Zheng, H., Zhang, H., Han, L., et al. (2021) In-Situ Electrochemical Conversion of Vanadium Dioxide for Enhanced Zinc-Ion Storage with Large Voltage Range. Journal of Power Sources, 487, Article ID: 229369. [Google Scholar] [CrossRef
[21] Li, W., Han, C., Gu, Q., Chou, S., Wang, J., Liu, H., et al. (2020) Electron Delocalization and Dissolution-Restraint in Vanadium Oxide Superlattices to Boost Electrochemical Performance of Aqueous Zinc‐ion Batteries. Advanced Energy Materials, 10, Article ID: 2001852. [Google Scholar] [CrossRef
[22] Jiang, H., Zhang, Y., Pan, Z., Xu, L., Zheng, J., Gao, Z., et al. (2020) NH4V3O8∙0.5H2O Nanobelts with Intercalated Water Molecules as a High Performance Zinc Ion Battery Cathode. Materials Chemistry Frontiers, 4, 1434-1443. [Google Scholar] [CrossRef
[23] Li, X., Ma, L., Zhao, Y., Yang, Q., Wang, D., Huang, Z., et al. (2019) Hydrated Hybrid Vanadium Oxide Nanowires as the Superior Cathode for Aqueous Zn Battery. Materials Today Energy, 14, Article ID: 100361. [Google Scholar] [CrossRef
[24] Zhang, S., Long, S., Li, H. and Xu, Q. (2020) A High-Capacity Organic Cathode Based on Active N Atoms for Aqueous Zinc-Ion Batteries. Chemical Engineering Journal, 400, Article ID: 125898. [Google Scholar] [CrossRef
[25] Jiang, B., Huang, T., Yang, P., Xi, X., Su, Y., Liu, R., et al. (2021) Solution-Processed Perylene Diimide-Ethylene Diamine Cathodes for Aqueous Zinc Ion Batteries. Journal of Colloid and Interface Science, 598, 36-44. [Google Scholar] [CrossRef] [PubMed]
[26] Zhao, L., Zhao, Y., Wu, Y., Wang, P., Liu, Z., Zhang, Q., et al. (2025) Everything in Aqueous Zinc-Ion Batteries May Be Prussian Blue Analogues: From Cathode Materials to Electrolyte Additives Applications. Energy Storage Materials, 78, Article ID: 104299. [Google Scholar] [CrossRef
[27] Wang, B., Han, Y., Wang, X., Bahlawane, N., Pan, H., Yan, M., et al. (2018) Prussian Blue Analogs for Rechargeable Batteries. iScience, 3, 110-133. [Google Scholar] [CrossRef] [PubMed]
[28] Qin, M., Ren, W., Jiang, R., Li, Q., Yao, X., Wang, S., et al. (2021) Highly Crystallized Prussian Blue with Enhanced Kinetics for Highly Efficient Sodium Storage. ACS Applied Materials & Interfaces, 13, 3999-4007. [Google Scholar] [CrossRef] [PubMed]
[29] Shu, W., Huang, M., Geng, L., Qiao, F. and Wang, X. (2023) Highly Crystalline Prussian Blue for Kinetics Enhanced Potassium Storage. Small, 19, Article ID: 2207080. [Google Scholar] [CrossRef] [PubMed]
[30] Qi, Y., Li, F., Sheng, H., Zhang, H., Yuan, J., Ma, L., et al. (2024) Seed-Assisted Reversible Dissolution/Deposition of MnO2 for Long‐Cyclic and Green Aqueous Zinc‐Ion Batteries. Small, 20, Article ID: 2404312. [Google Scholar] [CrossRef] [PubMed]
[31] Syed, W.A., Kakarla, A.K., Bandi, H., Shanthappa, R. and Yu, J.S. (2024) Copper Substituted Manganese Prussian Blue Analogue Composite Nanostructures for Efficient Aqueous Zinc-Ion Batteries. Journal of Energy Storage, 99, Article ID: 113325. [Google Scholar] [CrossRef
[32] Xue, Y., Zhou, H., Suo, X., Tao, J., Zhang, C., Ji, Z., et al. (2024) Polyaniline-Modified Amorphous Tin-Based Prussian Blue Analogue as Cathodes for Long-Life Aqueous Zinc Ion Batteries. Journal of Energy Storage, 98, Article ID: 113140. [Google Scholar] [CrossRef
[33] Yan, S., Zuo, Y., He, B., Tian, H., Meng, T., Zhang, H., et al. (2025) An Activated Prussian Blue Interphase Enhancing H+ Storage of MnO2 Cathode for Aqueous Zinc Ion Battery. Journal of Alloys and Compounds, 1036, Article ID: 181877. [Google Scholar] [CrossRef